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{jeremie.pardo,sergiu.ivanov,franck.delaplace}@ibisc.univ-evry.fr

http://www.ibisc.univ-evry.fr

Abstract. Network controllability is a major challenge in network medicine.
The problem is to rewire the molecular network for reprogramming the
cell fate. The reprogramming action is considered as a control usually
performed once. However, in some cases, a therapy has to follow a time-
scheduled drug administration protocol. Furthermore, some diseases are
induced by a sequence of mutations leading to a sequence of actions on
molecules. In this paper, we extend the single control action method by
investigating the sequential control of Boolean networks. We present a
novel theoretical framework for formal study of control sequences, leading
to algorithms resolving the PSPACE-hard problem of inferring minimal
parsimonious control sequences under the synchronous dynamics.

Keywords: dynamical systems reprogramming · Boolean control net-
work · control sequence · abductive reasoning · drug target prediction ·
sequential therapy.

1 Introduction

Biological network control consists in modifying gene expression to reprogram
cells naturally or artificially. Applications of network controllability will have
valuable benefits in essential challenges of health: cancerous targeted therapy,
complex disease etiology, regenerative medicine, stem cells monitoring, etc. In
spite of the impressive progress in cell reprogramming during the last decade,
more breakthroughs are required before cellular reprogramming yields routine
clinical use [27]. The main issues lie in the discovery of reliable ways to trigger the
reprogramming process and to understand exactly how the process works. In this
endeavour, the definition of suitable theoretical frameworks and computational
methods are crucial for enabling the analysis and the design of control patterns
responsible for the phenotypic switch.

Cell reprogramming mechanisms are based on the control of molecular pro-
cesses to monitor the dynamics of the network fate. In [29], the authors relate
mutations to their network effect: nonsense mutation1, out-of-frame insertion or

1 Substitution of a single base pair leading to the appearance of a stop codon where
previously there was a codon specifying an amino acid.
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deletion and defective splicing are interpreted as node or arc deletions whereas
missense mutation2 and in–frame insertion or deletion can be modelled as node
or arc additions. Moreover, in [9], the authors classify mutations according to the
way they affect signalling networks and distinguish mutations that constitutively
activate or inhibit enzymes (nodes) and mutations that rewire the interactions
(arcs). Accordingly, the action of targeted therapies is interpreted as network
rewiring [10]. The effect of mutations and drugs can thus be described as ele-
mentary topological actions on the network: deletion or insertion of nodes and
arcs. Network control is based on these topological actions. The impact of the
network actions should be evaluated from a model of dynamics translating the
topological actions into dynamical change of the trajectories. Accordingly, the
phenotypic changes are assessed at molecular level by the measurement of the
state of peculiar molecules called biomarkers—observable indicators of biological
processes whose molecular signature variation discriminates the phenotypes [10,
25]. The signatures must be observed in a significant period of time for testifying
their relevance, and thus assumed to be met at stability condition of the biolog-
ical system. This approach is part of Network Medicine [3] which is an emerging
field of precision medicine aiming to address drug target discovery and the elu-
cidation of disease mechanism based on network analysis by considering the the
phenotype-genotype relationship as an association of phenotype and network
perturbations [24].

Recent research in computational biology provides novel inference methods
for reprogramming a system to make the dynamics converge towards an expected
fate. These works use the Boolean Control Network (BCN) specifying the con-
trols on Boolean network (Section 2). In [15], the authors apply a stuck-at fault
model for simulating drug and disease processes. A Max-SAT based algorithm
is then used for inferring node actions. In [16], the authors study the trajectory
and state controllability of delayed BCNs. Using the semi-tensor product of ma-
trices, the delayed BCNs are converted into an equivalent algebraic description
from which are derived the necessary and sufficient conditions for the trajectory
controllability of delayed BCNs. In [28], the authors propose a heuristic method
focused on the control of key-nodes stabilizing the state of “motifs” that cor-
respond to specific sub-networks. In [13], the authors define and give a general
algorithm to find a minimal set of network components named “control kernels”
that must be regulated to make the cell reach a desired stable state. In [23, 20],
the authors study the problem of computing a minimal subset of nodes of a given
asynchronous [23] and synchronous [20] Boolean network that need to be con-
trolled to drive its dynamics from an initial steady state to a target steady state.
The general idea of the proposed algorithms is a decomposition-based solution
to the minimal control problem. In [26], the authors extend [23] by including
a notion of temporary and permanent perturbations. In [21], the authors pro-
pose a method based on Gröbner basis computation to find the node actions
for generating or avoiding particular stable states. In [4, 5], the authors use an

2 Change of a single base pair causing the substitution of a different amino acid in the
resulting protein.



abductive method based on prime implicants for the inference, and cover actions
on nodes and arcs. These works were validated on real biological cases showing
their adequacy for drug therapy prediction. The first method is restricted to
acyclic networks whereas the others admit any kind of networks. In summary,
the state of the art related to Boolean control network shows that the majority
of the works use a similar methodology consisting in computing a single network
action modelled as control input for monitoring the dynamics in order to reach
stable states meeting some expected properties assessed at molecular level.

However in some biological cases, a sequence of mutations is observed or a
therapy involves a scheduled protocol for administering drugs. Tumorigenesis
is the result of a multi-step process governed by sequential genetic alterations.
Colorectal tumors can be considered as a paradigmatic example illustrating this
sequential progression shifting from a benign tumor (adenoma) to a malignant
one (carcinoma) following a sequence of four gene mutations ending with the
appearance of metastases [11]. Furthermore, in [14] the authors describe a sys-
tematic approach to identifying efficient drug combinations in killing cancer cells
depending on changes in the order and duration of drug exposure. They found
that some drug combinations (egfr inhibitor) can synergise the apoptotic re-
sponse to DNA damaging chemotherapy for a subset of triple negative breast
cancers if the drugs are given sequentially but not simultaneously, leading to an
appropriate dynamics rewiring of oncogenic signalling networks.

Therefore, to widen the scope of potential applications in network medicine,
we extend the previous works by investigating control sequences for investigating
the sequences of perturbations as disease causes and for discovering therapeutic
regimen as a long term perspective. A control sequence is composed of a list
of control/topological network actions whose sequential application routes the
dynamics of the network by steps to the expected fate. The control sequence
analysis is still in its infancy. In [17], the authors study temporal reprogram-
ming of Boolean networks based on Petri net analysis. Given a trajectory, they
identify the appropriate states at which a control should be applied, and de-
duce the corresponding controls (perturbations) to reach an expected state. The
algorithm explores the extended state graph encompassing perturbation repre-
sentation, implying that the number of possible controls has to remain low to be
tractable. An improved and generalised version of this algorithm is given in [18,
19]. In [22], we lay the foundations of a formal framework for describing control
sequences, and we propose a first algorithm for inferring sequences satisfying
several minimality properties. The present paper is a reworked and extended
version of [22], including a streamlined formal framework, simplified proofs, a
new inference algorithm, and a benchmark section showcasing the performance
of our methods.

In this article, we define a computational method for inferring the minimal
sequence of controls to reach some expected properties met at stable states under
the synchronous dynamics.More specifically, we propose a theoretical framework
describing a controlled dynamics enabling us to characterize a bound on the
length of control sequences of minimal size.



The article is organised as follows. Section 2 recalls the principles of Boolean
networks and introduces the extension to Boolean Control Networks by defining
the main notions of controlled dynamics. In Section 3 we examine the properties
of control sequences required to control network fate. In this section we also detail
two approaches to inferring minimal control sequences under the synchronous
dynamics.In Section 4 we compare the performance of the approaches.

2 Boolean Control Network

Boolean Control Networks (BCN) extend Boolean networks by adding Boolean
controls which can alter the dynamics. In this section, we briefly recall the main
definitions of Boolean networks (Section 2.1), and then we define the extension
to BCN (Section 2.2). We more specifically focus on a particular class of control
called the freezing control where a control input freezes a variable state to a
specific value definitively. This category faithfully models the consequences of
the perturbations of genetic and signalling networks blocking the gene expression
in a particular regulation state, that are notably the consequences of mutations
or drug effects.

Notations. We use the following notations. Let E′ ⊆ E. We denote:−E′ = E\E′.
Let f be a function with E as domain, f↓E′ defines the restriction/projection of
the function to E′ such that f is only defined for the elements of E′.

2.1 Boolean network

A Boolean network is a discrete dynamical system defined on Boolean vari-
ables X. A state s belonging to the set of states SX is an interpretation assigning
a Boolean value to the variables (i.e., s : X → B). A Boolean network is defined
by a collection of Boolean functions,

F = {xi = fi(x1, . . . , xn) | 1 ≤ i ≤ n},

where each fi is a propositional formula computing the state of xi.
The model of dynamics describes the evolution of states for all variables by

a labeled transition system 〈−→,M, SX〉, where the states are updated accord-
ing to an updating policy M ⊆ 2X , called the mode, which is a cover of X
(
⋃
m∈M m = X). Each transition relation (−→⊆ SX ×M × SX) is labeled by

the set of updated variables m:

s
m−→ s′

def
== s′ = (F↓m(s) ∪ s↓−m). (1)

The complement −m is taken with respect to X. The global transition relation is
defined as: −→=

⋃
m∈M

m−→. A path3 s −→∗ s′ characterizes a trajectory from s
to s′. In biological modeling two modes are preferentially used: the synchronous

3 −→∗ is the reflexive and transitive closure of the transition relation.



mode where all the variables are updated during a transition (M = {X}) or
the asynchronous mode where one variable only is updated per transition (M =
{{xi}}xi∈X).

An equilibrium s is a particular state of the system which is infinitely often
visited once this state is reached i.e., ∀s′ ∈ SX : s −→∗ s′ =⇒ s′ −→∗ s.
A stable state s is a particular equilibrium satisfying the stability condition:

stblF (s)
def
== F (s) = s. The picture on the left of Figure 1 describes a Boolean

dynamics under the synchronous mode.

2.2 Boolean control network

A BCN Fµ is a function generating a Boolean network from an interpretation
µ ∈ SU of control parameters ui ∈ U , called a control input. It is defined as
follows:

Fµ = {xi = fi(x1, . . . , xn, u1, . . . , um} | 1 ≤ i ≤ n},

where the values uj , 1 ≤ j ≤ m, are given by µ. Each application of a control
input Fµ leads to a Boolean network with a particular dynamics.

The freezing control assigns a definite value to each variable. The two possi-
ble freezing outcomes, 0 or 1, are supported by two parameters with two distinct
regimes: either they freeze the variable or remain idle. By convention, inspired by
the freezing temperature of water 0◦C, the freezing action is triggered when the
control parameter is set to 0 whereas 1 stands for the idle situation. The imple-
mentation of the freezing control on a Boolean network augments the formulas of
a Boolean network by adding the control parameter to obtain the expected con-
trol behavior. For a formula fi, the addition of the control parameters u0

i ∈ U0

and u1
i ∈ U1 for respectively freezing the variable xi to 0 or 1 leads to the

following specification:

xi = fi(x1, . . . , xn) ∧ u0
i for freezing to 0, (2)

xi = fi(x1, . . . , xn) ∨ ¬u1
i for freezing to 1. (3)

U0 and U1 control parameters can be combined to trigger the freeze to different
values (i.e., xi = fi(x1, . . . , xn) ∧ u0

i ∨ ¬u1
i ). In the sequel U = U0 ∪ U1 will

represent the set of indiscriminate freezing control parameters, and ui ∈ U a
generic freezing control parameter (u0

i or u1
i ). The model can be extended to

arc freezing [4, 5]. Figure 1 depicts the application of a control to variable x1.
Three different dynamics respectively corresponding to the absence of control,
the freeze of variable x1 to 1 (u1

1 = 0) , and the freeze to 0 (u0
1 = 0) are shown.

The dynamics changes by the application of a control and leads to different
equilibria.

The active control set of a control input, µ̇, represents the set collecting all
the activated controls: µ̇ = {u | µ(u) = 0}. Notice, that µ and µ̇ are equivalent
descriptions of the control since we can define one from the other one.

It is worth noticing that some variables are purposely uncontrolled to play
the role of observers used for freely reporting the state evolution of a system. In



biology, biomarkers play the role of these observers. Therefore, the uncontrolled
variables are important for assessing the fate of the dynamical system. The set
of controlled variables is denoted CX and the set of uncontrolled variables is
C̄X = X \ CX . Throughout the article, the profile of uncontrolled variables is
denoted “C̄X−profile”, and “CX−profile” for controlled variables.

F =


x1 = (x1 ∧ ¬x2) ∨ (x1 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3)
x2 = (x1 ∧ x3) ∨ (¬x1 ∧ x2)
x3 = (x1 ∧ x3) ∨ (¬x1 ∧ ¬x2)
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Legend: The Boolean network F is completed by the formulas of the freezing
controls to produce the equivalent BCN. From left to right the respective controls
are: no freeze, x1 is frozen to 1, x1 is frozen to 0. The active control parameter
are mentioned below each dynamics. The dynamics is synchronous and the self
loops on states are not shown. The stable states of each dynamics are coloured in
3 shades of gray, and their contours are drawn in different styles. Each contour
style is associated with a different control input.

Fig. 1. The synchronous dynamics of a Boolean control network.

2.3 Control sequence dynamics

The controlled dynamics extends the Boolean network dynamics by showing how
the system evolves through a sequence of control inputs. A sequence of controls
is formally defined by a function µ : N+ → (U → B) indexing control inputs,
where µi, i ≥ 1, is the i-th control input in the sequence and µ[k] stands for the
sequence of size k starting with µ1 and ending in µk: µ[k] = (µ1, . . . , µk).

Controlled dynamics definition. Given a Boolean control network Fµ, the model
of controlled dynamics is defined as a labeled transition system including the
control inputs as labels 〈SX , SU ×M,−→〉 such that a transition is defined by:

s
µi,m−−−→ s′

def
== s′ = (Fµi)↓m(s) ∪ s↓−m. (4)

A control sequence µ[k] leads therefore to the following trajectory (path):

s
µ1,m1−−−−→ . . . si

µi,mi−−−−→ si+1 . . . sk
µk,mk−−−−→ sk+1.



For the sake of clarity we omit the mode if it is not needed for the explana-
tion4. For example, sequential application of the different controls described in
Figure 1 leads to the following trajectory in the controlled dynamics by start-
ing at state 000. The control inputs are represented by their active control sets,
with elements indexed by the freeze value, and the stable states traversed by the
trajectory are in bold face.

000
∅−−→ 001

{u1
1}−−−→ 101

{u1
1}−−−→ 111

{u0
1}−−−→ 011

{u0
1}−−−→ 010. (5)

Although no paths connect 000 to 010 initially, the controlled trajectory enables
the creation of a path between these two states by successive application of the
controls u1

1 and u0
1.

State trace. The trace defines the sequence of visited states (si)1≤i≤k+1. For the
example of Figure 1, the state trace of Trajectory (5) is:

(000,001, 101,111, 011,010)

Control Evolution based on Stable–State dynamics. The model of controlled dy-
namics is said to be Control Evolution based on Stable–State dynamics (ConEvs)
if the modification of the control only occurs at a stable state only. The appli-
cation of a control modifies the dynamics and releases the stability. Hence the
ConEvs dynamics fulfills the following property:

∀s1

µ[k]−−→ sk+1 : µi 6= µi+1 ⇐⇒ stblFµi (si+1),

given that si
µi−→ si+1

µi+1−−−→ si+2, 1 ≤ i < k. (6)

In ConEvs dynamics, changing the control is the only way to evolve the dynamics
since a stable state is reached with the current instance of the Boolean network
resulting from the application of a control input to the BCN. The trajectory
described in (5) is ConEvs.

Contracted control sequence. The contracted control sequence keeps only one in-
stance of the control input for each sub-sequence having identical control inputs.
For ConEvs dynamics, the contracted control sequence can be considered as the
sequence making the dynamics evolve from stable states to stable states, and the
initial control sequence can be easily retrieved by connecting the encountered
stable states for each Fµi by a trajectory controlled by µi, and ending in the
corresponding stable state. In the case of example (5), the contracted sequence
represented by the active controls is (∅, {u1

1}, {u0
1}).

Classes of sequences. Control sequences can be categorized into families based
on the evolution of the control between steps:

4 Formally, we consider the union relation:
µ−→=

⋃
m∈M

µ,m−−→.



– Definition 1. Total Control Sequence (TCS): all the controls are triggered
during the first phase for all controlled variables, and remain active all along
the sequence; the values to which the variables are frozen may change.

– Definition 2. Abiding Control Sequence (ACS): once a control on a vari-
able is triggered, the variable stays controlled but the value to which it is
frozen may vary.

– Definition 3. Open Control Sequence (OCS): no constraints on control pa-
rameters are imposed; a control can be changed or released freely.

The sequence described in (5) is an ACS sequence and, starting with the
state 001, it is a TCS sequence since the only controlled variable x1 is always
controlled. The OCS family corresponds to the largest class of control sequences
including ACS, which in its turn includes TCS. Therefore, the following inclu-
sions between these families hold:

TCS ⊂ ACS ⊂ OCS.

The TCS class is mainly used for proofs, but has no particular biological applica-
tion of its own. The ACS class models the consequences of a disease as mutations
forbidding the relaxation of the control definitively, while enabling the possibil-
ity to change it or not according to the context of the biological process. The
OCS class is the most general class that may represent the action of the drugs
on molecular network potentially implying the modification and the relaxation
of the actions.

In the rest of this article, we restrict ourselves to the synchronous dynam-
ics of the Boolean networks. This choice is motivated by the fact that, under
this update mode, the practical complexity of the reachability problem is re-
duced (even though reachability is PSPACE-complete for both update modes).
Indeed, in the asynchronous update mode, one needs to tackle the fact that
state transition becomes a relation inducing non-determinism, that should not
be exhaustively explored to ensure the efficiency of an algorithm.

Proposition 1 states the observational equivalence between OCS and TCS
classes under the synchronous update mode, namely, that any OCS control se-
quence can be simulated by a TCS sequence having the same state trace.

Proposition 1. For any control sequence µ[k] there exists a total control se-
quence of the same size ν[k] ∈ TCS generating the same state trace under the
synchronous mode.

Proof. Take a control sequence µ[k] and an initial state. For a transition si
µi−→

si+1, 1 ≤ i ≤ k, two cases may occur for the control parameters of the controlled
variables, xj ∈ CX :

1. If one of the two control parameters u0
j , u

1
j is already activated then the

configuration remains the same for ν.
2. If the control parameters are both idle (u0

j = 1, u1
j = 1) then we directly fix

the expected final state value by setting the control appropriately, namely:
νi(u

0
j ) = 0, νi(u

1
j ) = 1 if si+1(xj) = 0 and,

νi(u
0
j ) = 1, νi(u

1
j ) = 0 if si+1(xj) = 1.



As the update is synchronous then all the value of the controlled variables,
xj , leads to the state si+1(xj) in a controlled way. For uncontrolled variables
xj ∈ C̄X , we have: (fν)j = (fµ)j since no modifications occur, then the update
is the same.

Since a transition only depends on the previous state that can be obtained
by the application of a TCS control input νi, we can define a TCS control input
for each step finally leading to a total controlled sequence ν[k] simulating the
trajectory controlled by µ[k] from a s1. ut

3 Control sequence discovery

Finding a control sequence modifying the dynamics to evolve towards an ex-
pected state can be stated as a reachability problem:

Let Sα, Sω ⊆ SX be two set of states, can we find a control sequence:

µ[k] = (µ1, . . . , µk) such that there exists a path s1

µ[k]−−→ sk+1,
with: s1 ∈ Sα and sk+1 ∈ Sω ?

We refer to this problem as “Controlled Fate in Sequence” (CoFaSe) problem.
Consider for example the Boolean network from Figure 1. The CoFaSe problem
for this network with Sα = {000} and Sω = {010, 110} as input parameters,
means deciding the existence of a control sequence reaching any state in which
x2 = 1 and x3 = 0 from the initial state 000. Figure 1 shows that this is not
possible under the uncontrolled dynamics (leftmost graph), but applying the
control x1 = 1 to reach 111 (center graph) and then x1 = 0 (rightmost graph)
allows reaching 010. This sequence of controls therefore gives a solution to the
above CoFaSe problem. Recall that x1 is the only controllable variable for the
network in Figure 1.

A sequence µ[k] is said minimal for the CoFaSe problem with respect to Fu,
Sα, and Sω, if no control sequences ν[l] satisfying the problem have a lower length,
i.e., l ≥ k is always true. A sequence µ[k] is said parsimonious if the number of

parallel activated controls is minimal to achieve the expected transition si
µi−→

si+1 for each control input µi, 1 ≤ i ≤ k. Applied to ConEvs dynamics, the
CoFaSe problem also imposes that that all states of Sα should be stable for
uncontrolled F . Solving it implies that at least a state appearing in Sω is stable
for Fµk . The contracted control sequence ({u1

1}, {u0
1}) of the example (Figure 1)

is minimal, parsimonious, and complies to the ConEvs condition for Sω.

In biological modelling, the outcome of reprogramming can be formulated as
a condition on the biomarkers checking whether the system has reached an ex-
pected signature. Therefore, by considering that the biomarkers are represented
by the uncontrolled variables, Sω will be defined by a predicate p formalizing
the expected biological property as follows: Sω = {s ∈ SX | p(s↓C̄X )}. Notice
that achieving a given state for controlled variables is trivial and consists in
merely assigning their expected values by setting the appropriate control inputs.
Therefore, the main problem lies on the way to indirectly influencing the state
variation of the uncontrolled variables by freezing actions on controlled variables.



3.1 Complexity of CoFaSe

Finding a single parsimonious control is known to be NP-complete [4]. In this
section we show that the inference of a control sequence satisfying CoFaSe is
PSPACE-hard, which makes this problem even less tractable than finding single
controls (assuming that PSPACE 6= NP). Since the freezing to 0 and to 1 can-
not be triggered simultaneously for a single variable, the cardinality of possible
controlled transitions from a state is 3|X| · |M |, meaning that finding the control
sequence by exhaustively exploring these spaces is not practically tractable.

The problem of reachability in Boolean networks working in synchronous
mode can actually be formalized as a CoFaSe problem. Indeed, reachability on
a Boolean network is precisely the CoFaSe problem for a Boolean control net-
work without controlled variables. Proof of Lemma 1 shows however that this
reduction is not merely an artefact specific for such degenerate BCN. We can
construct a network with a non-empty set of control variables and reduce the Co-
FaSe problem for this network to a reachability problem for a standard Boolean
network.

Lemma 1. Deciding whether a control sequence exists for the CoFaSe problem
in the synchronous mode is at least as hard as reachability in (uncontrolled)
Boolean networks in synchronous mode.

Proof. Take an n-variable Boolean network F and construct a Boolean control
network F ′ by adding to F the single control variable x0 and defining the update
functions f ′i of F ′ in terms of the update functions fi of F in the following way:

f ′i = fi ∧ x0, 1 ≤ i ≤ n,
f ′0 = 0,

where f ′0 is the update function for x0.
Consider the controls µ1 = d1

0 and µ0 = d0
0 controlling x0 to 1 and 0 respec-

tively. The previous two properties ensure that the state graph of F ′µ1
is that of

F , with x0 = 1 added to each state, and that the state graph F ′µ0
only contains

transitions to the state 0, which is the state in which all variables are 0.
Let X be the set of variables of F . The set of variables of F ′ is thus X ′ =

X ∪ {x0}. Fix a set of starting states Sα ⊆ SX′ and a set of target states
Sω ⊆ SX′\(Sα∪{0}), such that the states in both sets satisfy x0 = 1. The CoFaSe
problem for the tuple (F ′, Sα, Sω) has a solution if and only if the states in Sω↓X
are reachable from Sα↓X in F . Indeed, by construction of F ′ and since 0 /∈ Sω, the
control sequence for this instance of CoFaSe may only be the singleton control
sequence consisting of µ1, and it must ensure the reachability of Sω from Sα
in Fµ1 , whose state graph is trivially isomorphic to that of F . Therefore, an
oracle for CoFaSe would allow to solve reachability in Boolean networks working
in the synchronous mode with at most polynomial overhead, which proves the
statement of the lemma. ut

The reachability hardness of CoFaSe is based on the result stating the PSPACE-
completeness of reachability in 1-safe Petri nets [8], applied to Boolean networks



with the asynchronous mode. In the appendix of this paper, we provide an ex-
tension of this result to the synchronous mode. As far as we know, no char-
acterization of complexity of reachability in Boolean networks working in the
synchronous mode has been established in the literature before.

Lemma 2. Given a Boolean network F with the variables X, a set of starting
states Sα ⊆ SX , the set of target states Sω ⊆ SX \ Sα, it is PSPACE-hard to
decide whether F can reach any of the states in Sω from a state in Sα.

Proof. The proof idea is to polynomial-time reduce the acceptance problem of a
deterministic linear bounded automaton (a DLBA) to reachability for Boolean
networks working in asynchronous mode. An LBA is a Turing machine which is
only allowed to use at most f(n) contiguous tape cells, where n is the size of
the input and f is a linear function. Deciding whether a DLBA accepts a given
input string is a PSPACE-complete problem (e.g., [12]).

Take a DLBA M and construct the Boolean network F simulating M in
the following way. Define the Boolean variables Ai,j and Qi,k, where i indexes
the tape cells of M , j indexes the symbols in the tape alphabet of M , and k
indexes the states of M . The situation in which the i-th tape cell contains the
j-th symbol is represented by setting Ai,j to 1. The situation in which M is in
the k-th state and the head is on the i-th tape cell is represented by setting Qi,k
to 1. F operates by stepwise simulating the evolution of M : rewriting the j1-th
symbol to the j2-th symbol in the i-th tape cell is done by setting Ai,j1 to 0 and
Ai,j0 to 1, while moving the head from cell i1 to i2 and changing the state from
k1 to k2 is simulated by setting Qi1,k1 to 0 and Qi2,k2 to 1. The synchronous
dynamics of F can therefore faithfully simulate M , because M is deterministic.

For any input word w, the DLBA M reaches a configuration in the set of
accepting configurations CA if and only F can reach the encoding of one of
the configurations CA from the encoding of the initial configuration of M . The
statement of the lemma follows from the facts that the procedure of constructing
F from M is polynomial and that acceptance for DLBA is PSPACE-complete.

ut

Lemma 3. Given a Boolean network F with the variables X, a set of starting
states Sα ⊆ SX , the set of target states Sω ⊆ SX \Sα, it is in PSPACE to decide
whether F can reach any of the states in Sω from one of the states in Sα.

Proof. The proof idea is to construct a DLBA M which accepts the input if and
only if the Boolean network F can reach a state in Sω from a state in Sα. The
initial configuration of M consists of the following three segments:

1. the list of binary vectors representing the states in Sα, each vector written
in two copies;

2. the list of binary vectors representing the states in Sω, each vector written
in one copy;

3. an |X|-bit binary counter initialised to 0, where |X| is the number of binary
variables of F .



In the remainder of the proof we implicitly assume that the states of F are
represented as Boolean vectors.

Consider a state s ∈ Sα. The initial configuration of M contains a sub-
string ss. M starts by simulating the transitions of F on one copy of s and
replacing the other copy by the new state s′ = F (s), thereby yielding the new
substring ss′. The subsequent operation of M is divided into macrosteps, during
which it carries out the following actions :

1. calculate the new state for each pair of states in segment (1);
2. compare each new state with the states written in segment (2); if one of

these comparisons is successful, M accepts, otherwise its continues to the
following substep;

3. check if all the bits of the binary counter in segment (3) are 1; if yes, reject,
otherwise, commence the next macrostep.

Intuitively, M simulates the deterministic synchronous dynamics of F on
every state in segment (1), accepts if it sees a target state from Sω, or rejects
after 2|X| steps. Counting to 2|X| = |SX | ensures that the entire state graph of
F reachable from Sα is visited. Therefore, M accepts if and only if F can reach
at least one state in Sω from at least one state in Sα. Constructing M from
the triple (F, Sα, Sω) is a polynomial-time procedure, meaning that an oracle
for DLBA acceptance would allow deciding reachability for Boolean networks
working in the synchronous mode with polynomial overhead. This proves the
statement of the theorem. ut

Theorem 1. Given a Boolean network F with the variables X, a set of starting
states Sα ⊆ SX , and the set of target states Sω ⊆ SX \ Sα, it is PSPACE-
complete to decide whether F can reach any of the states in Sω from one of the
states in Sα.

This theorem, combined with Lemma 1, gives the following lower bound on the
complexity of CoFaSe.

Theorem 2. Deciding the existence of a control sequence for the CoFaSe prob-
lem in the synchronous mode is PSPACE-hard.

Whether CoFaSe is in PSPACE remains an open question. Two levels of
complexity can be considered in CoFaSe: reachability and control discovery, in-
dicating that the upper bound on the complexity of this problem may be high.

3.2 Partitioning heuristic

As inference of a control sequence satisfying CoFaSe is PSPACE-hard, we should
rely on approximation heuristics to find some solutions. Therefore we are looking
for factors that would significantly reduce the search space in practice. Propo-
sition 1 offers insights into the critical role of the uncontrolled variables in the
resolution of the CoFaSe problem. Indeed, as the variables in CX are fully con-
trolled with the TCS sequence, no evolution of the dynamics may arise from



these variables. Thus, visiting an already encountered C̄X -profile with a differ-
ent CX -profile is not relevant for solving CoFaSe problem. In fact, the dynamics
of controllable variables can be ignored as it can be reproduced by a sequential
control.

We propose a heuristic method focused on the partitioning of the states of
the Boolean networks with respect to their C̄X -profiles. Starting from a model of
dynamics, we define the quotient graph called partitioned dynamics representing
the transitions over the partition. The following equivalence relation is used for
its definition:

∀s, s′ ∈ SX : s ∼ s′ ⇔ s↓C̄X = s′↓C̄X . (7)

The partitioned dynamics of the Boolean network FU is thus a labelled tran-

sition system 〈7→, U, SC̄X 〉 with the set of transitions {[s] 7→ [s′] | ∃µ : s
µ−→ s′},

where [s] denotes the equivalence class of the state s according to the equivalence
relation (7). The resulting partitioned dynamics models the intrinsic dynamical
interactions between signature variations of the biomarkers and provides us an
overview of possible sequence-controlled evolution of the network.

Take s a state, if ∃µ ∈ SU ,∃s, s′ ∈ SX : s
µ−→ s′ then [s′] is defined to be the

target equivalence class of s. Propositions 2 and 3 give observational properties
of target equivalence classes and their states in synchronous evolution.

Proposition 2. In the synchronous mode, regardless of the control, each tran-
sition from a state leads to states belonging to a unique target equivalence class.

Proof. Assume an initial state s with s1 and s2 two states derived from the
one step synchronous evolution of respectively Fµ1

and Fµ2
. Suppose that the

following is true:

∃µ1, µ2 ∈ SU : s
µ1−→ s1 ∧ s

µ2−→ s2 ∧ s1↓C̄X 6= s2↓C̄X

By definition C̄X -variables are not controllable. In synchronous mode, the
dynamics is determined by anterior states. Thus, the states s1 and s2 cannot
have different equivalence classes by means of controls. This contradicts the
above equation and substantiates the statement of the proposition. ut

Proposition 3. In the synchronous mode, a state can reach any state of its
target equivalence class in a single step under an appropriate control.

Proof. In synchronous mode all CX -profiles are reachable by a total control
from any state in a single dynamics step. Thus, the equivalence relation (7) and
Proposition 2 corroborate the statement of the proposition. ut

For a better understanding of the evolution of states with respect to equiv-
alence classes, we distinguish impermanent states which remain transient what-
ever the applied control, from enduring states that can be stabilized by an ap-
propriate control. Formally:

∀µ ∈ SU : ¬STBLFµ(s) impermanent state, (8)

∃µ ∈ SU : STBLFµ(s) enduring state. (9)



Any state s must either be impermanent or enduring: the definitions in equa-
tions (8) and (9) are logical opposites of each other. We can further derive C̄X -
related properties from these definitions. First, if s is impermanent, Fµ(s) 6= s
even for a total control µ which freezes all the controlled variables to some val-
ues. This necessarily implies that the uncontrolled variables evolve, for any µ:
Fµ(s)↓C̄X 6= s↓C̄X . On the other hand, if s is enduring, then Fµ(s) = s and
therefore Fµ(s)↓C̄X = s↓C̄X , for some µ. But, since the control effectively sets
the values of the controlled variables for the next state, this last identity ac-
tually holds for any µ. Indeed, whatever the choice of µ, the update functions
of C̄X -variables will read the values of the variables from s, meaning that the
C̄X -profile will stay the same in the next step. Formally:

s is impermanent if : ∀µ ∈ SU : s
µ−→ s′ =⇒ s↓C̄X 6= s′↓C̄X ,

s is enduring if : ∀µ ∈ SU : s
µ−→ s′ =⇒ s↓C̄X = s′↓C̄X .

Therefore a self loop in the partitioned dynamics with an identical state of
uncontrolled variables reveals the existence of at least an enduring state in the
equivalence class. Similarly, an edge between two equivalence classes [s] and [s′]
in the partitioned dynamics implies the existence of an impermanent state in [s]
whose target equivalence class is [s′].

3.3 Bounds on sequence size

The properties related to equivalence classes enable us to define an upper bound
on the length of minimal control sequences.

Proposition 3 and the definition of an impermanent state give us insights
into the resolution of the CoFaSe problem: a minimal sequence solving the prob-
lem jumps from an impermanent state to another until it reaches the target
equivalence class, which represents the property expected on C̄X -profiles. Based
on this observation, Theorem 3 defines an upper bound on the size of minimal
sequences that only depends on the number of equivalence classes and thus of
uncontrolled variables.

Theorem 3. The size of the minimal control sequence µ[k] solving a given CoFaSe

problem is bounded by 2|C̄X | for the synchronous mode:
∣∣µ[k]

∣∣ ≤ 2|C̄X |.

Proof. Assume that µ[k], with k > 2|C̄X |, is a minimal sequence solving the
CoFaSe problem 〈Fµ, Sα, Sω〉. The control sequence µ[k] yields the following

sequence of states: s1
µ1−→ s2 . . . sk

µk−−→ sk+1, with s1 ∈ Sα and sk+1 ∈ Sω.
From Proposition (3) we know that all states of a target equivalence class

are reachable in one step under the appropriate control. Since only the update
of impermanent states evolves the uncontrolled variables, it is possible to reach
from an impermanent state the next desired impermanent state or property.
Then, the main steps for solving CoFaSe consist in finding the minimal path,
from a state of Sα to a state of Sω, by traversing solely impermanent through
impermanent states of different equivalence classes. Therefore a minimal control



sequence does not pass through two states of a same equivalence class. Since µ[k]

is minimal, the states from s2 to sk are impermanent states and the equivalence
classes from [s2] to [sk] are different target equivalence classes of their former
state. The sequence then spans across k−1 ≥ 2|C̄X | different equivalence classes.
Since only 2|C̄X | C̄X -profiles exist, the sequence must have a state si, 2 ≤ i ≤ k,
with the same C̄X -profile as sk + 1. Note that 2 ≤ i because the first state s1

may not be an impermanent state. Thus, from the state si−1 having for target
equivalence class [si] = [sk+1], it is possible to reach sk + 1 and to yield the

following sequence s1
µ1−→ · · · si−1

µ′i−1−−−→ sk+1. Hence the sequence µ[k] is not
minimal, thus contradicting the original assumption and proving the statement
of the theorem. ut

Theorem 3 shows the critical role of uncontrolled variables in determining the
control sequence. In practice, the number of uncontrolled variables standing for
biomarkers is very low compared to the controlled variables that represent the
other molecules of a network [4, 6, 7]. Moreover by the definition of the CoFaSe
problem, the evolution of the uncontrolled variables guides the discovery of the
control since the objective is to reach an expected final state characterized by
a property defined on the uncontrolled variables. In Section 3.5, we show an
algorithm based on the exploration of the minimal paths in the partitioned
dynamics linking the target equivalence classes of the initial states in Sα to the
equivalence classes of those in Sω.
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Legend: On the left is the synchronous partitioned dynamics of the Boolean net-
work of the Figure 1 for C̄X = {x2, x3}. On the right, the enduring states of each
equivalence class of the partitioned dynamics are colored in gray and impermanent
states, in white, are connected to their target equivalence class.

Fig. 2. A synchronous partitioned dynamics with impermanent and enduring states.

Figure 2 shows the partitioned synchronous dynamics of the example Boolean
network from Figure 1 and the corresponding graph of equivalence classes. By
following the minimal path between the equivalence classes [000] and [010] in
the equivalence graph, we obtain the following sequence:

000
{d11}−−−→ 101

{d10}−−−→ 011
{d10}−−−→ 010.



This sequence is a minimal sequence solving the CoFaSe problem for this network
with Sω = {110, 010} and Sα = {000}.

3.4 Bounds on sequence size for ConEvs dynamics

Finding a minimal parsimonious contracted OCS solving the CoFaSe problem
under the ConEvs dynamics appears relevant for biological applications. Indeed,
this framework models either the different mutational steps where a mutation
rewires the network reaching another phenotype the molecular signature of which
is stable, as in the case for the Vogelstein sequence [11], or a therapeutic regimen
where the drug administering depends on the therapeutic evaluation modelled
by a stable state assessment [14].

Determining low upper bounds on the size of control sequences would indicate
that algorithms based on direct exploration of the sequence space can be an
efficient solution for sequence inference. Theorem 3 establishes such an upper
bound, but it is proved for the particular context under which the control can be
changed at any state. This bound is not therefore directly applicable to ConEvs,
where control changes are only allowed at stable states. The following theorem
establishes an upper bound for this semantics.

Theorem 4. The size of the minimal contracted control sequence µ[k] ∈ OCS
solving the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics under
the synchronous mode is at most 2|C̄X |+1:∣∣µ[k]

∣∣ ≤ 2|C̄X |+1.

Proof. Consider the CoFaSe problem (Fu, Sα, Sω) and assume that µ[k] ∈ OCS is
a minimal contracted control sequence solving it for the ConEvs model of dynam-

ics. This control sequence gives rise to the trajectory T = s1
µ1−→
∗
s2 . . . sk

µk−−→
∗

sk+1, with s1 ∈ Sα, sk+1 ∈ Sω, and the states si, 1 < i < k+ 1, being the stable
states at which the control is changed. We will use the symbol τ to refer to the
sequence of stable states, plus the initial and the final states: τ = (si)1≤i≤k+1.

Now assume that k > 2|C̄X |+1. Since k is greater than the double of the
number of all states over C̄X , it must be that τ contains three states having the
same target equivalence class. Suppose that these three states are at positions

1 ≤ h < i < j ≤ k+1, i.e., for sh
µh−−→ s′h, si

µi−→ s′i and sj
µj−→ s′j [s′h] = [s′i] = [s′j ].

Note that, at least two different controls must appear between the states sh and
sj because there is at least the stable state si in between the two.

By construction, as 1 > i > j, the stable states si, sj are enduring states
and thus have for target equivalence class their one equivalence class. According
to Proposition 3, it is possible from sh to find a control µ′h reaching sj in one

step. This gives rise to the following trajectory T ′ = s1
µ1−→
∗
s2 . . . sh

µ′h−−→
sj . . . sk

µk−−→
∗
sk+1. This contradicts our initial assumption that µ[k] is minimal.

Therefore any control sequence solving the CoFaSe problem for the ConEvs
model of dynamics and having more than 2|C̄X |+1 elements is not minimal, which
proves the statement of the theorem. ut



Theorem 4 implies the possibility of the occurrence of states with the same
equivalence class in the contracted trace, called duplicates. Since in minimal
contracted control sequences all intermediary states are enduring states, the
proof of the theorem also entails that any equivalence class may appear at most
twice, and necessarily in consecutive states of the trace, excluding the first state5.
Intuitively, if duplicate equivalence class appear in non-successive steps i and j,
the whole evolution between i and j can be skipped by applying an appropriate
control input.

Corollary 1. Consider a minimal contracted control sequence µ[k] ∈ OCS solv-
ing the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics under the
synchronous mode. Take the sequence τ = (si)1≤i≤k+1 of states induced by µ[k],
with s1 ∈ Sα, sk+1 ∈ Sω, µk+1 = µk, and the states si, 1 ≤ i < k + 1, be-
ing the stable states at which the control is changed. If there exist two indices

1 ≤ i < j ≤ k + 1 such that si
µi−→ s′i, sj

µj−→ s′j and [s′i] = [s′j ], then j = i+ 1.

Proof. As the two target equivalence classes [s′i] and [s′j ] are equal, and as sj is
an enduring state by hypothesis, it follows from Proposition 3 and Theorem 4
that it is possible to find a control µ′i reaching sj from si in one step, whenever
j > i+ 1. Thus, in a minimal control sequence, the controls appearing between
indices i+ 1 and j can be skipped: j = i+ 1. ut

Set Sα = {010}, C̄X = {x1}, and Sw = {1??}6 as CoFaSe parameters. The
contracted trace of the following trajectory for the example in Figure 1, con-
trolled by the minimal parsimonious contracted control sequence ({u0

2}, {u1
2}),

contains the duplicate x1 = 0 occurring in the initial state 010 and the stable
state 001.

010
{u0

2}−−−→ 000
{u0

2}−−−→ 001
{u1

2}−−−→ 011
{u1

2}−−−→ 110.

3.5 Inference of minimal parsimonious contracted control sequences

The upper-bound of the sequence depends on C̄X -profiles only. Therefore the
uncontrollable variables are central for the inference of a control sequence moti-
vation a C̄X state partitioning approach for the sequence inference. Accordingly,
we define an algorithm based on the partitioning with regards to uncontrolled
variable states that infers all minimal parsimonious control sequences solving
the CoFaSe problem for the ConEvs model of dynamics. The algorithm will find
a sequence of controls evolving from stable states to stable states. By convention
motivated by the biological application, we assume the property on the expected
final states to only concern the uncontrolled variables.

As the number of uncontrolled variables is in practice markedly lower than
the number of controlled variables (e.g., [4, 6, 7]), the exhaustive exploration of

5 The equivalence class of the fist state may appear at most three times if it is an
impermanent state i.e., its target equivalence class and its own equivalence class are
distinct.

6 1?? corresponds to the set of states {100, 101, 110, 111}.



all possible profiles for these variables constitutes an efficient approach for con-
trol sequence computation. Furthermore, our algorithm is optimized to avoid
redundant operations. Informally the algorithm builds a tree describing the pos-
sible paths reaching a state of Sω from the initial set of states Sα. Since the
algorithm solves the CoFaSe problem for the ConEvs model of dynamics, the
set of states Sα should be composed of stable states under the original dynamics
of the studied network. The shortest paths/trajectories are found in the tree,
from which the minimal parsimonious control sequences are directly derived by
keeping their control inputs.

Phases of Algorithm 1. Algorithm 1 comprises two major phases. The first phase
(steps 1 and 2) corresponds to the search for a control allowing to directly attain
a state of Sω. The second phase (steps 3 and 4) corresponds to searching a
trajectory visiting an intermediary state with an unexplored equivalence class.
At each step a parsimonious control input is inferred with the method presented
in [4, 5]. The evolution of the main steps is detailed in Figure 3.

Data structures. The algorithm relies on the following data structures:

1. the list ∆ of equivalence classes according to the equivalence relation 7;
2. the exploration tree G with nodes labelled by sets of stable states and edges

labelled by controls;
3. the sets Γl, Γl+1, and Γl+2 of unexplored nodes of the tree for the current

level of depth l, and the next two levels, respectively.

At the beginning, ∆ is initialized to [SX ] \ ([Sα ∪ Sω]), the depth is l = 1,
Γ1 contains the root node {Sα} of the exploration tree, and all the other data
structures are empty. Remark that we extend the notation of equivalence class
to sets of states: [A] = {[a] | a ∈ A}.

Duplicate states. A specific treatment is applied to take into account the case
where a trajectory passes through duplicates. As all states in the explored se-
quence are stable and thus enduring states (i.e., their target equivalence class
is equal to their equivalence class), a pair of duplicate states can be described
as two states belonging to the same equivalence class. By considering that du-
plicates can only occur in 2 successive states of any given minimal contracted
sequence (Corollary 1), we propose two strategies:

1. Let γ be a set of initial states and γ′ the set of stable states of Fµ reachable
from γ. Infer the set of parsimonious control inputs µ validating the following
equation:

∃s ∈ γ, ∃s′ ∈ SX : s
µ−→
∗
s′ ∧ stblFµ(s′) ∧ [s′] ⊆ [γ] ∧ s′ /∈ γ. (10)

For each such control µ, infer a parsimonious control input µ′ such that
the set of stable states Sµ′ of Fµ′ reachable from γ′ contains some elements
satisfying the property p.



Algorithm 1 Inference of minimal parsimonious contracted control sequences

1. Direct reachability of Sω: For all γ ∈ Γl, infer the control µ taking the BCN from
γ to a state with an equivalence class included in [Sω]. If such a µ exists, add the
arc labelled by µ to G and go to step 6.

2. Reachability of Sω via a duplicate: For all γ ∈ Γl, infer a pair of controls (µ, µ′)
such that µ takes the BCN to a state with an equivalence class included in [γ], and
µ′ takes the BCN from there to some of the target equivalence classes. If such a
pair of controls exists, add two chained arcs labelled by µ and µ′ to G and go to
step 6.

3. Direct reachability of ∆: For every γ ∈ Γl, infer a set of controls U taking the BCN
from γ to a state with an equivalence class included in ∆. If U is non-empty, add
the arcs labelled by the controls from U to G, delete the equivalence class reached
in ∆ , and store the sets of stable states that allow reaching in Γl+1.

4. Reachability of ∆ via a duplicate: For every γ ∈ Γl, infer a set of pairs of controls
D = {(µ, µ′) | µ, µ′ ∈ SU} such that µ takes the BCN to a state with an equivalence
class included in [γ], and µ′ takes the BCN from there to some of the equivalence
classes in ∆ which we could not be directly reached at the previous step. If D is
not empty, add chained arcs labelled by the pairs of controls from D to G, delete
the equivalence class reached in ∆ and store the sets of stable states they allow to
reach in Γl+2.

5. Continue if states left: If one of Γl, Γl+1, or Γl+2 is non-empty, go to step 1 with
l = l + 1.

6. Produce the result: Find the sequence of controls by backtracking G from a leaf
found in steps 1 or 2 to the root Sα. If no such leaf was found, return ∅.

2. Let γ be a set of initial states. Infer a pair of parsimonious control inputs µ
and µ′ validating the following equation:

∃s ∈ γ, ∃s′, s′′ ∈ SX : s
µ−→
∗
s′ ∧ stblFµ(s′) ∧ [s′] ⊆ [γ]

∧ s′ µ
′

−→
∗
s′′ ∧ stblFµ′ (s

′′) ∧ p(s′′).
(11)

The first strategy may in some cases not finds the intermediary state needed
to reach the property p. For example, let us consider the following Boolean
network:

F =


x1 = (x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3 ∧ x4)

x2 = ¬x4 ∧ x2

x3 = ¬x4 ∧ x3

x4 = x4

with C̄X = {x1}, CX = {x2, x3, x4}, Sα = {0000}, and Sω = 1??? as CoFaSe
parameters. The minimal parsimonious control sequence of size 2 reaching a
state in Sω from Sα is µ[2] = {{u1

2, u
1
3}, {u1

4}} inducing the following trajectory:

0000
{u1

2,u
1
3}−−−−−→ 0110

{u1
4}−−−→ 0111

{u1
4}−−−→ 1001.



Strategy 1 will not find this sequence. In fact, for s = 0000 equation (10)
only yields the parsimonious controls {{u1

2}, {u1
3}} giving the states {0100} and

{0010}, from which no state satisfying the target property x1 = 1 can be reached.
Conversely, the second strategy finds all duplicates. In fact, equation (11)

completely formalizes the necessity of having a duplicate to validate the target
property. However, the second strategy is more costly computationally speaking
than the first. In the inference of the pair of controls µ and µ′, the dynamics
of both Fµ and Fµ′ need to be evaluated at the same time, which effectively
doubles the number of variables for which an assignment must be found.

Correctness. Algorithm 1 closely follows the proofs of Theorem 4 and of Corol-
lary 1, which guarantees the correctness and the minimal parsimony of the result.
In other words, the sequences found by Algorithm 1 solve the CoFaSe problem
for the ConEvs model of dynamics under the synchronous mode, and they are
minimal and parsimonious.

Theorem 5. Algorithm 1 returns all minimal parsimonious control sequences
µ[k] solving the CoFaSe problem for the ConEvs model of dynamics under the
synchronous mode.

Proof. The compliance of µ[k] with the ConEvs model of dynamics and its mini-
mal parsimony are guaranteed by the use of the parsimonious one-shot inference
algorithm from [4, 5]. This algorithm yields parsimonious controls allowing to
reach stable states satisfying certain properties. The fact that µ[k] solves the
given CoFaSe problem follows from the end condition in step 6. ut

Example. Figure 3 illustrates the computation of a control sequence. The data
structures are initialized as follows: l = 1, Γ1 = {Sα}, ∆ = {[11], [01], [00]} , and
all the other data structures are empty. On the left, we seek to reach a state in
Sω. As no state with an equivalence class included in [Sω] is reachable from Sα,
we search for a potential trajectory via a duplicate. Since no states validate (10),
and thus no other enduring states exist in [Sω], we know that such a trajectory
does not exist.

As no sequences were found, the second phase starts. Here, all equivalence
classes in ∆ will be used as new targets. In the middle section of Figure 3, we see
that 11 ∈ ∆ is reachable from sα with the control {u1

1}, and 01 ∈ ∆ is reachable
from sα with the control ∅, while 00 ∈ ∆ is not reachable. We add to Γ2 the
stable states γ′ of F{u1

1} belonging to the searched equivalence class [11] ∈ ∆.
We also add the stable states γ′′ of F∅ belonging to the searched equivalence
class [01] ∈ ∆. Accordingly, we update ∆ by deleting [11] and [01].

After creating the new edges of the tree sα
{u1

1}−−−→ γ′ and sα
∅−→ γ′′, we test for

new trajectories which would attain an equivalence class in ∆ via a duplicate.
Since no states validate (10), we know that such a trajectory does not exist.

The right section of Figure 3 shows that the second iteration of the algorithm
is started after updating all the sets of initial variables with new values: l = 2,



Iteration 1, Sω search Iteration 1, ∆ search Iteration 2, Sω search

{001}
eq (10)

[Sw]

{001}
eq (10)

000111

{{u1
1}} {∅}

{001}

{111} {001}

[Sw]

{u1
1} ∅

{{u0
1}}

Legend: Steps of the construction of the tree built by Algorithm 1. For the Boolean
control network FU of Figure 1 and the set of initial states Sα = {001}, Algorithm 1
infers the control sequence allowing to reach Sω = ?10. The only controlled variable
is CX = {x1} and the uncontrolled ones are C̄X = {x2, x3}.
A black edge is a branch of the tree G connecting the previous initial states to the
new set of stable states of FU , under the control given in the annotation. A green
edge represents the possibility to reach a state validating the target property by a
set of parsimonious controls. A red edge corresponds to a failure to find a control
input leading to the targeted property.
The left and the middle sections depict the first iteration of the algorithm. For
Γ1 = {Sα}, it respectively tries to reach Sω, and as this is not possible, tries to
reach states from an equivalence class included in ∆. The rightmost section depicts
the first phase of the second iteration where the algorithm tries to reach Sω for
the new set of unexplored nodes Γ2 = {{111}, {001}} found in the middle section.
The rightmost section is also the final step of this execution of the algorithm as
Sω is reachable from {111}. The returned sequential control is {{u1

1}, {u0
1}}.

Fig. 3. Iterations of Algorithm 1 on the Boolean network of Figure 1.

Γ2 = {{111}, {001}}, and ∆ = {00, 01}. Observe now that a state with an
equivalence class included in [Sω] is reachable from the initial state 111 under
the control {u0

1}. The main loop of the algorithm stops here. After adding the
last edge to G, the sequence {{u1

1}, {u0
1}} is constructed by backtracking the

resulting tree.

Parsimony & optimality. Minimality is proved by remarking that the parsimony
condition is satisfied for the control inputs at each step of the inference. However,
it is worth noticing that it may be possible to find shorter control sequences by
relaxing the parsimony constraint. Consider the following Boolean network:

F =


x1 = x1 ∨ (x2 ∧ x3 ∧ ¬x4)

x2 = (¬x1 ∧ x2) ∨ (¬x1 ∧ x4) ∨ (x2 ∧ ¬x3) ∨ (x2 ∧ x4)

x3 = (x1 ∧ x3) ∨ (¬x2 ∧ x3) ∨ (x3 ∧ x4)

x4 = x4

with C̄X = {x1, x2}, CX = {x3, x4}, Sα = {0000}, and Sω = 11?? as CoFaSe
parameters. The minimal parsimonious control sequence of size 3 inferred by
Algorithm 1 is µ[3] = {{u1

4}, {u1
3}, {u0

4}}. However, the following sequence of



size 2: ν[2] = {{u1
3, u

1
4}, {u0

4}} also converges to the same final state 1100. Their
trajectories are respectively:

Tµ = 0000
{u1

4}−−−→ 0001
{u1

4}−−−→ 0101
{u1

3}−−−→ 0111
{u0

4}−−−→ 0110
{u0

4}−−−→ 1100,

Tν = 0000
{u1

3,u
1
4}−−−−−→ 0011

{u1
3,u

1
4}−−−−−→ 0111

{u0
4}−−−→ 0110

{u0
4}−−−→ 1100.

Since the target equivalence class 11?? cannot be directly attained from the start-
ing state 0000, Algorithm 1 infers a control sequence driving the BCN through
some intermediary states. In the example above, the equivalence class 01?? is
picked first, and the state 0101 is then reached by the single parsimonious freez-
ing of x4 to 1. The next stable state 0111, in the same equivalence class, is
reached by parsimonious freezing x3 to 1. The stable state 1100 in the target
equivalence class is then reached by parsimoniously controlling x4 to 0.

In contrast, the application of the non-parsimonious control {u1
3, u

1
4} at the

starting state 0000 reaches the stable state 0111 directly, thereby reducing the
length of the control sequence ν to 2. The first control in ν can be seen as a
union of the first two controls appearing in µ, but such compression does not
work in general.

3.6 TCS-based inference

Since the dynamics of any controlled variable can be adjusted arbitrarily by the
control input, inferring a control sequence can be seen as a problem of driving the
subnetwork formed by the uncontrolled variables to the target configuration. In
this section, we show a two-step approach to inferring a control sequence: first,
infer a total control sequence (TCS) driving the C̄X subnetwork to satisfying
the target property, then, secondly, derive a control sequence with smaller-size
controls, i.e., controls acting on as few control variables as possible. By first
inferring a TCS control sequence, we significantly reduce the complexity of the
problem for networks with a small number of uncontrolled variables. We will
later show that this approach yields solutions of roughly the same quality as
those given by Algorithm 1, but considerably more efficient (Figure 5).

We start by giving an upper bound on the size of minimal total control
sequences solving a given CoFaSe problems for the ConEvs model of dynamics.
This theorem is a refinement of Theorem 3 for TCS.

Theorem 6. The size of the minimal contracted total control sequence µ[k] ∈
TCS solving the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics
under the synchronous mode is at most 2|C̄X |:∣∣µ[k]

∣∣ ≤ 2|C̄X |.

Proof. Consider the CoFaSe problem (Fu, Sα, Sω) and assume that µ[k] ∈ TCS
is a minimal contracted total control sequence solving it for the ConEvs model

of dynamics. This control sequence gives rise to the trajectory T = s1
µ1−→
∗

s2 . . . sk
µk−−→
∗
sk+1, with s1 ∈ Sα, sk+1 ∈ Sω, and the states si, 1 < i < k + 1,



being the stable states at which the control is changed. We will use the symbol
τ to refer to the sequence of stable states, plus the initial and the final states:
τ = (si)1≤i≤k+1.

Now assume that k > 2|C̄X |. Since k is greater than the number of all states
over C̄X , it must be that τ contains two states having the same target equivalence
class. Suppose that these two states are at positions 1 ≤ i < j < k + 1, i.e., for

si
µi−→ s′i, sj

µj−→ s′j and [s′i] = [s′j ].

According to Proposition 2 and since no dynamics evolution can result from
the update of CX -variables (the control is total), controlling si with µj reaches

the state s′j in one step. This gives rise to the trajectory T ′ = s1
µ1−→
∗
s2 . . . si

µj−→
∗

sj+1 . . . sk
µk−−→
∗
sk+1, contradicting our initial assumption that µ[k] is minimal.

Therefore any control sequence solving the CoFaSe problem for the ConEvs
model of dynamics and having more than 2|C̄X | elements is not minimal, which
proves the statement of the theorem. ut

We now introduce Algorithm 2 which exhaustively explores all possible C̄X -
profiles by building a tree describing the possible paths from the initial states
to a target state. As in Algorithm 1, the control sequences are directly derived
from this tree by collecting the controls annotating its edges. In contrast to
Algorithm 1, TCS inference does not need to explore duplicate states, because
Theorem 6 shows that no duplicate states can occur in minimal TCS sequences.
Thus, no solutions are found by Algorithm 2 when the property can only be
reached by control sequences having a duplicate occurrence.

Phases of Algorithm 2. Algorithm 2 comprises two major phases. The first phase
(step 1) corresponds to the search for a total control allowing to directly attain
a state of Sω. The second phase (step 2) corresponds to, for a trajectory, visit-
ing intermediary equivalence states. The total controls are inferred with a SAT
solver.

Data structures. The algorithm relies on the following data structures:

1. the list ∆ of equivalence classes according to the equivalence relation 7;

2. the exploration tree G with nodes labelled by equivalence classes and edges
labelled by total controls;

3. the sets Γl, Γl+1 of unexplored nodes of the tree for the current level of depth
l, and the next level.

At the beginning, ∆ is initialized to [SX ]/([Sα ∪ Sω]), the depth is 1, Γ1

contains the root equivalence classes {[s] | ∀s ∈ Sα} of the exploration tree, and
all the other data structures are empty.

Correctness. Algorithm 2 closely follows the proof of Theorem 6, which guar-
antees the correctness and the minimality of the result. More concretely, the



Algorithm 2 Inference of minimal contracted total control sequences

1. Direct reachability of Sω: For all γ ∈ Γl, infer the total control µt taking the BCN
from the equivalence class γ to some of the target equivalence classes in [Sω]. If
such a µt exists, add the arc labelled by µt to G and go to step 4 .

2. Direct reachability of ∆: For every γ ∈ Γl, infer a set of total controls U t taking
the BCN from the equivalence class γ to some of equivalence classes in ∆. If U t is
non-empty, add the arcs labelled by the controls from U t to G, delete from ∆ and
store in Γl+1 the set of reached equivalence classes.

3. Continue if states left: If Γl+1 is non-empty, go to step 1 with l = l + 1.

4. Produce the result : Find the trajectory of the sequence of total controls by back-
tracking G from a leaf found in step 1 to a root equivalence class in Γ0. If no such
leaf was found, return ∅.

sequences found by Algorithm 2 solve the CoFaSe problem for the totally con-
trolled ConEvs model of dynamics under the synchronous mode. These sequences
are minimal.

Total controls are impractical for biological applications, because they act
on all controlled variables all the time, even when it is not strictly necessary.
To tackle this problem, we introduce Algorithm 3, which reduces a sequence of
total controls by testing, for each total control, whether one of its subsets allows
reaching a stable state validating the desired property.

Phases of Algorithm 3. Algorithm 3 comprises only one iterated phase: for every

total control µti appearing in a contracted control trajectory (sti
µti−→ sti+1)1≤i≤n

induced by a TCS sequence [µtn], it considers all subsets of µti, and picks the
smallest ones which allow reaching the same equivalence class [sti+1]. As all pre-
vious algorithms, Algorithm 3 focuses mainly on the ConEvs model of dynamics.

Data structures. Algorithm 3 relies on the following data structures:

1. the input contracted total control trajectory (sti
µti−→ sti+1)1≤i≤n;

2. the resulting reduced control sequence µ[n];
3. the sets Sl, Sl+1 of unexplored initial states of the reduced sequence for the

current level of depth l, and the next level;
4. the set Sµ of stable states the BCN can reach under a given control µ.

At the beginning, (sti
µti−→ sti+1)1≤i≤n is initialized with a contracted total

control trajectory (e.g., one found by Algorithm 2), the depth l is 1, S1 is equal
to Sα, and all the other data structures are empty.

Parsimony & optimality. Algorithm 3 always picks the smallest control subsets.
Therefore, if every control in a given TCS sequence is a superset of a correspond-
ing control in a control sequence composed of minimal control, Algorithm 3 will



Algorithm 3 Iterative reduction of total control sequences

1. Reduce the current total control: For every control subset µ of the total con-
trol µtl , construct the set of stable states Sµ the BCN reaches from Sl under µ.
Pick the smallest control µ for which [stl+1] ∈ [Sµ]. Append µ to µ[n] and set
Sl+1 = {s | ∀ s ∈ Sµ : [s] = [stl+1]}.

2. Continue if the sequence is not finished: If l ≤ n, go to step 1 with l = l + 1.
Otherwise return the reduced sequence µ[n].

always find it. However, if the input control sequence is not a superset of such
control sequence, the result of Algorithm 3 will be a sequence of parsimonious
controls, but will not be composed of only minimal controls.

3.7 Summary of the algorithms

For the reference, we give here a short summary of the approaches to inference
and of the algorithms we presented in this section.

The first approach (also introduced in [22]), consists in an exhaustive explo-
ration of all possible equivalence classes of C̄X -profiles and controlled trajectories
between them. It is implemented in Algorithm 1, which organises the explored
equivalence classes in a tree, stores the found controls on its edges, and then de-
rives a minimal parsimonious control sequence from a path in the tree connecting
the root—the starting equivalence classes in [Sα]—to the first leaf corresponding
to one of the target equivalence classes in [Sω].

The second approach is also based on exhaustive exploration of equivalence
classes and control trajectories, but this time only total controls are considered.
Algorithm 2 works rather similarly to Algorithm 1: it constructs the tree of
explored equivalence classes, whose edges are annotated by the found total con-
trols. Since freezing every single CX -variable is not always necessary, the controls
in the output of Algorithm 2 are further individually reduced (Algorithm 3).

4 Benchmarks

To assess the efficiency of the proposed approaches for inference of control se-
quences, we benchmark them on a set of randomly generated Boolean networks.
We compare their computational time, memory used and the quality of their
results. In the below subsections, we refer to the first approach as OCS-based
inference and the second approach as TCS-based inference.

4.1 Experimental protocol

The experiments consist in comparing the effectiveness and the performance of
one-step control inference by the two proposed approaches on random Boolean
networks. Indeed, inferring a single control is the core part of both methods and



also the principal difference between them. Evaluating the performance of one-
step inference is therefore a good indicator for comparing their computational
costs. Furthermore, considering one-step inference only eliminates the potential
bias in the observed resource consumption which may be introduced by the
presence of sequences of different lengths in the sample networks.

As regulatory networks appear to be scale-free [1], we generate random
Boolean networks from random scale-free interaction graphs obtained with the
Barabási-Albert model [2]. We generate networks of 10 to 35 variables with an
increment of 5. For each of the sizes, we test on 100 different random Boolean
networks the inference of a one-step control, reaching a set of target states Sω
from a set of initial states Sα. The initial set of states Sα originates from the set
of stable states of the random Boolean network. The initial set of target states
Sω originates from the enduring states. Around 30% of the network variables
are randomly picked to be the uncontrollable variables in C̄X . Table 4.1 gives
the exact values of different parameters, as well as the technical specifications of
the machine used to run the benchmarks.

Characteristics of the computer
used to perform the experiments

Model Macbook Pro
CPU Intel Core i7 of 2.8GHz
RAM 16Gb of DDR3

Implementation language Wolfram Mathematica

Parameters of the generation of
random Boolean networks

Barabási-Albert model distribution
parameter 2.1

probability to have a self-loop 0.1
probability of having positive regulation
and not a negative regulation 0.6

Generated Boolean networks size 10 15 20 25 30 35

C̄X -profile size 3 4 6 8 9 10

Table 1. Parameters of the benchmarks.

The Boolean formula for reachability is obtained by 20-iterated symbolic
composition of the random Boolean network formula—preliminary experimen-
tation revealed that 20 compositions were enough to reach stable states. The
inference of one-step controls is time-constrained to 1 hour of computation time.
Due to excessive computational time of OCS-based inference, the method is only
applied to networks of size 10 and 15 (see Figure 4). The results will be defined
in relation to the median since outliers present in the dataset risk biasing the
average.
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4.2 Results

Figure 4 describes the percentage of timed out computations. Figures 5, 6, and 8
are realized without taking into account the aborted inferences. Figure 5 de-
scribes the median of the total computational time of the two approaches, in-
cluding the minimum and the maximum. Figure 6 describes the median, with the
minimum and the maximum, of the total memory used in bytes of the two ap-
proaches. Figure 7 describes the median, with the minimum and the maximum,
of the total memory used in bytes by the timed-out inferences. Figure 8 describes
the median, with the minimum and maximum, of the number of variables con-
trolled by the inferred one-step controls. Figure 9 describes the percentage of
times the TCS-based inference finds a parsimonious but not optimal control i.e.,
the inferred control is bigger than the OCS-based inferred control. We recall that
as OCS-based inference is optimal by definition, a control inferred by the TCS-
based inference cannot be smaller than the corresponding OCS-based inferred
control.

4.3 Discussion of the benchmarks

The benchmark clearly shows a performance gap between the computation time
of the two approaches (Figure 5). The disparity becomes more obvious when
taking into account that for networks of sizes 10 and 15, respectively 10% and
70% (Figure 4) of computations are aborted after 1 hour and thus are omitted
in Figure 5.
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Figure 4 shows that, on networks of size 35, the TCS-based inference results
in a similar number of aborted computations as the OCS-based inference for
networks of size 10. Furthermore, Figure 5 shows that the times of the TCS-
based inference on networks of size 35 are similar to the times of the OCS-based
inference on networks of size 10. This correspondence is due to the fact that the
TCS-based inference discards the dynamics of the controlled variables by freezing
all of them, thereby considerably reducing the complexity of reachability for a
given control. Since we pick around a third of variables to be uncontrollable,
the TCS-based inference only considers the dynamics of about 10 variables for
networks of size 35.

In Figure 6, we observe a jump in median memory usage for networks of
size 20. As minimum and maximum values seem to be within normal range,
this variation is probably due to the algorithm generating the random Boolean
networks and therefore not significant for the algorithm.

In Figure 6 and Figure 7, for networks of size 10 and 35, we observe the same
pattern as in Figures 4 and 5 while noticing that the median memory used by
the OCS-based inference is bigger than it counterpart. This can be attributed to
the fact that Boolean formulas for reachability of the TCS-based inference may
generally be less complex for similar numbers of variables, because the sets C̄X
are randomly selected and thus do not follow the power law distribution of scale-
free networks. In Figure 8, we can see that the number of controlled variables
remains small, even when the size of the network increases. From this, we can
conclude that the reduction carried out by the Algorithm 3 generally results in
rather small controls.
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Since the size of the Boolean formula for reachability increases as network size
increases, the time needed for the inference of a one-step control by the solver
also increases. By only taking into account the dynamics of C̄X -profiles, the TCS-
based inference postpones the computational explosion , in contrast to the OCS-
based inference. As we can see in all figures, this entails a better performance in
terms of time and memory used by the second approach compared to the first
one. In Figure 9 we can observe that the number of times where the TCS-based
algorithm gives a parsimonious but not optimal solution is low.

In these benchmarks, we compared the effectiveness and the performance of
one-step control inference of the OCS-based approach and the TCS-based ap-
proach on random Boolean networks. From these experiments, we observe that
TCS-based inference in comparison to the OCS-based inference is less costly in
computation time and memory usage. By definition the OCS-based inference al-
ways returns the minimal control. The experimentation revealed that TCS-based
inference returns minimal controls most of the time. From these observations,
we can conclude that the TCS-based approach infers solutions of good quality
and is a rather viable alternative to the more computationally costly OCS-based
approach.

5 Conclusion

In this article, we study the sequential control applied to Boolean networks. We
propose a theoretical framework aiming at discovering minimal control sequences
evolving from stable states to stable states (ConEvs model of dynamics), for



parsimonious control actions at each step. Inference of control sequences can be
used in precision medicine for the causal analysis of such complex diseases as
cancer [11], stressing the evolution of the tumorigenesis from benign to malignant
tumoral states. The control sequence inference can also be used to determine
efficacious order of drug administering for chemotherapy [14].

Our analysis emphasizes nontrivial complex features of control sequences,
such as the occurrence of duplicates where only the controlled variables evolve
without changing the states of uncontrolled variables. Such occurrences are in-
terpreted as the need to evolve to different stable states with the same profiles
for uncontrolled variables, but which could not be reached previously.

We proposed two approaches for inferring control sequences, both based on
exhaustive exploration of the possible intermediate profiles of uncontrolled vari-
ables. The first approach is implemented in Algorithm 1 and applies the single
control inference algorithm from [5] at most 2|C̄X | times. This bound makes it
tractable, because the uncontrolled variables typically constitute a rather small
set. The second approach is implemented as a chaining of Algorithms 2 and 3,
and focuses on inferring a total control sequence first, and then reducing the
sizes of individual controls. This implies that the second approach does not take
into account the occurrence of duplicates. Our benchmark shows that inferring
total controls is much cheaper because the dynamics of uncontrolled variables
is totally neglected, while the quality of the solutions stays pretty close to the
quality of the sequences inferred by Algorithm 1.

The perspective of our work is twofold: applying the method to biological
cases for investigating complex treatment schemes, more specifically for cancer,
and designing an algorithm guaranteeing the minimality in a broader context,
notably by relaxing the parsimony requirement and by considering other modes,
such as the asynchronous one. For the asynchronous mode, one needs to tackle
the fact that the transition becomes a relation inducing non-determinism that
should not be exhaustively explored for ensuring the efficiency of the algorithm.
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3. Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network medicine:
a network-based approach to human disease. Nature reviews. Genetics, 12:56–68,
2011.
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Boolean networks. In Jérôme Feret and Heinz Koeppl, editors, Computational
Methods in Systems Biology - 15th International Conference, CMSB 2017, Darm-
stadt, Germany, September 27-29, 2017, Proceedings, volume 10545 of Lecture
Notes in Computer Science, pages 179–195. Springer, 2017.

18. Hugues Mandon, Cui Su, Stefan Haar, Jun Pang, and Löıc Paulevé. Sequential
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28. Jorge G.T. Zañudo and Réka Albert. Cell fate reprogramming by control of intra-

cellular network dynamics. PLoS Computational Biology, 11(4):e1004193, 2015.
29. Quan Zhong, Nicolas Simonis, Qian-Ru Li, Benoit Charloteaux, Fabien Heuze,

Niels Klitgord, Stanley Tam, Haiyuan Yu, Kavitha Venkatesan, Danny Mou, Venus
Swearingen, Muhammed a Yildirim, Han Yan, Amélie Dricot, David Szeto, Chen-
wei Lin, Tong Hao, Changyu Fan, Stuart Milstein, Denis Dupuy, Robert Brasseur,
David E Hill, Michael E. Cusick, and Marc Vidal. Edgetic perturbation models of
human inherited disorders. Molecular Systems Biology, 5(321):321, 2009.




