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Abstract

Background: Rapid, accurate and high-throughput identification of vector arthropods is of paramount importance in
surveillance programmes that are becoming more common due to the changing geographic occurrence and extent
of many arthropod-borne diseases. Protein profiling by MALDI-TOF mass spectrometry fulfils these requirements for
identification, and reference databases have recently been established for several vector taxa, mostly with specimens
from laboratory colonies.

Methods: We established and validated a reference database containing 20 phlebotomine sand fly (Diptera: Psychodidae,
Phlebotominae) species by using specimens from colonies or field-collections that had been stored for various
periods of time.

Results: Identical biomarker mass patterns (‘superspectra’) were obtained with colony- or field-derived specimens of the
same species. In the validation study, high quality spectra (i.e. more than 30 evaluable masses) were obtained with all
fresh insects from colonies, and with 55/59 insects deep-frozen (liquid nitrogen/-80 °C) for up to 25 years. In contrast,
only 36/52 specimens stored in ethanol could be identified. This resulted in an overall sensitivity of 87 % (140/161);
specificity was 100 %. Duration of storage impaired data counts in the high mass range, and thus cluster analyses of
closely related specimens might reflect their storage conditions rather than phenotypic distinctness. A major drawback
of MALDI-TOF MS is the restricted availability of in-house databases and the fact that mass spectrometers from 2
companies (Bruker, Shimadzu) are widely being used. We have analysed fingerprints of phlebotomine sand flies
obtained by automatic routine procedure on a Bruker instrument by using our database and the software established
on a Shimadzu system. The sensitivity with 312 specimens from 8 sand fly species from laboratory colonies when
evaluating only high quality spectra was 98.3 %; the specificity was 100 %. The corresponding diagnostic values with 55
field-collected specimens from 4 species were 94.7 % and 97.4 %, respectively.

Conclusions: A centralized high-quality database (created by expert taxonomists and experienced users of mass
spectrometers) that is easily amenable to customer-oriented identification services is a highly desirable resource. As shown
in the present work, spectra obtained from different specimens with different instruments can be analysed using a
centralized database, which should be available in the near future via an online platform in a cost-efficient manner.
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Background
The geographic occurrence and extent of arthropod-borne
diseases is changing, due to globalisation and environmen-
tal alterations. Most spectacular is the emergence of inva-
sive species, e.g. Aedes mosquitoes [1, 2], with associated
new disease threats [3]. Other arthropod vectors such as
ticks (Ixodida: Ixodidae) [4, 5], biting midges (Diptera:
Ceratopogonidae) [6] and phlebotomine sand flies (Dip-
tera: Psychodidae) [7–9] are gradually expanding their dis-
tribution ranges in Europe. Because these changes in
vector distribution are associated with changes in the risk
of exposure to the pathogens they transmit, monitoring
the presence and abundances of arthropod vectors is of
growing importance in many regions. Guidelines for sur-
veillance and options for control have so far only been de-
veloped for mosquitoes, both native and invasive species
[2, 10, 11]. Regularly updated distribution maps for Europe
are provided by ECDC (www.ecdc.europa.eu) for a num-
ber of vectors (eight sand fly species, five Aedes mosquito
species, four tick species).
Undoubtedly, reliable, rapid and cost-effective identifica-

tion of vector arthropods is a key element of surveillance
programmes. Morphological identification requires at least
some degree of proficiency and can be time-consuming,
e.g. requiring slide preparations and in-depth analysis of
characteristics such as the morphology of pharynx and
genitalia in the case of sand flies [12]. However, morpho-
logical identification can be difficult or impossible in many
instances (e.g. due to specimens of sibling or cryptic spe-
cies; damaged or incomplete specimens; life stages with
few morphological features like eggs or larvae; poor pres-
ervation methods or damage during shipment). In the case
of sand flies, which are the focus of this paper, morpho-
logical identification is sometimes hampered by the lack of
comprehensive keys, minute species-distinctive characters
in some subgenera and the existence of phenotypic plasti-
city among populations [13, 14]. PCR-based approaches
are established in different formats for a number of phle-
botomine species (compiled by [15, 16]), but their validity
may be impaired due to genetic variability at the target
locus [17, 18]. Further, these approaches are generally con-
sidered expensive and time-consuming.
As an alternative, protein profiling by matrix-assisted

laser desorption/ionization time of flight mass spectrom-
etry (MALDI-TOF MS), which is routinely used in clinical
diagnostics of bacteria and fungi [19, 20] with high interla-
boratory reproducibility [21], has recently been applied for
the identification of a number of arthropods, including
adult stages of vector taxa [15, 22–33]. In addition, protein
profiles have been determined for larvae of holometabo-
lous Culicoides biting midges and Culicidae [34, 35], and
for eggs of nine aedine mosquito species [36]. MALDI-
TOF MS was capable of identifying sister taxa and cryptic
species [26, 28], and the method proved reliable for large
scale species identification of Culicoides biting midges
(correct identification of 98.9 % of 1,200 field-collected
specimens) as well as in the surveillance of invasive mos-
quito species (identification of eggs from ovitraps; [28]).
This paper elaborates on the suitability of MALDI-TOF

MS to identify adult phlebotomine sand flies, the biological
vectors of a number of important protozoan and viral
pathogens of medical or veterinary importance [7, 37, 38],
extending the method from identifying specimens from la-
boratory colonies [15] to identifying specimens collected in
the field and stored for a prolonged period of time. In
addition, we evaluated whether raw mass spectra obtained
with the instrument of one company (Ultraflex III, Bruker,
Germany) allow species identification by using the software
and the reference database established on an instrument of
another company (Axima Confidence, Shimadzu, Japan),
whereby the two most widespread instrument series were
involved. The ability to cross-reference specimens with
non-parent databases would strongly enhance the value
and availability of in-house reference databases established
at different institutions.

Methods
Sand fly collection and morphological identification
Mass spectra were determined from sand fly specimens of
20 species obtained from field collections (9 species), col-
onies (7) or both (4) (see Table 1 for origin, year of collec-
tion). Sand flies were captured using CDC miniature light
traps (John W. Hock Co. FL, USA) or sticky papers. Speci-
mens were killed using carbon dioxide or liquid nitrogen
and stored as described in Table 1. For morphological
identification, head and genitalia of each specimen were
processed and mounted on slides following traditional
procedures [39] and the species determined using stand-
ard keys [40–42]. The taxonomic abbreviations used are
as described [43].

Generation of MALDI-TOF MS biomarker mass sets,
validation study
Thoraxes with wings and legs were manually homoge-
nized, mixed with matrix and spotted on steel target plates
as described [26]. Protein mass fingerprints were obtained
using a MALDI-TOF Mass Spectrometry Axima™ Confi-
dence machine (Shimadzu-Biotech Corp., Kyoto, Japan)
and analysed with SARAMIS™ Premium software (spectral
archive and microbial identification system, AnagnosTec,
Potsdam-Golm, Germany) as described elsewhere [36].
Biomarker mass patterns, called ‘superspectra’, were calcu-
lated using the SARAMIS™ SuperSpectra™ tool with 5
specimens per species (Table 1) with 4 technical replicates
each (quadruplicates). For SuperSpectra™ validation, 161
specimens (Table 1) were analysed (also in quadruplicates),
and the generated mass fingerprints were imported into
SARAMIS™ software for automated identification with
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Table 1 Features of the phlebotomine sand flies investigated in the experimental part of the study

Species (morphological ID) Origin (field; colony) Collection year; storage until
analyses in 2014

No. used for calculating
reference database

No. used in
validation study

Lutzomyia (Lutzomyia) longipalpis1 Brazil (colony3) 2014; 70 % EtOH for few days 5 5

Nyssomyia trapidoi1 Ecuador (field) 2013; 96 % EtOH 5 5

Phlebotomus (Adlerius) arabicus1 Israel (colony3) 2014; 70 % EtOH for few days 5 5

Phlebotomus (Euphlebotomus)
argentipes1

India (colony3) 2014; 70 % EtOH for few days 5 5

Phlebotomus (Larroussius) ariasi1 Southern France
(field)

2011; 70 % EtOH, −20 °C 5 7

Phlebotomus (Euphlebotomus)
barguesae1

Thailand (field) 2012; 96 % EtOH 5 6

Phlebotomus (Phlebotomus) duboscqi Senegal (colony) 2002; N2 then −80 °C4. 0 12

Phlebotomus (Phlebotomus)
duboscqi1

Senegal (colony3) 2014; 70 % EtOH for few days 5 5

Phlebotomus (Transphlebotomus)
mascittii1

France (colony) 2004; N2 then −80 °C4. 5 8

Phlebotomus (Larroussius) neglectus1 Italy (field) 1991; N2 then −80 °C4. 5 2

Phlebotomus (Larroussius) orientalis1 Ethiopia (colony3) 2014; 70 % EtOH for few days 5 5

Phlebotomus (Phlebotomus) papatasi Saudia Arabia
(colony)

1994; N2 then −80 °C4. 0 7

Phlebotomus (Phlebotomus) papatasi1 Turkey (colony3) 2014; 70 % EtOH for few days 5 5

Phlebotomus (Larroussius) perfiliewi
transcaucasicus1

Iran (field) 2010; 70 % EtOH 5 4

Phlebotomus (Larroussius) perniciosus Southern France
(field)

2011; 70 % EtOH, −20 °C 0 6

Phlebotomus (Larroussius) perniciosus2 Italy (field) 1991; N2 then −80 °C4. 0 11

Phlebotomus (Larroussius) perniciosus2 Malta (field) 1989; N2 then −80 °C4. 0 12

Phlebotomus (Larroussius) perniciosus1 Spain (colony3) 2014; 70 % EtOH for few days 5 5

Phlebotomus (Paraphlebotomus)
sergenti

Iran (field) 2010; 70 % EtOH 2

Phlebotomus (Paraphlebotomus)
sergenti1

Turkey, Israel
(colony3)

2014; 70 % EtOH for few days 5 5

Phlebotomus (Larroussius) tobbi2 Iran (field) 2010; 70 % EtOH 0 10

Phlebotomus (Larroussius) tobbi1 Turkey
(colony3)

2014; 70 % EtOH for few days 5 5

Phlebotomus (Larroussius) tobbi Greece (field) 1990; N2 then −80 °C4 0 2

Phlebotomus sp. Iran (field) 2010; 70 % EtOH 0 1

Psathyromyia (Foratiniella) aragaoi1 Ecuador (field) 2013; 96 % EtOH 5 0

Psychodopygus panamensis1 Ecuador (field) 2013; 96 % EtOH 5 2

Sergentomyia (Sergentomyia)
dentata1

Israel (field) 2000; N2 then −80 °C4. 5 7

Sergentomyia (Sergentomyia) minuta1 Southern France
(field)

2011; 70 % EtOH, −20 °C 5 7

Sergentomyia (Sergentomyia)
schwetzi1

Ethiopia (colony3) 2014; 70 % EtOH for few days 5 5

Total 100 161
1Used for calculating reference database
2Used for calculating alternative reference database (replacing spectra from colony insects, see also Fig. 2)
3Colonies maintained at Department of Parasitology, Charles University, Prague, Czech Republic [15]
4-80 °C since 2012
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SuperSpectra™. The threshold for identification was set at
75 % biomarker matches based on the reference data set,
according to the SARAMIS™ user guideline. Spectra
containing less than 30 data counts were considered low
quality. A dendrogram was produced as described [27].

Analyses of raw data mass spectra obtained on Bruker
mass spectrometer with Shimadzu software
Mass fingerprints generated using automatic routine proce-
dures on an Ultraflex III MALDI TOF mass spectrometer
(Bruker Daltonics, Bremen, Germany) [15] were analysed
in a blinded manner with the SARAMIS™ Premium soft-
ware. Bruker mass lists were exported as mzXml files,
adapted to the SARAMIS™ Premium file format by use of
an in-house phyton script and imported for automated
identification. Mass lists obtained with insect thoraxes
were available for 312 specimens of Phlebotomus arabicus
(n = 13), Ph. argentipes (n = 20), Ph. duboscqi (n = 10), Ph.
orientalis (n = 10), Ph. papatasi (n = 84), Ph. perniciosus
(n = 94), Ph. sergenti (n = 22), Ph. tobbi (n = 59) (from col-
onies maintained in Prague and analysed after storage in
70 % EtOH overnight [15]) and from 55 field-collected
(Karpathos island, Greece, stored in 70 % EtOH for several
weeks) Ph. neglectus (n = 44); Ph. similis (n = 8); Ph. alex-
andri (n = 1), Ph. galilaeus (n = 2) (total 367 specimens).

Genetic analyses
DNA was isolated from the remains of the abdomens with
a kit (Qiamp DNA mini kit, Qiagen, Hildesheim, Germany)
according to the manufacturer’s instruction and after
mechanical homogenization as previously described [44].
Genetic characterisation by PCR/sequencing was mainly
done at the mitochondrial cytochrome b gene (cyt b). The
primers CB3_PDRmod (5’-CTC CYC ATA TYC AAC
CWG AAT G-3’) and CB_R06mod (TAT CTA ATG KTT
TCA AAA CAA TTG C-3’) were modified from described
ones [45,46]. Species for which no corresponding cyt b se-
quence was available in GenBank were characterized at the
mitochondrial cytochrome c oxidase subunit I gene (COI)
using primers LCO1490/HCO2198 [47] or at the small
subunit nuclear ribosomal RNA gene using forward pri-
mer F2 [48] and the new reverse primer R2_new (5’-GTC
CTA TTC CAT TAT TCC ATG C-3’). Direct sequencing
of the amplicons was performed by a private company
(Synergene, Schlieren, Switzerland).

Results
Reference database
Biomarker mass patterns (‘superspectra’) were calculated
for 20 sand fly species, by using 5 insects per species.
Specimens from colonies (10 species) and insects collected
in the field (10 species) were used (Table 1). Reference
mass peaks were in the range of 4000 and, depending on
the species, 9800 to 11400 Da. Identification of the field-
collected species could be confirmed by PCR/sequencing
with 1 specimen per species for 8 of these 10 species. The
two remaining species were Ph. barguesae and Psathyro-
myia aragaoi. In the case of Ph. barguesae, the partial
(around 570 bp) sequence of the COI gene obtained from
the field-collected specimens best matched with the two
GenBank sequences ascribed to this species (acc. nos.
FJ348734-5), but differed by 7 %. Another 5 specimens
morphologically attributed to this species were then gen-
etically characterized, yielding identical sequences. No
single sequence was available in GenBank for Ps. aragaoi,
and partial cyt b and COI gene sequences have been de-
posited [GenBank: KP763471, GenBank: KP763472].
Superspectra were calculated for the species Ph. perni-

ciosus and Ph. tobbi with 5 specimens each from either
colonies or the field (Table 1), yielding identical masses.

Validation
The reference database was validated with 161 specimens
from 19 species (Table 1). Eighty-four specimens were
field-collected and stored in various media, 50 specimens
were fresh from ongoing colonies of 10 species (that were
also used to create the reference database), and 27 speci-
mens were stored deep-frozen from earlier colonies.
Altogether, 140 insects were correctly identified, including
77 specimens from colonies. Poor quality spectra (less than
30 data counts) were obtained with 20 field-collected spec-
imens, of which 17 yielded no result upon automated iden-
tification with SuperSpectra™. The analyses of the other 3
of these 20 low data count specimens produced discrepant
identifications (in 2 of the 4 technical replicates, no identi-
fication in the other two) as compared to morphological
and genetic identification. Further, 2 insects probably were
mislabelled as Ph. perniciosus, as both mass spectrometry
and DNA sequencing identified them as Ph. ariasi, and
specimens of this species had been obtained from the same
source. Finally, one specimen yielded a novel spectrum but
was identified by morphology as Ph. perfiliewi, which is
included in the database, and as belonging to the Ph. perfi-
liewi complex by DNA analyses.
Thus, overall sensitivity of MALDI-TOF MS was 87 %

(140/161); specificity (defined as 100 minus percentage of
wrong identifications as compared to morphological iden-
tification, all specimens considered that yielded an MS
identification) was 97 % (139/144) or 100 % (when conse-
quently omitting low data count specimens and consider-
ing the probable mislabelling in 2 cases).
In addition to the specimens with discrepant identifica-

tion, 22 arbitrarily chosen specimens were genetically
analysed, confirming morphological and MALDI-based
identification. The specimen with inconclusive morpho-
logical identification (Table 1) was among the specimens
with low data count but turned out to belong to the Ph.
perfiliewi complex based on DNA sequence analysis.
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High quality spectra (i.e., equal to or more than 30 data
counts) were obtained with all (n = 50) fresh insects from
colonies, and with 55/59 insects from colonies or the field
and stored deep-frozen (liquid nitrogen/-80 °C) for up to
25 years. In contrast, only 36/52 specimens stored in
EtOH (70 or 95 %; room temperature or −20 °C) for only
a few years could be identified (Table 1). Duration of
storage impaired data counts in the high mass range as
exemplified in Fig. 1.
Different batches of sand fly specimens (colony, wild

catches from different geographical origins and stored
under different conditions and/or for different periods of
time) were available for a few species. For example, a den-
drogram of Ph. perniciosus groups is given in Fig. 2. The
spectra from colony insects (originally from Spain) form a
distinct cluster, whereas spectra of specimens from two
geographical origins (Italy, Malta) and stored under com-
parable conditions do not. A single spectrum available
from a more recently collected Ph. perniciosus from
France, which was stored differently, is placed on a distinct
Fig. 1 Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) m
(b) Field specimen stored in 70 % EtOH, −20 °C for 3 years. (c) Field specimen
then −80 °C, since 1989. Note different scale of magnification (10 ×) for the hi
branch, separated from both the colony- but also the other
field-derived spectra.

Analyses of mass lists obtained on a Bruker instrument
with a reference database (SARAMIS™) and reference
spectra acquired on a Shimadzu instrument
Raw data from a total of 312 specimens from 8 sand fly
species from laboratory colonies were analysed, resulting
in the correct identification of 297 individuals. No identifi-
cation was obtained for 15 specimens, of which 10 had
low data count spectra (less than 30). Five spectra with a
sufficient number of data counts (30 or more) could not
be identified. No misidentification occurred (overall sensi-
tivity 95.2; sensitivity considering only high quality spectra
98.3 %; specificity 100 %). Thirty-six of the 55 field-
collected specimens from 4 species were identified in con-
cordance with the morphological identification. The single
specimen of Ph. alexandri had a high quality spectrum
(data count of 57), but yielded no identification as this
species was not included in the database. Seventeen
ass spectra of Phlebotomus perniciosus. (a) Fresh specimen from colony.
stored in N2 then −80 °C since 1991. (d) Field specimen stored in N2

gher mass range (10–20 kDa)



Fig. 2 Dendrogram of matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectra (paired-group dice algorithm) of Phlebotomus
perniciosus specimens from different groups (colony, geographical origin of field specimens; for conditions and time of storage, see Table 1)
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spectra contained insufficient data counts and were not
identified. One specimen morphologically identified as Ph.
galilaeus yielded a spectrum identified as Ph. perniciosus.
Thus, diagnostic parameters with the field-collected speci-
mens differed slightly from laboratory collections (sen-
sitivity considering only high quality spectra 94.7 %;
specificity 97.4 %).

Discussion
MALDI-TOF MS reference database and validation
A MALDI-TOF MS database was established with 20
phlebotomine species. In selecting our study species, we
took into account i) their vectorial role - in order to in-
clude many species which are proven vectors of Leish-
mania spp., and ii) their taxonomic position - in order to
compare closely related species and species belonging to
different genera (Table 1). An evaluation of the database
with 161 specimens revealed a robust sensitivity and a
very high specificity of this approach. Twenty specimens
were not (n = 17) or incorrectly (n = 3) identified due to
low spectra quality (data count below 30). Thus, a thresh-
old of 30 data counts, based on our experience with mass
spectrometry analyses of Ceratopogonidae biting midges
[26, 27], seems a useful criterion to exclude spectra from
future analyses.
The major factor impairing mass spectrum quality seems

to be the way the insects were stored rather than the dur-
ation of storage, though this aspect has not systematically
been addressed in the present study. Thus, e.g. 22/23 speci-
mens of Ph. perniciosus stored for 25 years in liquid nitro-
gen/-80 °C could be identified, but only 3/6 insects of the
same species stored since 2011 in 70 % EtOH at −20 °C
could be identified. This confirms earlier findings that
freezing is superior to EtOH as a storage medium, with
EtOH at a concentration of 70 % being more suitable than
higher concentrations, as experimentally determined with
sand flies stored up to 75 days [15]. Thus, this ‘storage
constraint’ limits the value of mass spectrometry for the
identification of insects, as ethanol is the widely preferred
storage medium. However, a high reliability of mass spec-
trometry (98.9 % good quality spectra) was found with
1,200 field-collected Culicoides specimens stored in 70 %
EtOH at 4 °C for one year [49]. Most other studies on
mass spectrometry as a tool for the identification of
arthropods relied on fresh colony-derived specimens. Suc-
cessful identification by MALDI-TOF MS with field-
collected specimens was reported with ticks (stored in
liquid nitrogen, [25]), tsetse flies (using air-dried wings,
[50]; and mosquitoes (analysis of legs, storage conditions
not described, [31]).
As also shown in our study, storage reduces the higher

weight masses (Fig. 1). Identification to species level is un-
affected by this constraint as reference masses are in the
lower mass range. Identification of specimens from differ-
ent geographic origins (given they were properly stored)
was equally reliable by using superspectra derived with ei-
ther insects fresh from colonies or wild-catches from stor-
age (Table 1). However, higher resolution (e.g., ‘fine typing’
with regard to geographical origin of specimens or lower
taxonomic levels) might be critical as the topography of a
dendrogram created in cluster analyses could reflect the
storage conditions of the analysed specimens rather than
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phenotypic distinctness (see also Fig. 2). The identification
of cryptic insect species (Anopheles spp.) and even the clas-
sification of specimens from different laboratory colonies
were possible with a standardized approach (fresh speci-
mens, same feed etc.) [28], but seem improbable with field-
collected specimens. Thus, care should be taken not to
over-interpret cluster analyses of mass spectra obtained
from field-collected and stored specimens.
A novel spectrum was obtained for a specimen that

morphologically was identified as a species (Ph. perfi-
liewi) that is included in the database. This species is
known to exist as a complex of species [12] which might
explain variability in mass spectra. All morphologically
identified Ph. barguesae specimens had considerable
genetic differences at the barcoding locus from corre-
sponding GenBank entries. Genetic variability of this
species, which is characterized by a unique morphology
of the female spermathecae [51], has been observed
among populations from different caves (Depaquit,
unpublished). Further studies employing mass spectrom-
etry to different populations of freshly collected speci-
mens and the comparison with results of DNA-based
molecular approaches might contribute to elucidate
taxonomic relationships. This technique shall be espe-
cially considered when dealing with species complexes
like Ph. perfiliewi or Ph. major which are incriminated in
transmission of medically important Leishmania species
and represent a taxonomic challenge.

Analyses of mass lists obtained on a Bruker instrument
with a reference database (SARAMIS™) and reference
spectra acquired on a Shimadzu instrument
Comparative studies have shown that the performance
of the two systems (Shimadzu, Bruker) for the identifica-
tion of microorganisms in clinical laboratories is com-
parable [52, 53]. Exchangeability of data obtained on the
two different instruments, however, has to the best of
our knowledge not been reported so far. Here, we show
that fingerprints of phlebotomine sand flies obtained by
automatic routine procedure on a Bruker instrument
allow for reliable (high values of diagnostic parameters)
determination of species by using the database and the
software (SARAMIS™) established on a Shimadzu instru-
ment. The sensitivity of this analysis was high despite
slight differences in sample preparation [15] and mass
ranges considered (Bruker: 2–25 kDa; Shimadzu: 3–
20 kDa). Non-identifiable spectra mostly contained few
data counts (n = 10) or low intensity peaks (n = 3), and
these spectra could not be identified with the Bruker
Biotyper software either. Two spectra of good quality
did not have sufficient matches for automated identifi-
cation with superspectra, though their identification
(Ph. argentipes, Ph. perniciosus) was possible with man-
ual full comparison.
Conclusions
The power of mass spectrometric identification of organ-
isms depends on the quality of the available database (i.e.,
reference quality, taxonomic coverage) and its accessibility.
The first aspect requires the participation of expert taxono-
mists, particularly when dealing with closely related species,
and experienced users of mass spectrometers who keep a
high quality standard for generating the spectra. It further
advocates for a centralized, comprehensive database, rather
than scattered in-house ones. Accessibility (i.e., the analysis
of specimens by third parties) might be an issue at scientific
institutions where capacity for analysis, availability and will-
ingness of an operator could be limiting factors. Therefore,
a centralized database and analyses at a private company,
which provides a customer-oriented service, is a valu-
able alternative for greater sustainability. As shown in
the present work, spectra obtained with different
instruments can be analysed using such a centralized
database, and this should be possible in the near future
via an online platform in a cost-efficient manner.
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