
HAL Id: hal-03180538
https://hal.science/hal-03180538

Submitted on 29 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparative Study of Characteristic Finite Element
and Characteristic Finite Volume Methods for

Convection-Diffusion-Reaction Problems on Triangular
Grids

Sutthisak Phongthanapanich, Robert Eymard

To cite this version:
Sutthisak Phongthanapanich, Robert Eymard. A Comparative Study of Characteristic Finite Element
and Characteristic Finite Volume Methods for Convection-Diffusion-Reaction Problems on Triangular
Grids. Applied Science and Engineering Progress, 2019, 12 (4), pp.1-8. �10.14416/j.asep.2019.10.002�.
�hal-03180538�

https://hal.science/hal-03180538
https://hal.archives-ouvertes.fr


A Comparative Study of Characteristic Finite
Element  and  Characteristic  Finite  Volume
Methods  for  Convection-Diffusion-Reaction
Problems on Triangular Grids

Sutthisak Phongthanapanich
Department  of  Mechanical  Engineering  Technology,
College  of  Industrial  Technology,  
King  Mongkut’s  University  of  Technology  North
Bangkok, Bangkok, Thailand

Robert Eymard
Université Paris-Est Marne-la-Vallée 5 boulevard Descartes
Champs-sur-Marne  
F-77454 MARNE LA VALLÉE CEDEX 2, France

Abstract
The  paper  aims  to  compare  the  accuracy  and
robustness  of  the  characteristic  finite  element
method (CFEM) and characteristic finite volume
method (CFVM) for solving convection-diffusion-
reaction problems on  two-dimensional  triangular
grids.  The  tests  are  performed  on  a  square  unit
domain, to which an advective field is imposed in
a domain. The results show that the CFEM gives
less accurate solution than CFVM for the rotation
of a slotted-cylinder and rotation of Gaussian cone
problems.  Moreover,  CFEM  gives  oscillate
solution while the CFVM provides an oscillation-
free  solution  for  the  skew  flow  to  the  mesh
problem.

Keywords: Characteristic  Finite  Element  Method,
Characteristic  Finite  Volume  Method,  Convection-
Diffusion-Reaction, Triangular Grids

1 Introduction

Many  science  and  engineering  applications  require  the
simulation  of  time-dependent  convection-diffusion-
reaction  equations.  The  convection  is  defined  as  the
movement  of  substance  due  to  the  fluid  transport
medium, the diffusion is referred to the dispersion of a
substance involved in the process throughout the physical
domain of the problem, and the reaction is the process of
interaction through which the substances are generated or
consumed. Generally, the scale of the diffusion is smaller
by several orders of magnitude compared to the size of
the  advective  flow  field.  A  main  feature  of  the
convection- and reaction-dominated is the presence of the
sharp  layers  as  a  part  of  the  solution.  The  accurate
simulation of such processes requires numerical methods
such  that  able  to  compute  sharp  layers  without  an
occurrence of spurious oscillations. 

The  standard  Galerkin  finite  element  method  usually
yields  oscillatory  solutions  for  convection-dominated
problems  [1].  Many  methods  have  been  proposed  to
overcome the instability and inaccuracy of the solution.
The shock-capturing procedure [2]  is  the usual  remedy

for these difficulties. Among the stabilizing schemes, the
characteristic  Galerkin  scheme  has  been  developed  by
applying the time-stepping technique as the basis [3,4].
The explicit characteristic Galerkin scheme based on the
Taylor  series  expansion  is  an  attractive  one  due  to  its
simple implementation and fast calculation. The scheme
uses a characteristic approximation to trace advection in
time and combine with a low-order mixed finite element
spatial  approximation  of  the  equation.  Moreover,  the
scheme is locally conservative on the discrete level such
that  fluid  is  transported  along  with  the  approximate
characteristics.

Recently,  the  author  proposed  an explicit  characteristic
finite  volume  method  that  can  provide  stabilized
numerical  solutions  for  pure  advection  and  advection-
dominated  diffusion  problems  [5-7].  The  idea  of  the
characteristic-based  scheme  is  used  to  discrete  the
Lagrangian derivative as the function of time.  An explicit
finite volume method based on the cell-centered scheme
is  employed  to  derive  the  discretized  equations.   The
Galerkin finite element technique is applied to estimate
the gradient quantities at the cell faces. The finite volume
method is applied to discretize the equation because of it
some of the important features. Firstly, it may be used on
arbitrary  geometries,  using  structured  or  unstructured
grids.  Secondly,  it  is  the  local  conservativity  of  the
numerical fluxes, that is the numerical flux is conserved
from one discretization cell to its neighbor [8].

The  objective  of  this  research  work  is  to  compare  the
computational  efficiency  of  the  CFEM and CFVM for
solving  two-dimensional  convection-diffusion-reaction
problems  on  structured  triangular  grids.  The  paper  is
organized  as  follows.  In  Section  2,  the  governing
equations  and  numerical  formulations  are  presented.
Then, the schemes are examined by three benchmark test
cases to evaluate their accuracy and robustness in Section
3.

2 The Numerical Scheme

2.1 The  characteristic  convection-diffusion-
reaction equation 

The  governing  differential  equation  for  the  two-
dimensional convection-diffusion-reaction equation is

(1)

subject to the boundary conditions

(2)

(3)

with   with  ,  and  the

initial condition is defined for  with  by



(4)

where   is  the  scalar  quantity,   is  the  given
convection  velocity  vector,   is  the  diffusion

coefficient,  is the reaction coefficient, and  for
.

By  applying  a  characteristic  approximation  to  trace
advection in time, as explained in Ref. [5-7] to Eq. (1)
yields

(5)

where all terms are to be evaluated at . 

Then,  by  carrying  out  a  Taylor  series  expansion,  the
convection term reappears in the equation along with an
additional  second-order  term.   This  second-order  term
acts as a smoothing operator that reduces the oscillations
arising from the spatial discretization of the convection
terms.    The  fully  explicit  characteristic  convection-
diffusion-reaction equation is given by

(6)

Together with the use of the divergence-free assumption

,  Equation  (6)  could  be  written  finally  in  the
conservation form as

(7)

2.2 The characteristic finite element method

Assuming  a  variation  of   within  an  element  can  be
approximated by

(8)

(9)

where   is an element interpolation function. Applying
the standard Galerkin weighting technique to Eq. (6) to
yield

(10)

Because  the  hyperbolic  nature  of  the  convection-
dominated equation, a nonlinear viscous shock capturing
operator  is  added  to  minimize  the  oscillations  at  the
discontinuities in the curvature of the front.  The operator
[9] is given by 

(11)

and

(12)

where  is a parameter used to control added viscosity

(typically is 0.1), and   is a measure of the element  e.
Finally,  applying  the  Green-Gauss  theorem  to  Eq.  (9)
also, using Eq. (8) to obtain

(13)

where

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

2.3 The characteristic finite volume method



The  computational  domain  is  first  discretized  into  a
collection  of  non-overlapping  control  volumes  

, that completely cover the domain such

that ,  and  if . To obtain
the finite volume equation, Eq. (7) is then integrated over

the control volume  to yield

(23)

Then  the  divergence  theorem  is  applied  to  the  spatial
terms to yield a fully explicit characteristic-based scheme
for solving Eq. (7) in the form

(24)

where   is a number of adjacent cell faces,   is the

segment of the boundary   between the two adjacent

control  volumes   and  ,  and the quantities  at  the
time  are defined by

(25)

(26)

Finally,  the  scalar  quantity  at  the  cell  faces,  ,  is
approximated  by  applying  Taylor’s  series  expansion  in
space such that

(27)

For the opposite direction of velocity, the values  could
be computed from Eq. (27), but using the values from the
neighboring cells according to the upwinding direction.

Moreover,  in  this  paper,  the  gradient  term,  ,  is
approximated by the weighted residuals method, which is
commonly used in the finite element technique [6]. 

Finally, to ensure the stability of a numerical scheme, the
CFL-like  stability  criterion  must  be  fulfilled.  In  this
paper, the time-step within each control volume 
i for both the CFEM and CFVM is determined from

(28)

where  is the scaled normal velocity at ,  is the
cell characteristic length, and .

3 Test Problems and Discussion

In order to illustrate the accuracy and robustness of these
numerical  schemes,  three  examples  are  examined  by
implementing  a  second-order  accurate  scheme.  These
examples are (1) the rotation of a slotted-cylinder, (2) the
rotation of a Gaussian cone, and (3) the skew flow to the
mesh. All examples presented in this section were tested
on structured triangular grids.

3.1 Rotation of a slotted-cylinder

This first problem is adapted from the rotation of a slotted
cylinder problem, which was introduced by Zalesak [10].
It is a challenging pure-convection problem because the
sudden change of the initial conditions and the shape of

the rectangular slot in the domain  are difficult
to  capture  by  most  numerical  schemes.  The  rotating

velocity field is imposed such that .

The initial condition  is given by

(29)

where   is  the distance from the center of the domain

. The time step for this example is set to be equal
to the period required for one turn rotation. This example
is performed on a uniform grid of  . The exact
solution at the final time step is then equal to the initial
condition that is depicted in Figs. (1) and (2).

Figures  3 and  4  show that  the CFEM scheme gives  a
dissipative solution and inaccurate position of a slotted-
cylinder. Moreover, Figs. 5 and 6 show that the CFVM
scheme gives more sharpen and accurate solution.

Figure  1:  Exact  solution  at  the  final  time  of  
problem 3.1: 2D plot.
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Figure  2:  Exact  solution  at  the  final  time  of 
problem 3.1: 3D plot.

Figure  3:  CFEM  solution  at  the  final  time  of 
problem 3.1: 2D plot.
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Figure  4:  CFEM  solution  at  the  final  time  of 
problem 3.1: 3D plot.

Figure  5:  CFVM  solution  at  the  final  time  of 
problem 3.1: 2D plot.
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Figure  6:  CFVM  solution  at  the  final  time  of 
problem 3.1: 3D plot.
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Figure  7:  Comparison  of  the  solution  along  the  line

 at the final time of problem 3.1.

Finally, the comparison of the solution along   is
illustrated in  Fig.  7.  It  is  seen  that  the  CFVM scheme
gives a more accurate solution than the CFEM scheme. It
can capture the maximum and minimum values around
the slot of the cylinder accurately.

3.2 Rotation of a Gaussian cone

The second example is the rotation of a Gaussian pulse in
a square domain where the scalar field is rotated around

the  domain  .  The  rotating  velocity  field
with  the  angular  velocity  of  4  rad/s  is  imposed  as

. This example has been used widely for
testing  the  numerical  artifacts  that  occur  on  different

schemes [11,6]. The initial condition  is given by

(30)



where . The final time is equal to , which
is  the  time  period  required  for  one  turn  rotation.  this
example is  performed on a uniform grid of   .

The diffusion coefficient of , in order to evaluate
the  robustness  and  accuracy  of  the  method  on  a
convection-dominated diffusion problem. The 2D and 3D
plots  of  the  exact  solution as  shown in Figs.  8  and  9.
Figures 10 and 11 show the numerical solution obtained
from  the  CFEM  scheme.  Then  the  numerical  solution
obtained from the CFVM scheme is also shown in Figs.
12 and 13. Moreover,  the comparison of  the numerical

and exact solutions along the line  are presented in
Fig. 14.

Figure  8:  Exact  solution  at  the  final  time of  
problem 3.2: 2D plot.
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Figure  9:  Exact  solution  at  the  final  time  of  
problem 3.2: 3D plot.

Figure  10:  CFEM  solution  at  the  final  time  of 
problem 3.2: 2D plot.

x

-0.5

-0.25

0

0.25

0.5

y

-0.5

-0.25

0

0.25

0.5

S
calar

0

0.25

0.5

0.75

1

Figure  11:  CFEM  solution  at  the  final  time  of 
problem 3.2: 3D plot.

Figure  12:  CFVM  solution  at  the  final  time  of 
problem 3.2: 2D plot.
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Figure  13:  CFVM  solution  at  the  final  time  of 
problem 3.2: 3D plot.
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Figure  14:  Comparison  of  the  solution  along  the  line

 at the final time of problem 3.2.

3.3 Skew flow to the mesh

The last example is the skew flow problem presented by
Hauke [12,7]. This example considers the behavior of the
numerical  solutions  under  the  convection-reaction-
dominated  diffusion  condition  in  a  square  domain

, with the initial condition . The four

boundary  conditions  are    and

.  The  velocity  field  is  given  by

. The numerical solutions are
examined in the steady-state condition. It is noted that the
influence  of  boundary  conditions  on  the  algorithm  is
remarkable and leads to instability [12]. The parameters
for this test are   and  . The analyses of
these test cases are performed on the  grid size. 

The 3D plots of numerical  solutions of the CFEM and
CFVM  schemes  are  depicted  in  Figs.  15  and  16,
respectively. Figure  15  shown  that  the  CFEM  scheme
provides  the  oscillate  solution  along  the  boundaries

 due  to  the  abrupt  change  of  the
solutions.  Moreover,  the  CFVM  scheme  gives  non-
oscillate solution along these boundaries.  The examples
confirmed  that  the  CFVM  scheme  is  an  accurate  and
robust scheme for computing a wide range of convection-
dominated diffusion-reaction problems.
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Figure  15:  CFEM  solution  at  the  final  time  of 
problem 3.3: 3D plot.
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Figure  16:  CFVM  solution  at  the  final  time  of 
problem 3.3: 3D plot.

4 Concluding Remarks

The accuracy and robustness of the CFEM and CFVM
schemes  for  solving  two-dimensional  convection-
diffusion-reaction problems on structured triangular grids
are  investigated  in  this  paper.  The  characteristic
convection-diffusion-reaction  equation  is  derived.  The
finite element and finite volume is then used to discretize
the  characteristic  convection-diffusion-reaction equation.
Three  examples  are  used  to  test  the  accuracy  and
robustness of both schemes. For the rotation of a slotted-
cylinder  problem, the  CFEM  scheme  provides  the
diffusive and inaccurate position of  the slotted-cylinder
solution  while  the  CFVM  scheme  gives  the  sharpen
solution with an accurate position of the slotted-cylinder
solution.  The  CFEM  scheme  provides  a  less  accurate
solution than the one obtained from the CFVM scheme
for  rotation of a Gaussian cone problem. Finally, for the
skew flow to the mesh,  the CFEM scheme provides the
oscillate solution along the boundaries  due to the abrupt
change  of  the  solutions.  Moreover,  the  CFVM scheme



gives a non-oscillate solution. We can conclude that the
CFVM  scheme  is  an  accurate  and  robust  method  for
solving the convection-dominated problems.
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