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A switching technique for output feedback stabilization

at an unobservable target

Lucas Brivadis and Ludovic Sacchelli

Abstract— We consider the problem of dynamic
output feedback stabilization at an unobservable tar-
get point. The challenge lies in according the antag-
onistic nature of the objective and the properties of
the system: the system tends to be less observable as
it approaches the target. In the literature, switching
techniques rapidly appeared as a suitable approach to
deal with this issue. On a case of systems with linear
conservative dynamics and nonlinear output, this ap-
proach is used in conjunction with an embedding into
bilinear systems that admit observers with dissipative
error. Combining these two elements, global stabi-
lization by means of a dynamic periodic time-varying
output feedback is proved, and numerical simulations
are provided.

I. Introduction

Stabilizing a control system by using only a measured
output is a challenging issue occurring in many practi-
cal situations. On nonlinear systems, a general strategy
known as observer-based design consists in finding a
stabilizing state feedback, designing an observer system
that learns the state from the dynamics of its output,
and using as an input the state feedback applied to
the observer. In [18], [19], Teel and Praly proved under
a complete uniform observability assumption that semi-
global smooth stationary dynamic output feedback sta-
bilization can be achieved thanks to this observer-based
strategy. Uniform observability refers to the fact that
all the inputs render the system observable. However,
nonlinear systems are generically non-uniformly observ-
able as soon as the dimension of the output is less
or equal to the dimension of the input (see [9], [10]),
i.e., there generically exists singular inputs making the
system unobservable.

This issue, important from both the theoretical [3], [4],
[6] and practical [1], [12], [14], [17] viewpoints, becomes
especially salient when the constant input corresponding
to the value of the state feedback at the target point
renders the system unobservable. In that case, state-
estimation and stabilization objectives work against each
other: while the system approaches the target, observ-
ability of the system worsens, leading to a potential loss
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in the quality of the state estimation, and in turn, the
stabilization.

In [7], Coron introduced a new strategy by allowing the
output feedback to be time-varying. Doing so, local out-
put feedback stabilization was achieved up to a Lie null-
observability condition by using a switching strategy: the
input is alternatively chosen to estimate or stabilize the
state. Later, Shim and Teel in [16] applied a similar
principle to obtain practical semi-global stabilization of
general systems that can have poor observability guar-
antees. Nevertheless, a complete method for exact semi-
global (or global) stabilization using these techniques
remains to be identified.

In [7], the one-dimensional nonlinear system ẋ = u,
y = x2 was investigated: it was proved to be unobservable
at the target (i.e. for u ≡ 0) and not (locally) stabilizable
by means of a stationary dynamic output feedback, but
locally stabilizable by means of a dynamic periodic time-
varying output feedback. In this paper, we investigate an
extension of this illustrative example in higher dimension
such that its unobservability property at the target is
preserved. Interestingly, it has been shown in [4] that the
system is stabilizable by means of a stationary dynamic
output feedback in some cases. Yet, in others, one is
forced to look for time-varying output feedbacks, which
is the aim of this paper. In Section II, we recall defini-
tions of output feedback stabilizability. Systems under
consideration are discussed in III, where the result of [4]
is recalled. The main result of this paper is stated and
proved in Section IV. Numerical simulations are provided
in the last section of the paper.

II. Definitions

Consider the nonlinear observed control system

{

ẋ = f(x, u)

y = h(x)
(II.1)

where x ∈ R
n is the state of the system, y ∈ R

m is the
measured output and u ∈ R

p is the control, or input.
The usual notion of stationary dynamic output feedback
stabilization (see, e.g., [2]) is the following.

Definition 1 (Stationary stabilizability): System (II.1)
is said to be locally (resp. globally) stabilizable by means
of a stationary dynamic output feedback if and only if
there exist two continuous maps ν : R

q × R
p × R

m →
R

q and λ : Rq × R
m → R

p for some positive integer q
such that (0, 0) ∈ R

n × R
q is a locally (resp. globally)



asymptotically stable equilibrium point of the following
system:

{

ẋ = f(x, u)

y = h(x)
,

{

˙̂z = ν(ẑ, u, y)

u = λ(ẑ, y).
(II.2)

Remark 1: We have assumed with no loss of generality
(up to a change of coordinates), that the target point at
which we aim to stabilize the state of (II.1) is x = 0.
Moreover, if (II.1) is locally stabilizable by means of a
stationary dynamic output feedback, then f(0, u⋆) = 0,
where u⋆ = λ(0, h(0)) is the value of the control at the
target point. Again, with no loss of generality, we assume
that u⋆ = 0.

Definition 2 (Observability at the target):
System (II.1) is said to be observable at the target
in some time T > 0 if and only if, for any pair
of trajectories (x1, x2) of (II.1) with u ≡ 0 with
corresponding outputs (y1, y2) defined in [0, T ],

y1 ≡ y2 =⇒ x1 ≡ x2 (II.3)

where “ ≡ ” denotes equality over [0, T ].
In this paper, we focus on systems that are unob-

servable at the target point. The periodic time-varying
dynamic output feedbacks considered in [7], [13] or [16]
all fit the following extension.

Definition 3 (Periodic time-varying stabilizability):
System (II.1) is said to be locally (resp. globally)
stabilizable by means of a dynamic periodic time-
varying output feedback if and only if there exist
µ : R

q × R
m → R

q and two T -periodic maps
ν : Rq ×R

p ×R
m ×R+ → R

q and λ : Rq ×R
m ×R+ → R

p,
continuous on their spatial domain and piecewise
continuous on R+, such that (0, 0) ∈ R

n ×R
q is a locally

(resp. globally) asymptotically stable equilibrium point
of the following system:

{

ẋ = f(x, u)

y = h(x)
,











˙̂z = ν(ẑ, u, y, t) t ∈ [tk, tk+1)

ẑ(tk) = µ(ẑ(t−
k ), y(t−

k ))

u = λ(ẑ, y, t)
(II.4)

where tk = kT , k ∈ N, T > 0, and (ẑ(t−
k ), y(t−

k )) stands
for limt→kT

t<kT
(ẑ(t), y(t)) for k > 1.

Remark 2: In Definition 3, µ may be chosen such that
µ(ẑ, y) = ẑ for all ẑ ∈ R

q and y ∈ R
m. In that case,

(II.4) is simply an ordinary differential equation (ODE).
It is the case in [16] for example. However, in this paper,
ẑ is reinitialized at the beginning of each time period.
Yet, the problem under consideration is still the output
feedback stabilization since ẑ(tk) depends only on the
limits from below of ẑ and y on the previous time interval.
System (II.4) can also be written as a cascade of ODEs.

III. A class of systems unobservable

at the target

As stated in the introduction, inspired by the one-
dimensional example ẋ = u, y = x2 (see [7]), we
look for a natural extension of this system in higher

dimension. Throughout the paper, we investigate the
output feedback stabilizability of the following single-
input single-output (SISO) system:







ẋ = Ax + Bu

y =
1

2
|x|2

, A′ = −A (III.1)

where A ∈ R
n×n is a skew-symmetric matrix (A′ denotes

the transpose of A), B ∈ R
n×1 and |x| denotes the

Euclidean norm of x.
Remark 3: Up to a change of scalar product, one may

also consider any system of the form ẋ = Ax + Bu, y =
x′Px if A′P + PA = 0 for some symmetric positive-
definite matrix P ∈ R

n×n.
Clearly, (III.1) is unobservable at the target. Indeed, if

xa, xb in R
n are such that |xa| = |xb|, then the solutions

of ẋ = Ax starting from xa and xb are such that their
corresponding outputs ya and yb are constantly equal
since A is skew-symmetric. In a recent work [4], the cases
where (III.1) is stabilizable by means of a stationary
dynamic output feedback have been fully characterized.

Theorem 1 (see [4]): Let A ∈ R
n×n be a skew-

symmetric matrix and B ∈ R
n×1.

(i) If A is not invertible, then (III.1) is not locally sta-
bilizable by means of a stationary dynamic output
feedback.

(ii) On the other hand, if A is invertible and (A, B) is
controllable, then (III.1) is semi-globally stabilizable
by means of a stationary dynamic output feedback.

Remark 4: Since A is skew-symmetric, A can be in-
vertible only if n is even. In particular, if n = 1, (i)
states the same result as [7].

We state the proof of (i) to underline how the inverti-
bility of A plays a role in the stabilizability of the system.
We also give a step of the proof of (ii) that is used in
proof of the main result of the present paper.

Proof of (i): Assume that (0, 0) is a locally asymptot-
ically stable equilibrium point of (II.2) with f(x, u) =
Ax + Bu and h(x) = 1

2 |x|2. Let F be the vector
field associated to the closed-loop system (II.2), that
is, F (x, ẑ) = (Ax + Bλ (ẑ, h(x)) , ν (ẑ, λ (ẑ, h(x)) , h(x))).
Then, according to Theorem 52.1 in [11] (see [8] when one
does not have uniqueness of the solutions to the Cauchy
problem), the index of −F at (0, 0) is 1. Assume, for
the sake of contradiction, that A is not invertible. Let
N be a one-dimensional subspace of ker A. Denote by
Σ the reflection through the hyperplane N ⊥, that is,
Σ = idn − 2vv′ for some unitary vector v ∈ N . Then
det Σ = −1, AΣ = A and h(Σx) = h(x). Hence (x, ẑ) 7→
−F (Σx, ẑ) has index −1 at (0, 0) and F (Σx, ẑ) = F (x, ẑ).
Thus 1 = −1 which is a contradiction.

Remark 5: This proof emphasizes that the invertibility
of A is a topological constraint on the vector field rather
than an observability constraint: the unobservability of
the system for u ≡ 0 does not play any role in the proof.
Hence, when A is invertible, stationary stabilizability
can be reached, as stated in (ii). Moreover, in all cases,



considering time-varying systems remove the topological
constraint. Hence time-varying output feedback stabi-
lization can be considered on system (III.1).

One step of the proof of (ii): In previous works [5], [15]
the role of dissipative systems in the context of output
feedback stabilization has been emphasized, which led us
to consider on non-dissipative systems embeddings into
dissipative ones. A crucial step of the proof of (ii) is
to embed the original system (III.1) into a new bilinear
system for which an observer with dissipative error can
be built. More precisely, let us consider the mapping

τ : R
n −→ R

n+1

x 7−→
(

x, 1
2 |x|2

) (III.2)

For all z = (z1, . . . , zn+1) ∈ R
n+1, define z̄n =

(z1, . . . , zn) ∈ R
n. If x is a solution of (III.1), then

1
2

d
dt

|x|2 = x′Ax + uB′x = uB′x since A is skew-
symmetric. Hence z = τ(x) defines an embedding of
(III.1) into

{

ż = A(u)z + Bu

y = Cz.
(III.3)

where A(u) =

(

A 0
uB′ 0

)

, B =

(

B
0

)

and C =
(

0 · · · 0 1
)

and with initial conditions in T = τ(Rn).
Moreover, the semi-trajectory z remains in T .

Let us introduce a Luenberger observer with dynamic
gain for (III.3). In order to make the error system

dissipative, set Lα(u) =

(

Bu
α

)

∈ R
n+1 for some posi-

tive constant α (degree of freedom). The corresponding
observer system is given by

{

ε̇ = (A(u) − Lα(u)C) ε

˙̂z = A(u)ẑ + Bu − Lα(u)Cε
(III.4)

where z = ẑ − ε satisfies (III.3), ẑ is the estimation of
the state made by the observer system and ε is the error
between the estimation of the state and the actual state
of the system. The n first coordinates of ẑ correspond to
an observer of the original system (III.1). Note that for
all u ∈ R,

A(u) − Lα(u)C =

(

A −Bu
uB′ 0

)

− αC′C, (III.5)

that is, the sum of two matrices, one skew-symmetric
and one semi-negative definite. It implies that the ε-
subsystem of (III.4) is dissipative, that is, for all input
u ∈ C0(R+,R), the solutions of (III.4) satisfy

d|ε|2
dt

= 2ε′ (A(u) − Lα(u)C) ε = −2α|Cε|2 6 0. (III.6)

This property allows to mitigate the observability issue of
the system. Even if the input approaches a value making
the system unobservable, the error between the state
estimation and the actual state will not increase. This
a key argument in the proof of Theorem 1 (ii), as well
as the proof of the main result below.

Remark 6: For any constant u ∈ R \ {0}, the pair
(C, A(u)) is observable. Indeed, the Kalman observability
matrix OC,A(u) of the pair has shape

(

0 1
OB′,A 0

)

where OB′,A is the Kalman observability matrix of the
pair (B′, A). As such, OB′,A is the transposed Kalman
controllability matrix of (−A, B), thus invertible. Hence,
for any u ∈ R \ {0}, A(u) − Lα(u)C is Hurwitz. Indeed,
according to (III.6) and LaSalle’s invariance principle,
the ω-limit set of ε is a subset of ker C invariant under
the dynamics ε̇ = (A(u) − Lα(u)C)ε. But since the pair
(C, A(u)) is observable, this set is {0}, i.e., ε → 0, i.e.,
A(u) − Lα(u)C is Hurwitz.

IV. Main result

We have seen in the previous section that semi-global
stationary dynamic output feedback stabilization can be
achieved as soon as a A is invertible. Combining the
embedding-based observer (III.4) with a switching strat-
egy inspired by [7], [16], we show that in all cases, global
dynamic time-varying output feedback stabilization can
be achieved.

Theorem 2: Let A ∈ R
n×n be a skew-symmetric ma-

trix and B ∈ R
n×1 such that (A, B) is controllable. Then

(III.1) is globally stabilizable by means of a dynamic
periodic time-varying output feedback.

Remark 7: The results of [7] imply the local stabiliz-
ability of (III.1) (in finite-time), while [16] implies the
semi-global practical stabilizability, that is, stabilizabil-
ity in an arbitrarily small neighborhood of the target
for initial conditions in an arbitrarily large compact set
of initial conditions. Theorem 2 bridges the gap between
these two results on the specific class of examples (III.1),
since global exact stabilization is obtained.

Remark 8: Since A is skew-symmetric, (A, B) is con-
trollable if and only if it is stabilizable due to the Hautus
tests. Indeed, all the eigenvalues of A have null real part,
hence the Hautus tests for controllability and stabiliz-
ability are equivalent. Moreover, such pairs are easily
characterizable using this test and the skew-symmetry
of A.

In this section, we prove the main Theorem 2 by
defining a dynamic periodic time-varying output feed-
back that globally stabilizes system (III.1). Let T =
Tobs + Tstab > 0 be the period of the feedback to be
fixed later. Let tk = kT for all k ∈ N. The closed-loop
system can be written as (II.4), with f(x, u) = Ax + Bu
and h(x) = 1

2 |x|2. The strategy is the following one:

A. During time intervals [tk, tk + Tobs], k ∈ N, called
observation phases, one excites system (III.1) with a
constant control that is null at the equilibrium point.
This excitation will guarantee that the observer
error tends towards 0, since all non-zero constant
inputs make the system observable. The ẑ-part of



system (II.4) is chosen to be a Luenberger-type
observer of the embedded system defined in (III.4).

B. During time intervals [tk + Tobs, tk+1], k ∈ N, called
stabilization phases, one stabilizes system (III.1) by
applying a stabilizing state feedback to the estima-
tion of the state obtained by the observer. The ẑ-
part of system (II.4) is chosen to be a copy of the
z-dynamics.

In the two following sections, we define more precisely
the feedback law λ(ẑ, y, t) on the different phases.

A. Observation phase

Let k ∈ N. For all t ∈ [tk, tk + Tobs], define

u = λ(ẑ, y, t) :=
√

y(tk) +
1√
2

|¯̂zn|(tk) (IV.1)

Remark 9: The key argument in the proof of asymp-
totic stability will be that u vanishes if and only if
the closed-loop system is at the target point, i.e.,
(x(tk), ẑ(tk)) = (0, 0). There lies the gap between [7]
and [16]: only practical stabilization was obtained in [16]
because the input during observation phases does not
vanish at the target. On the contrary, the observable
input chosen in [7] vanishes at the target, but only local
stabilization is obtained due to the lack of Lyapunov
analysis (as in [16]) or dissipativity properties (as in the
present paper).

The closed-loop on [tk, tk + Tobs] can be written as
{

ε̇ = (A(u) − Lα(u)C) ε

˙̂z = A(u)ẑ + Bu − Lα(u)Cε
(IV.2)

The observer is initialized in the following manner:

• If k = 0, then ẑ(0), ε(0) ∈ R
n+1, ẑn+1(0) = y(0) and

εn+1(0) = 0.
• Otherwise, ẑn+1(tk) = y(tk), εn+1(tk) = 0, ¯̂zn(tk) =

¯̂zn(t−
k ) and ε̄n(tk) = ε̄n(t−

k ).

The trajectory x over [tk, tk + Tobs] starting from x0 if
k = 0, and ¯̂zn(tk) − ε̄n(tk) otherwise, satisfying

ẋ = Ax + Bu, (IV.3)

is such that x = ¯̂zn − ε̄n. According to the variation of
constant formula,

x(tk + Tobs) = eTobsAx(tk) +

∫ Tobs

0

e(Tobs−s)ABu ds.

Hence, since A is skew-symmetric,

|x(tk + Tobs)| 6 |x(tk)| + Tobs
|B|√

2
(|x(tk)| + |¯̂zn(tk)|)

6 (1 + Tobs

√
2|B|)|x(tk)|

+ Tobs
|B|√

2
|ε̄n(tk)|

since ¯̂zn = ε̄n + x. Thus, with Tobs =
√

2
|B| ,

|x(tk + Tobs)| 6 3|x(tk)| + |ε̄n(tk)|. (IV.4)

Moreover, according to (III.6), for all t ∈ [tk, tk + Tobs],

|ε̄n(t)| 6 |ε(t)| 6 |ε(tk)| = |ε̄n(tk)|. (IV.5)

B. Stabilization phase

Since (A, B) is controllable, there exists K ∈ R
1×n

be such that A − BK is Hurwitz. Let k ∈ N. For all
t ∈ [tk + Tobs, tk+1], define

u = λ(ẑ, y, t) := −K ¯̂zn (IV.6)

The closed-loop on [tk + Tobs, tk+1] can be written as
{

ε̇ = A(u)ε

˙̂z = A(u)ẑ − BK ¯̂zn

(IV.7)

initialized at ẑ(tk + Tobs) = ẑ((tk + Tobs)
−) and ε(tk +

Tobs) = ε((tk + Tobs)
−). Using the definition of the

embedded system (III.3), we find

˙̄εn = Aε̄n, ˙̂̄zn = A¯̂zn + Bu (IV.8)

Note that ˙̄εn and ˙̂̄zn have a stationary dynamics, and
λ(ẑ, y, t) depends only on ¯̂zn. Moreover, since A is skew-
symmetric, we have for all t ∈ [tk + Tobs, tk+1],

|ε̄n(t)| = |ε̄n(tk + Tobs)|. (IV.9)

The trajectory x over [tk + Tobs, tk+1] starting from
¯̂zn(tk + Tobs) − ε̄n(tk + Tobs), satisfying

ẋ = Ax + Bu

= (A − BK)x − BK(¯̂zn − x)

is such that x = ¯̂zn − ε̄n. Then

x(tk+1) = eTstab(A−BK)x(tk + Tobs)

−
∫ Tstab

0

e(Tstab−t)(A−BK)BKε̄n(tk + Tobs + t) dt.

(IV.10)

Since A − BK is Hurwitz, there exists Tstab > 0 large
enough such that ‖e(A−BK)Tstab‖ 6 1

4 . Then, according
to (IV.9),

|x(tk+1)| 6 1

4
|x(tk + Tobs)| + γ|ε̄n(tk + Tobs)| (IV.11)

with γ =
∥

∥

∥

∫ Tstab

0
e(Tstab−t)(A−BK)BK dt

∥

∥

∥
.

C. Attractivity

With the definition of the dynamic periodic time-
varying output feedback given in the observation and
stabilization phases, we now prove that for any initial
conditions x0 ∈ R

n and ẑ0 ∈ R
n+1 such that ẑn+1(0) =

1
2 |x0|2, the corresponding solution (x, ẑ) tends towards
zero. Combining (IV.5) and (IV.9),

|ε̄n(t)| 6 |ε̄n(tk)| (IV.12)

for all t ∈ [tk, tk+1]. Hence (IV.4) and (IV.11) yields

|x(tk+1)| 6 3

4
|x(tk)| +

(

γ +
1

4

)

|ε̄n(tk)| (IV.13)

We recognize an Input-to-State Stability (ISS) property.
By (IV.12), (|ε̄n(tk)|)k∈N is a bounded sequence. Hence
(|x(tk)|)k∈N is also bounded. Over the observation and



stabilization phases, ẋ = Ax + Bu with u a continuous
function of time. Hence, the corresponding flows are
continuous with respect to the initial conditions of the
system. Thus x, ¯̂zn and u are bounded functions of time.

Let us prove by contradiction that ε̄n(tk) → 0. Assume
the contrary. Then |x(tk)| or |¯̂zn| does not converge to 0.
In both cases, u(tk) does not converge to 0 (by (IV.1)).
Since u is bounded, up to an extraction, there exists u⋆ 6=
0 such that u(tk) → u⋆ as k → +∞. We have

|ε̄n(tk+1)| = |ε̄n(tk + Tobs)|
6

∥

∥

∥
eTobs(A(u(tk))−Lα(u(tk))C)

∥

∥

∥
|ε̄n(tk)|.

Since A(u⋆) − Lα(u⋆)C is Hurwitz (see Remark 6),
there exists k0 ∈ N such that for all k > k0,
∥

∥eTobs(A(u(tk))−Lα(u(tk))C)
∥

∥ 6 µ for some µ ∈ (0, 1).
Hence ε̄n(tk) → 0, which is a contradiction.

Thus, ε̄n(tk) → 0 as k → +∞. According to the
ISS property (IV.13), |x(tk)| → 0 as k goes to infinity.
Since the flows are continuous over the observation and
stabilization phases, x(t) → 0 and ε̄n(t) → 0 as t → ∞.
Moreover, εn+1(tk) = 0 for all k ∈ N. Hence ε(t) → 0.
Finally, x(t) → 0 and ẑ(t) → 0 as t → ∞.

D. Stability

The attractivity being proved in the previous section,
it remains to show the Lyapunov stability of the closed-

loop system. Let R > 0. Set r = min
(

R
4(4γ+1) , R

16

)

.

Assume that |x0| 6 r and |ẑ0| 6 r. Then |ε0| 6 2r
and, by (IV.12), |ε(tk)| 6 2r for all k ∈ N. Moreover,
3
4 R+2r

(

γ + 1
4

)

6 7
8 R. Hence, using (IV.13) by induction

for k ∈ N, |x(tk)| 6 7
8 R 6 R for all k ∈ N. Moreover,

|ẑ(tk)| 6 |x(tk)|+ |ε(tk)| 6 7
8 R+2 R

16 = R. Thus |x(tk)| 6
R and |ẑ(tk)| 6 R for all k ∈ N. Since the flows are
continuous over the observation and stabilization phases,
the system is Lyapunov stable at (x, ẑ) = (0, 0).

V. Numerical simulation

We propose a numerical simulation of the stabilization
strategy of Theorem 2. In dimension n = 2, we choose

A =

(

0 −1
1 0

)

and b =

(

0
1

)

, which is a controllable pair.

The parameters of the dynamic periodic time-varying
output feedback are chosen according to Table I. The
initial conditions are x0 = (1, 0) and ẑ0 = (

√
2,

√
2, 1/2),

that fit the conditions Tobs =
√

2
|B| and ‖e(A−BK)Tstab‖ 6

1
4 . The resulting trajectory x as well as the first two
coordinates of ẑ (which are an observer of x) are plotted
in Figure 1 for t ∈ [0, 5T ]. The switching times are
emphasized, as in Figure 2. In accordance with the
Luenberger observer design and equation (III.4), the
error between the state and the observer of the embedded
system is non-increasing, as it can be checked in Figure 2.
Over the time interval [0, 1000T ], we plot in Figure 3
the evolution of the square of the state’s norm of the
closed-loop system, namely, |x|2 + |ẑ|2. According to
Theorem 2 and as it can be seen in Figure 3, |x|2 + |ẑ|2

tends towards 0 as time goes to infinity, but no decay
rate is guaranteed. This seems directly correlated to the
absence of any guarantees on the speed of convergence of
the observer (because of the unobservable target). The
convergence is only guaranteed thanks to ω-limit sets
arguments. This difficulty is apparent in other such works
with similar techniques (see, e.g., [12]) and merits further
investigation.

Tobs =
√

2 Tstab = 5
α = 1 K = (0, 2)

TABLE I

Parameters of the numerical simulation
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Fig. 1. Trajectory of the closed-loop system starting from x0 =
(1, 0) and ẑ0 = (

√
2,

√
2, 1/2) over [0, 5T ], i.e., after 5 switches from

stabilization phase to observation phase (◦) and 5 switches from
observation phase to stabilization phase (♦).
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Fig. 2. Evolution of the error norm |ε| over [0, 5T ] where ε =
ẑ − τ(x) and τ is the embedding defined by (III.2). As stated by
(III.4), |ε| is non-increasing.

VI. Conclusion

We have shown on a class of systems with linear
conservative dynamics and nonlinear output that global
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Fig. 3. Evolution of the norm of the state of the closed-loop system.
For readability, we only show the upper peak envelope of the signal.
The linear regression is obtained on [1500, 3000].

dynamic periodic time-varying output feedback stabi-
lization can be achieved. The feedback is obtained as
a combination of (i) a Luenberger observer with dis-
sipative error on an embedding of the system; (ii) a
switched feedback law alternating between observation
phases (during which the observer learns the state) and
stabilization phases (during which the state is stabilized).
The aim of this paper was to explore the gap between [7]
and [16], at least on a specific class of systems. More
general switching techniques for semi-global or global
exact output feedback stabilization will be investigated
in future works.
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