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Tubular Parametric Volume Objects:
Thickening a Piecewise Smooth 3D Stick Figure
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aUniversité de Poitiers, Laboratoire XLIM, Axe ASALI, CNRS 7252, France
bUniversité de Toulouse, Laboratoire IRIT, France

Abstract

In this paper, a volume parametric model is computed from a piecewise smooth skeleton. Generating a
volume model from a stick figure S defined in 3D is an intuitive process: given S whose topology is a
pseudo-graph and whose edges are embedded as Bézier curves in R3, we propose a method for creating a
thick volume parametric model ”around” S. The volume model we generate is based on semi-simploidal
sets, which guarantees a proper topology and provides a 3D parametric domain for Bézier spaces. This
volume is a continuous piecewise Bézier representation which boundary corresponds to a B-Rep made of
tensor product Bézier patches.
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(a) (b) (c) (d) (e)

Figure 1: A parametric volume model from a stick figure. (a) input: a stick figure, a connected set of Bézier curves;
(b) Volume junctions computed at each skeleton vertex; (c) volume branches; (d) a embedded semi-simploidal set defines a
topologically coherent parametric domain for volume Bézier patches. (e) output: a piecewise smooth parametric volume model.

1. Introduction1

Different geometric models are used to represent 3D objects. In particular, Boundary-representations2

(B-rep) consists in representing a volume object by its outer surface. The parametric surface models based3

on Bézier, B-splines or NURBS are the standard models used in the kernel of CAD systems (e.g. Farin4

(2014)). They offer the possibility of studying and ensuring the required smoothness of the 3D geometric5

surfaces while providing an intuitive control and easy sampling when needed. Their piecewise linear version,6
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meshes, have been the most classical representation since they are the natural input of rendering pipelines7

and the support of texture mapping. They are used in applications where smoothness is not required (e.g.8

games, e-commerce). More recently, IGA (isogeometric analysis) (see Cottrell et al. (2009) and Hughes9

et al. (2005)) have proposed to use the geometric model directly for CAM (Computer Aided Manufacturing)10

based on finite elements computations. With the development of additive manufacturing (3D printing)11

volume models are needed for representing the geometry of the printed object. When physical properties of12

a volume object have to be controlled and analyzed (e.g. in the context of additive manufacturing, or 3D13

printing), a complete volume subdivision has to be handled (i.e. with volume cells) (see Livesu et al. (2017)).14

Thus, methods for representing the entire volume of an object are in active demand and research. Discrete15

methods generating volume meshes have been proposed (e.g. Lyon et al. (2016) extract a volume mesh given16

its surface). Massarwi and Elber (2016) propose a continuous and smooth parametric volume representation17

based on B-splines; they consider tensor product volume and rely on trimming. These differentiable volume18

models may be used as support for mechanical computations (see Massarwi et al. (2019)).19

A skeleton offers an intuitive, simplified and low-dimensional representation of a 3D object structure. It is20

thus of interest for shape retrieval (see e.g. Sundar et al. (2003)), shape design in sketching and for animation21

(see e.g. Raptis et al. (2011)). Bridging the gap between skeletons and corresponding surface models has been22

targeted by different work Bærentzen et al. (2012) and more recently Usai et al. (2016); Panotopoulou et al.23

(2018); Fuentes Suárez and Hubert (2018). Livesu et al. (2016) generalize these approaches for computing24

a volume hexahera mesh from a skeleton.25

The goal of this work is to tackle the limitations of the previous methods, by providing a complete26

framework for generating automatically a piecewise polynomial parametric tubular volume object from an27

arbitrary skeleton. Compared to Livesu et al. (2017) that generates a piecewise linear model (3D mesh)28

for a skeleton, we generate a smooth model based on polynomial elements. Moreover, whereas Massarwi29

et al. (2019) use volume trimming to propose a smooth volume model, we ensure a consistent topology30

of the domain so that our model is an assembly of well connected complete volume Bézier patches. More31

precisely, we associate each edge of the skeleton with a volume branch, and each vertex of the skeleton with32

a branch junction. The generated tubular volume object is then defined as an assembly of branches that are33

glued together continuously at branch junctions. Our work generalizes and extends to smooth parametric34

volumes the results presented in Panotopoulou et al. (2018) that creates a surface quad mesh. In their35

work, all branches of the surface have the same regular structure: a branch surface is only made of four36

quads. A similar regularity is provided by the proposed volume model: each volume branch has a regular37

structure. More precisely, each branch is an assembly of four prisms which boundary is also made of four38

quads (the four prisms are arranged symmetrically around the branch axis). Note that our method offers the39

possibility to handle branches made of four hexahera, preserving regularity but generating twice as many40

quads on the surface.41

In order to create a parametric model, we use semi-simploidal sets (see Peltier et al. (2009)): a combi-42

natorial structure in which cells (simploids) are products of simplices; in particular, prisms and hexahera43

are 3D simploids. Adjacency relations are encoded by face operators, and their structure is designed for44

embedding semi-simploidal sets into simploidal Bézier spaces (i.e. products of simplicial Bézier spaces).45

In this paper, we tackle both topological and geometric issues regarding branches, and branch junctions.46

The main contributions in this paper are the following:47

• Regarding the topology:48

– We provide definitions of branches and kites (branch extremities) based on semi-simploidal sets.49

Our branch definition uses prisms and preserves the minimal number of quad boundary patches50

(i.e. four). Moreover, we extend this property for Bézier volumes model: all branches have a51

same volume structure and are bounded by only four quads.52

– The topology of a junction defines how branches are glued together ”around” a corresponding ver-53

tex of the skeleton. The problem of handling junction configurations is equivalent to the problem54

of partitioning a unit sphere into quads. We provide a proof showing that any quadrangulation55

of a sphere can be generated iteratively by inserting quads.56
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• Regarding the geometry:57

– During the construction of a quadrangulation on a sphere defining the topology of a junction, we58

propose an incremental algorithm for positioning automatically the quads vertices. Subsequently,59

all Bézier volume control points at the junctions are placed.60

– We describe how to control the geometry of branches in order to both minimize twisting and61

preserve a consistent volume along the branch axis. This step places the intermediate Bézier62

volume control points.63

The two following sections of the paper construct the building blocks of the model: the volume branches,64

and the junctions. Section 2 presents stick figures, the notions and underlying topological structures related65

to tubular volume branches are detailed. Then Section 3 is dedicated to the topology of junctions. A66

general iterative process enables the construction of arbitrary junctions. Section 4 describes the complete67

3D model construction and focuses on geometric issues regarding junctions and branches. Finally, we show68

some volume models generated from stick figures with our automatic process.69

2. From a Stick Figure to a Volume Tubular Object70

In this section, we first introduce the building blocks of the tubular object and discuss how they are71

intuitively built from a stick figure. The topological nature of tubular volume model is the combinatorial72

structure of semi-simploidal sets. We recall the basics on this combinatorial structure, and show its benefits73

for handling both topology and geometry of stick figures and tubular volume objects.74

2.1. Building blocks of the tubular object: Stick Figure, Branches and Kites75

In this paper, a stick figure denotes a skeleton embedded into 3D. More precisely, the structure of a76

stick figure is a pseudograph, i.e. it may contain multi-edges or loops. The embedding of a stick figure is an77

assembly of Bézier curves: each vertex of the pseudo graph is associated with a 3D point, and each edge is78

associated with a Bézier curve of arbitrary degree.79

The idea behind creating the tubular volume object around the stick figure is to thickening the 1D80

structure into a volume model. Regarding the structure, an edge of the stick figure corresponds to a81

elementary volume object, denoted as a branch. Regarding the embedding, each Bézier curve C of the stick82

figure is associated with a smooth (volume) branch whose central curve corresponds to C, and each vertex83

of the stick figure corresponds to a junction of branches. Otherwise said, our tubular objects are assemblies84

of smooth branches that are glued along their extremities.85

Each branch is an assembly of 4 prisms sharing a common edge (Figure 2(a)). Each branch is thus86

bounded by 4 smooth square surface faces and has two extremities made of an assembly of 4 triangles,87

denoted as a kite. Branches are then assembled along kites according to the algorithm presented in Section88

4. In our setting, at a kite a branch is incident to up to 4 other branches.89

So, the topological structure of a branch consists in an assembly of 4 prisms, 8 square faces (4 are inside,90

4 are on the boundary), 8 triangle face, 21 edges, and 10 vertices. All these cells correspond to a same kind91

of regular cells: simploids Dahmen and Micchelli (1982). Intuitively, a simploid can be seen as the product92

of (any) simplices. Assemblies of simploids can be handled using semi-simploidal sets: a combinatorial93

structure for handling simploidal Bézier spaces. More precisely, simploids are a natural domain for Bézier94

volumes, and so, represent non linear, polynomial models.95

96

Note that, a volume branch could also be defined by a set of four hexahedra and benefit from a semi-97

simploidal set representation, leading to a coherent topology and a (tensor-product) Bézier embedding, as98

shown in Figure 2(b). In order to keep the property of having a minimal number of surface patches shown99

in Panotopoulou et al. (2018), we thus chose to define branches as assemblies of prisms. However, despite100

having twice as many surface patches (i.e. eight), all our work and proposal does directly carry through101

with 4-hexahedra branches.102
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(a) (b) (c) (d) (e)

Figure 2: (a) A volume branch which domains are prisms has 4 quad patches on its outer boundary. (b) A volume branch
which domains are hexahedra has 8 quad patches on its outer boundary. (c) − (e) an example of a stick figure represented as
an assembly of 3 Bézier curves sharing a common vertex. (c) its topology is encoded by a semi-simploidal set of dimension 1.
(d) numbering of control points induced by face operators. (e) embedding of the stick figure. Note that the control point P is
common to the three curves, and its numbering on each curve depends on the face operators: P is numbered 30 for C1 and C3

as it corresponds to the face d11 of C1 and C3, whereas P is numbered 03 for C2 as it corresponds to the face d10 of C2. Note
that Bézier curves have the same degree in this example, but different degrees can be handled.

2.2. Semi-simploidal Sets103

The topological structure of our proposed volume model is based on semi-simploidal sets. This combi-104

natorial structure is designed to define assemblies of Bézier volume patches and is the building block of the105

proposed volume model. In this section, we recall their definition (Section 2.2.1) and their Bézier embedding106

(Section 2.2.2).107

Abstract simplicial complexes Munkres (1984) are the most well-known structure for representing sim-108

plicial objects. Within this structure, simplices are defined as sets of vertices. Semi-simplicial sets or109

∆−complexes Eilenberg and Zilber (1950); Hatcher (2002) also describe simplicial objects, but in these110

structures, simplices are defined as sequences of vertices; such structures allow in particular to handle111

simplicial objects with multi-incidence (for example, an edge loop or two triangles sharing their 3 edges).112

Semi-simplicial sets are defined as a set of abstract cells (simplices) together with face operators satisfying113

some properties that ensure a consistent topology. Structural relations have been established between face114

operators and control points of triangular Bézier spaces Lang and Lienhardt (1996), leading to the defini-115

tion of data structures allowing to handle the topology of free-form objects, while benefiting from a built-in116

parametric domain.117

In a similar way, semi-cubical sets Brown and Higgins (1981) have been defined for handling assemblies118

of cubes (i.e. products of edges). More recently, semi-simploidal sets Peltier et al. (2009) have been defined119

in a similar way for handling assemblies of Bézier simploids DeRose et al. (1993). Intuitively, a simploid120

Dahmen and Micchelli (1982) corresponds to a product of any simplices, so simplices and cubes are particular121

simploids.122

In the following, we recall the definition of semi-simploidal sets, and their relations to corresponding123

Bézier spaces (see Peltier and Lienhardt (2018) for theory and implementation details). We then define124

stick figures, branches and kites using semi-simploidal sets.125

2.2.1. Combinatorial structure126

A semi-simploidal set is a combinatorial structure, defined as a set of simploids equipped with face127

operators. A simploid σ is characterized by its type (a1, . . . , an), where ai corresponds to the dimension128

of its ith generating simplex, and ai > 0 for any 1 ≤ i ≤ n (intuitively, the cartesian product of a simplex129

σ by a vertex, i.e. a simplex of dimension 0, is σ). The dimension k of σ is
∑n
i=1 ai, i.e., the sum of the130

dimensions of its generating simplices, and the face operators associates σ with its faces (i.e. simploids of131

dimension k − 1). For example, a square is a simploid of type (1, 1), thus dimension 2, as it corresponds132

to the product of two edges, its faces are simploids of type (1) i.e. edges. A prism is a simploid of type133

(2, 1), thus dimension 3, as it corresponds to the product of a triangle by an edge. The faces of a prism are134

simploids type (2) (i.e. triangles) and (1, 1) (i.e. squares), both have dimension 2. Note that a simplex and135

a cube of dimension k are particular simploid of type (k) and (1, · · · , 1) with length k respectively.136
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Definition 1. A semi-simploidal set S = (K, (dij)) is a set of simploids K equipped with a type operator137

T : K →
⋃∞
i=0 N∗i and face operators dij. Let σ ∈ K; σT is the type of σ. Let σT = (a1, · · · , an): σdij is138

defined if 1 ≤ i ≤ n, 0 ≤ j ≤ ai. Operators satisfy:139

140

(I) Action on the type

σdijT =

ß
(a1, ..., ai − 1, ..., an) if ai > 1
(a1, ..., ai−1, ai+1, ..., an) otherwise

(II) Commutation of face operators

dijd
i
l = dild

i
j−1 l < j, ai > 1

dijd
k
l =

®
dkl d

i
j if ak > 1

dkl d
i−1
j otherwise

k < i

141

The face operator dij associates with σ the same product of simplices, except that the ith generating142

simplex is replaced by its jth face. So, the type of σdij is (a1, · · · , ai − 1, · · · , an) if this jth face is not a143

vertex, (a1, · · · , ai−1, ai+1, · · · , an) otherwise. Note that σdij denotes dij(σ).144

In this work, stick figures (i.e. graphs), are handled by semi-simploidal sets of dimension 1 (cf. Figure145

2(c) − (e)). For the volume model, only one type of simploid of dimension 3 is used: prisms. Let σ be146

a prism, then σ is equipped with 5 boundary operators: d1
0, d

1
1, d

1
2 which point to its three faces of type147

(1, 1) (i.e. square faces) and d2
0, d

2
1 which points to its two faces of type (2) (i.e. triangles). Commutation148

properties guarantee a consistent topology. For example, the square face σd1
1 and the triangle face σd2

0 share149

the common edge σd1
1d

2
0 = σd2

0d
1
1 (cf. Figure 3(b)).150

2.2.2. Bézier Embedding151

In addition to a consistent topological structure, semi-simploidal sets also offer a domain for Bézier152

volume shape. This section briefly recalls the general setting, and highlights the specific Bézier elements the153

branches are made of.154

A simploidal Bézier space is a set S of Bézier simploids such that the intersection of any two simploids155

σ and τ of S is either empty or a simploid of S, corresponding to a common face of σ and τ .156

The set Γid of i-dimensional multi-indices of degree d is defined by Γid = {α = (α0, · · · , αi) ∈ Ni+1 | |α| =
α0 + · · ·+αi = d}. Multivariate Bernstein polynomials of degree d are defined at v by Bdα(v) =

(
d
α

)
vα0

0 · · · v
αi
i ,

with α ∈ Γid, and
(
d
α

)
= d

α0!···αi!
are multinomial coefficients, and {vj} are the barycentric coordinates of v,

a point of the standard i-simplex, i.e. {vj} satisfies: ∀j, 0 ≤ j ≤ i, 0 ≤ vj ≤ 1 and
∑i
j=0 vj = 1. A Bézier

simploid of type (a1, . . . , an) and degree (d1, . . . , dn) is defined by:

P (u1, . . . , un) =
∑

α1∈Γ
a1
d1

. . .
∑

αn∈Γan
dn

P(α1,...,αn)B
d1
α1(u1)× . . .×Bdnαn(un)

where any ui is a point of the standard ai-simplex and {P(α1,··· ,αn)} is its set of control points.157

A semi-simploidal set structure can be associated with a simploidal Bézier space, as a direct correspon-158

dence exists between a semi-simploidal set and the structure of its control points. This correspondence is159

based on the fact that for any control points of a Bézier simploid σ having a zero on a given multi-index po-160

sition, means that it also corresponds to a control point of a Bézier simploid of the boundary of σ. Moreover,161

the position of the zero corresponds to the index of the face operator.162

In our setting (see Figure 3 (c) − (d)), we consider prism µ of type (2, 1) and degree (3, 3). The only163

control points that are inside µ are P(111,12) and P(111,21); the sets of control points {P(α1,03)} and {P(α1,30)}164

correspond to their triangular face µd2
0 and µd2

1 respectively.165

2.3. Semi-simploidal Branches and Kites166

As mentioned before, branches are built by ”gluing” four prisms together as illustrated in Figure 2(a).167

Gluing corresponds more formally to an identification operation (see Peltier et al. (2009) Section 3.2.2.168

for details). Identifying two simploids and their boundary consists in merging them into a single simploid,169

according to their orientation (induced by face operators). Regarding branches, each prism shares a common170

quad face with each of its two neighbors. The identification operation will be also used when branches171
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Figure 3: (a) − (b): Correspondences between control points of a Bézier prism and its face operators represented by arrows.
The prism µ on (b) (and its faces) is the product of the triangle σ1 (and its faces) and the edge σ2 (and its faces) on (a). The
square face represented on (b) is µd11 = σ1d11 × σ2; the bottom square face of µ is µd12 = σ1d12 × σ2; the square face on the
back side is µd10 = σ1d10 × σ2; the front triangle face is µd20 = σ1 × σ2d10; the back triangle face is µd21 = σ1 × σ2d11. The prism
contains only two proper control points of the volume P111,12 and P111,21; all other control points are also control points of
a Bézier simploid of dimension 2, 1 or 0. (c) a kite, the extremity of a branch, is a semi-simploidal set of dimension 2. This
specific assembly of 4 prisms leads to symmetries on the kite. (d) simploid coloration is sufficient to recover the face operators
of a kite.

are glued along part of their kites. Topological correctness of each branch ensures the correctness of the172

corresponding Bézier structures. As a consequence, two incident Bézier prisms share a common Bézier quad173

surface, and the central Bézier curve is a single curve object shared by the four Bézier prisms and the four174

inside Bézier quad surfaces. Note that Bézier prisms are defined by volume control points.175

On top of the four outer surface boundary quad, a branch now has two extremities, called kites. Figure176

3(c) illustrates the simploidal structure of these kites. Our specific assembly of 4 prisms ensures that kites177

have an interesting property of axial symmetry regarding simploid orientations (see. Figure 3(d)). Thus, to178

each vertex of the stick figure corresponds a set of kites in the volume object, assembled into a so called kite179

folio.180

3. Handling Topology of Junctions181

In this part, we provide all the material for generating any branch junction corresponding to a vertex182

of a stick figure, through an iterative process. Whereas this section concentrates on the arrangement of183

branches, filling in the corresponding volume is addressed in Section 4.184

We consider a unit sphere around each vertex v of degree n ≥ 2 of the stick figure: each edge incident to185

v is embedded as a Bézier curve, and its tangent at the vertex defines an exit ray which meets the sphere186

in one point; we denote these points green points. A quad tessellation (or quadrangulation) of this sphere187

is built incrementally while considering branches at this junction. Then each branch extremity is plugged188

onto its corresponding quad in the quadrangulation.189

3.1. Simple Quadrangulations on a Sphere: Properties and Orientation190

In this paper, we consider simple quadrangulations on a sphere (or SQS for short): a class of simple planar191

graphs (i.e. with no self loop nor double edges) such that each face is bounded by four vertices. Simple192

quadrangulations on surfaces have been studied in Nakamoto (1996). Batagelj (1989) studies classes of193

quadrangulations generated by inductive definitions, i.e. starting from an initial configuration and generating194

rules (adding quads). Following this approach, Brinkmann et al. (2005) defines expansions operations and195

their inverse, face reductions involving only vertices of minimal degree 2 or 3. In fact he defines special case196

of the general face contraction operation defined in Nakamoto (1996). Roughly speaking, these operations197

consist in adding or removing a quad while preserving a quadrangulation. He shows that any SQS can198
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be reduced to the minimal one, made of only two faces, by a sequence of face reductions applied to faces199

incident to a vertex of minimal degree.200

Panotopoulou et al. (2018) also investigate the problem of generating SQS. Their approach is based201

on splitting quads, which corresponds one expansion operation of Brinkmann et al. (2005). Indeed, in the202

resulting quadrangulation, at least 2 quads share 2 adjacent edges, so at least two branches are twice incident203

to each other. As a consequence, configurations where each branch has four different neighbors can not be204

obtained, e.g. the surface of a dice involving six branches (see Figure 5 (d)− (f)). Such configurations are205

important, in particular, when the six branches join in the six canonical, orthogonal directions.206

In our context, where expanding and reducing a quad corresponds to adding or removing a branch of207

the volume object, it is essential to be able to chose the location of the quad. In the following, we provide208

all the necessary properties to prove Theorem 1. In terms of graph generation our result is similar to the209

one of Brinkmann et al. (2005), but the proof we provide is more relevant for geometric consideration since210

it is based on the fact that in an SQS with n > 2 quads, any chosen quad can be reduced (Proposition 6).211

Properties of SQS212

Note that a SQS is bipartite, and the length of any cycle in a SQS is even, and is greater or equal to 4.213

Property 1. Let Q be a SQS having n ≥ 2 quads. If n = 2, then the two quads share their 4 edges, else214

two quads of Q do not share opposite edges.215

Proof. Let us consider a SQS having n > 2 faces, and F1, F2 be two of its faces. Let us assume that F1 and216

F2 share 2 opposite edges. Thus F1 and F2 share the same 4 vertices. As F1 and F2 do not share their 4217

edges, there is at least one double edge, which is a contradiction with the definition of a SQS (which contains218

no multi-edge).219

As a direct consequence, the following properties hold:220

Property 2. In a SQS having n > 2 quads, any two quads share at most 2 (adjacent) edges.221

Property 3. Let (a, b, c, d) be a quad of a SQS such that b and d have a neighbor vertex in common222

(different from a and c). Then, a and c do not have any neighbor vertex in common (different from b and223

d).224

Proof. Let us assume that both a and c have a common neighbor vertex v, and b and d have a common225

neighbor vertex w.226

• Let us assume that v = w. A SQS is bipartite, so a, c and w have the same color and b, d and v the227

other color. So v and w have different colors, so v can not be equal to w, which leads to a contradiction.228

• Let us assume v 6= w. The boundary of the quad (a,b,c,d) is by definition also the boundary of the229

rest of the SQS. Any two paths linking a to c in one hand, and b and d on another hand must intersect230

as they are opposite vertices of a quad, but the only vertex in these two paths are v and w, and v 6= w231

which leads to a contradiction.232

233

234

Property 4. Let Q be a SQS with n > 2 quads, and let (a, b, c, d) be a quad of Q such that b and d do not235

have a neighbor vertex in common (different from a and c). Then, a and c have at least degree 3.236

Proof. If b or d has degree 2, then property 2 ensures that a and c have at least degree 3. If b and d have237

at least degree 3, then let us assume that a has degree 2, then the second face containing a also contains b238

and d, thus b and d must have a common vertex. Which leads to a contradiction. The same result holds for239

d.240
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In practice, SQS vertices, edges and faces (here quads) are handled through the combinatorial structure241

of oriented maps which provides orientation of cells of the subdivision (also used in Section 4). In the242

following, we define expansion and reduction of quads for oriented maps, namely opening and closing.243

(a) (b) (c) (d) (e) (f)

Figure 4: (a) : a SQS with 3 faces, 6 edges, and 5 vertices. (b) : its corresponding oriented map with 12 darts labelled from
a to l. Each dart is represented by an arrow, which direction encodes permutation β1; involutions β2 are represented in green
between two opposite darts. (c) − (d): Focus on a quad. From (c) to (d): opening operation relatively to darts a and c. From
(d) to (c): closing operation relatively to dart a (or c).SP(e), (f): the SQS corresponding to (c) and (d) respectively. Note
that after opening: V (d) = V (a) and V (b) = V (c).

Oriented Maps244

Oriented maps are designed to represent any subdivision (not necessarily quad faces) of orientable surfaces245

without boundaries. The concept was first introduced by Edmonds (1960), and is also known as half-edge246

(see. Weiler (1985); Mäntylä (1988)) ; it has been extended for orientable or not orientable surfaces by247

Guibas and Stolfi (1985), to dimension 3 by Dobkin and Laszlo (1987), to any dimension by Vince (1983);248

Lienhardt (1989). Equivalence between these structures has been shown in Lienhardt (1991). Interested249

readers can find more details about such structures in Damiand and Lienhardt (2014).250

Definition 2. An oriented map is a triplet (H,β1, β2) where H is a finite set of elements called darts, β1251

is a permutation on H, and β2 is an involution on H.252

Intuitively, within this structure, each edge is decomposed into two opposite darts (also called half-edges).253

Each dart h is associated with a unique vertex, edge, and face denoted V (h), E(h) and F (h) respectively.254

All vertices, edges and faces correspond to cycles β2β1, β2 and β1, respectively. In other words, 2 opposite255

darts corresponding to the same edge are linked by involution β2, while the permutation β1 allows to traverse256

the boundary of a face, and permutation β2β1 allows to turn around each vertex. For example, on Figure257

4(b), face F (a) = F (b) = F (c) = F (d) is defined by the permutation (a, b, c, d); edge E(a) = E(k) by the258

permutation (a, k); vertex V (c) = V (h) = V (j) by the permutation (c, h, j). By definition, each face of the259

map corresponds to an elementary cycle in the corresponding SQS Q.260

Since Q is bipartite, we can color its vertices blue and red. Note that each dart is associated to a unique261

vertex, hence a red or blue color can be associated to each dart, according to its corresponding vertex as262

shown in Figures 4(a) and 4(b).263

3.2. Opening and Closing operations264

In the following, SQS oriented map denotes an oriented map corresponding to a SQS. Figure 4 illustrates265

an opening (Definition 3, from c to d) and a closing (Definition 4 from d to c).266

Definition 3. Let Q′ = (H ′, β′1, β
′
2) a SQS oriented map, and a, c ∈ H ′ s.t. V (a) = V (c). Let d = aβ2 and267

b = cβ2, the opening (Q′, a, c) is the SQS oriented map Q = (H,β1, β2) defined by :268

• H = H ′ ∪ {a, b, c, d}

• ∀h ∈ H ′, hβ1 = hβ′1;

• aβ1 = b; bβ1 = c; cβ1 = d; dβ1 = a, that is,
(a, b, c, d) is the new quad;

• ∀h ∈ H ′ − {a, b, c, d}, hβ2 = hβ′2;

• aβ2 = a ; aβ2 = a ; bβ2 = b ; bβ2 = b ;

cβ2 = c ; cβ2 = c ; dβ2 = d ; dβ2 = d.

269
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Definition 4. Let Q = (H,β1, β2) a SQS oriented map with n > 2 quads, and (a, b, c, d) a quad of Q such270

that V (b) and V (d) do not have a common neighbor vertex other than V (a) and V (c). We denote a = aβ2,271

b = bβ2, c = cβ2 and d = dβ2. The closing (Q, a) is the SQS oriented map Q′ = (H ′, β′1, β
′
2) defined by:272

• H ′ = H − {a, b, c, d}

• ∀h ∈ H ′, hβ′1 = hβ1;

• ∀h ∈ H ′ − {a, b, c, d}, hβ′2 = hβ2;

• aβ′2 = d ; dβ′2 = a ; bβ′2 = c ; cβ′2 = b.
273

274

Note that the opening operation is the inverse of the closing operation. This can easily be checked by275

applying directly the definitions. Note also that closing(Q,a) is equivalent to closing(Q,c). An important276

result (Property 6) is that any quad (a, b, c, d) can be closed along at least one of its two diagonals (a, c) or277

(b, d).278

Property 5. Let Q = (H,β1, β2) be a SQS oriented map, a, c ∈ H and Q′ = closing(Q, a). Then Q′ is a279

SQS oriented map.280

Proof. 1. In Definition 4, the precondition ensures that V (b) and V (d) do not have any neighbor vertex in281

common. So, Property 4 ensures that V (a) and V (c) have both degree at least 3. So the corresponding282

vertices in Q′ have same degree minus one, which remains ≥ 2. Moreover, V (b) and V (d) are merged283

in Q′ into a single one having degree deg(V (b)) + deg(V (d)) − 2, which is by definition also ≥ 2. So284

all vertices of Q′ have degrees greater or equal to 2.285

2. All the faces of an oriented map are cycles β1. According to Definition 4, no β1 is modified, so all286

faces keep the same number of edges in their boundary after the operation. As Q′ is obtained from a287

SQS Q, all the faces of Q′ remain quads.288

3. By construction, the two vertices that are merged are opposite points (same color) of a quad, so no289

loop can appear after a closing.290

4. The only multi-edge that could be created are the one incident to V (b) and V (d) before the operation.291

This would be the case if these two vertices share a common neighbor vertex, but the precondition292

states that they do not share a common neighbor vertex. So Q′ contains no multi edge.293

294

3.3. Generating any SQS with a sequence of openings295

The closing operation has been defined in order to prove Theorem 1.296

Property 6. In a SQS having n > 2 quads, any quad can be closed.297

Proof. The proof is a direct consequence of Property 3 and Property 4.298

Property 7. The SQS having n = 2 quads can be obtained from any SQS by any sequence of closing299

operations.300

Proof. Property 6 ensures that for any SQS with n > 2 quads, any quad can be closed. As a direct301

consequence, given an arbitrary SQS with n > 2 quads, n− 2 quads can be iteratively chosen and closed to302

obtain a SQS with n = 2 quads.303

We can now establish the following theorem, which ensures that any SQS can be obtained with a sequence304

of openings:305

Theorem 1. Any SQS having n ≥ 2 quads can be obtained from the canonical SQS having 2 quads, by306

performing a sequence of n− 2 openings.307

Proof. The proof is straightforward using Property 7 and the fact that opening is the inverse of closing.308

From a SQS, a surface tubular object can be created by matching each branch boundary to its corre-309

sponding quad. In the process of creating a complete volume object, the next section goes one step further310

by connecting the volume branches inside the junction spheres, leading to a continuous volume object.311
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4. Creating a Complete Tubular Volume Model and Defining its Geometry312

In the two previous sections, we have shown how to define the topology of the 3D model from the stick313

figure. Namely, Section 2 defines the 3D branches, and Section 3 shows how to generate an SQS for handling314

junctions of arbitrary topology: the SQS is built incrementally at each junction, by a sequence of openings.315

This sequence corresponds to an ordering on the green points inherited from an incremental construction of316

stick figure.317

In this section, we create the topology of the complete volume model and automatically define its318

geometry by positioning of its control points. Section 4.1 describes how the topology of the volume object is319

defined: first a kite folio is generated from the SQS, then all branches are plugged into corresponding kites320

according to a chosen red and blue coloring. Section 4.2 focuses on the geometry: the first part addresses321

junctions and the second one branches.322

4.1. Topology of the 3D Model323

As mentioned before, to each vertex of the stick figure corresponds a junction of volume branches. We324

denote these volume junctions kite folio (cf. Figure 1 (b)). We establish the following process for building325

the topology of a tubular object from a stick figure:326

• When adding a curve to the stick figure, each extremity of the corresponding branch is inserted into327

SQS, giving the opening support. Once all curves have been processed, an SQS is built around each328

vertex (Section 3);329

• Then, from an SQS, a kite folio is computed. This kite folio ensures a continuous junction of the330

volume branches, connecting their extremities (kites) within the sphere;331

• Now, each branch needs to be connected to its corresponding kite. Before linking the kite folios by332

plugging branches, a traversal of the stick figure propagates a red/blue coloration of junction SQSs.333

Below, we detail the last two points.334

From an SQS to a kite folio335

At the end of the construction of an SQS Q (with a green point hosted in each quad), Q can directly be336

converted into a semi-simploidal set S of dimension 1 such that each edge e = (vred, vblue) in Q is mapped to337

an edge σ of S, such that σd1
0 = µ and σd1

1 = µ′ where µ and µ′ corresponds to vred and vblue respectively.338

Then, a kite folio can directly be obtained by applying a cone operation1 on S with a new vertex v,339

which we choose to be the sphere center. More precisely, the kite folio is defined as follows: for each edge340

σ (resp. vertex µ) of S, a new triangle σ (resp. edge µ) is added, such that: µd1
0 = v, µd1

1 = µ, σd1
2 = σ,341

σd1
0 = σd1

0, and σd1
1 = σd1

1. Note that this operation creates a semi-simploidal set of dimension 2 such that342

all triangles are incident to v. Figure 3(c) illustrates the cone operation on a single quad boundary of Q343

with the green central vertex: each internal edge µ comes from a red or blue vertex µ; its face d1
0 is the344

green vertex, and its face d1
1 is µ. Similarly, each triangle σ comes from an edge σ of the boundary quad,345

which is its face d1
2; its faces d1

0 and d1
1 are the internal edges µ which comes from σd1

0 and σd1
1 respectively.346

The cone on S with v, the sphere center, results in a kite folio (see Figure 5 (e)): as any edge is shared by347

exactly two quads in Q, any triangle of the kite folio is shared by exactly two kites. Otherwise said, each348

triangle is the support for a ”quarter of” two branches (one on each side).349

Applying this process to an entire stick figure generates a set of kite folios intuitively connected by the350

stick figure curves (see Figure 1 (b)).351

1The general cone operation is not recalled here, (see Peltier et al. (2009), Section 2.2.1. for details.)
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Plugging branches into the set of kite folios352

As a branch is plugged into its kite through an identification, the vertex colors have to be matched (as353

explained in Figure 3(c)). So, a red (resp. blue) vertex of the branch kite is matched with one of the two354

red (resp. blue) vertices of its corresponding kite in the kite folio. It is sufficient to select only one (red or355

blue) point, identification of the two kites follows directly; thus, this offers two possible kite identifications.356

Moreover, we have an extra degree of freedom per junction: on a kite folio, red and blue vertex colors can357

be swapped. Swapping the colors on a kite folio changes the orientation of the four triangles of all kites (as358

illustrated on a single kite on Figure 3(d)). To determine sequentially the choice of color at each junction,359

we traverse the stick figure by a BFS (breadth first search) starting at the node of maximum depth (degree360

one stick graph vertices and loops are considered depth zero) and maximal degree. The color of this first361

kite folio is arbitrary, but then, a coloring is chosen for each traversed kite folio, according to geometric362

criteria based on branch orientation detailed in section 4.2.2.363

4.2. Geometry of the 3D Model364

Now that we have addressed all topological considerations for creating a complete model, this section365

addresses geometric considerations for embedding the complete model in 3D.366

A direct user based option for positioning the branches at junctions could directly be implemented: while367

building a stick figure, the user chooses a sequence of openings for each junction, and sets the position of368

each red and blue vertex in the corresponding junction. Then, the internal control points of the branch can369

be also positioned. Such a solution provides entire control of the structure and geometry of each branching,370

but it may take a lot of interactions to build a volume object corresponding to a stick figure.371

4.2.1. Geometry of junctions372

Given the sequence of openings that generates an SQS Q and then a kite folio, we now explain the373

heuristic we propose for positioning red and blue vertices of Q at each step. To achieve this goal, we rely374

on Q∗ the dual of Q, whose vertices are the green points, and faces correspond to red and blue points.375

Dual of an SQS376

Let Q be an SQS, we define the pinching operation in Q∗, corresponding to an opening in Q (see Figure377

5). The motivation for considering Q∗, the dual of Q, comes from the fact that the positions of the (green)378

vertices are determined by the stick graph. In Section 4.2.1, given those green points, we determine where379

to place the red and blue vertices of Q.380

Note that Q∗ is a planar graph, like Q, but is not an SQS. In practice, Q∗ is also represented by an381

oriented map. Q∗ has the following properties:382

• The faces of Q∗ inherit an orientation from Q;383

• Q∗ is not simple: when two quads of Q share two incident edges, Q∗ has a double edge, thus a 2−sided384

face. Note that Q∗ can not have any loop since Q has no degree 1 vertex;385

• Q∗ is 4-regular: the faces of Q are quads, so each green vertex of Q∗ is incident to exactly four edges.386

Junctions are built using a sequence of openings: in practice, the corresponding dual pinching operations387

are processed in the dual oriented map representing Q∗.388

Choice of pinching389

At each step of an SQS construction, a new edge from the stick figure is considered, thus a new green390

vertex g is added on the sphere. This new vertex g belongs to exactly one face f of Q∗. Considering the391

position of g (which is fixed by the stick figure) in f , a pinching operation is determined by the choice of392

two edges of f . Intuitively, these chosen edges are each split into two edges adjacent to g, splitting the face393

f into two faces (Figure 5 (a)− (c)). The choice of the two edges to pinch is based on two criteria:394
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• a connectivity criterion: in order to balance the number of edges in the resulting faces, we select the395

edges to pinch on opposite sides of the face. Note that choosing two adjacent edges would create a396

new double edge in Q∗.397

• a geometry criterion: in an attempt to create faces with comparable surface areas, we select edges that398

update faces so that their change in surface area after pinching is the most comparable.399

In practice, it is unlikely to select a face f bounded by a double edge unless the new vertex g lies exactly400

on the geodesic line between its 2 vertices. However, the heuristic we propose tackles this issue: once f401

(with 3 or more vertices) is determined, we check if any edge e of f is a double edge. Then, if it is the case,402

and if e is closer to g than the center of f , the 2-sided face bordered by e is selected for the pinching instead403

of f .404

(a) (b) (c) (d) (e) (f)

Figure 5: (a) − (c): pinching on Q∗ of two edges of a face corresponds to an opening on Q. (a): Q∗ with n green points. (b)
adding a new green vertex on the face of a blue point and choosing the two edges in Q∗ to be pinched (in orange). (c) result
of the pinching creates a new face in Q∗. (d) − (e): The dice configuration. (d): an SQS (red and blue points) Q in ”dice”
configuration together with its dual (green points). (e) applying a cone operation on the 1D semi-simploidal set S obtained
from Q with the sphere center generate a kite folio. (f): the same dice configuration with volume branches.

Placing the red and blue vertices405

Now that Q∗ is entirely defined, we describe how red and blue vertices of Q are placed on the sphere406

during the sequence of pinchings. Remember that red and blue vertices of Q corresponds to faces in Q∗,407

and faces in Q∗ are bounded by 2, 3 or more green vertices. At the beginning of the process, we consider408

first two green points, thus the corresponding SQS corresponds to the base case of two branches, where the409

4 points (2 blue, 2 red) are distributed on the plane bisector of the two green points (such junction with410

two branches appears on Figure 1 (b)). Then, for junctions with more than 2 branches, for each new green411

vertex that is added, we place the red and blue vertices on the sphere, at a so-called center of a face of Q∗412

depending on its number of vertices:413

• For faces bounded by two green vertices (those are bounded by a double edge of Q∗): the center is the414

midpoint of the arc in the oriented face between the two green vertices.415

• For faces bounded by three green vertices or more, we compute the least square plane to all vertices416

of the face. When a face contains an edge corresponding to a geodesic longer than π, then the middle417

point of this geodesic is also taken into account for computing the plane. This plane intersects the418

sphere in a circle. We choose the projection so that the center is inside the face according to the419

orientation given by the oriented map. The least square plane is computed using the Moore-Penrose420

pseudoinverse. In practice, we use the linear algebra software library Armadillo (see Sanderson and421

Curtin (2016)).422

Note that for faces bounded by three green vertices, the center is the projection of the circumcenter of423

their triangle on the sphere, which is equidistant from all three green vertices. For more vertices, the center424

is thus equidistant, in a least square sense, to the vertices on the boundary of the face. Each quad face425

contains exactly a branch. When branches are from nearby directions, the topology remains coherent and426
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(a) (b) (c) (d) (e) (f)

Figure 6: (a) − (c) A junction with four branches from nearby directions. Note that there is exactly one quad face per branch
and the topology remains coherent. (d) − (f) By changing the tangent of the branches, the junction is smoothed.
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Figure 7: (a) − (c): The control tangents (in red) at each Bézier control points are computed from the segment of the degree
elevated control polygon (b). (d) − (e): Placement of volume control points of branches.

the junction has a sharp corner. As our model offers curve branches, sharp corners can be simply avoided427

by smoothing the tangent direction at the junction as illustrated in Figure 6.428

429

The order in which edges are processed at a junction affects the resulting SQS thus the kite folio that430

is obtained, regarding both its topology and its geometry. So, the resulting tubular object depends on this431

ordering. In practice, the user that is drawing a stick figure implicitly creates a total order on the edges to432

consider at each junction; green points are inserted in this order.433

4.2.2. Geometry of branches434

Each branch is attached to junctions through the kites at its extremities. We detail here the geometry435

criteria to ensure the best relative orientation of these two extremities. This geometric consideration com-436

pletes the topological approach detailed in Section 4.1. Then, the control points of branch extremities are437

placed into the plane of each corresponding kite triangle. We now need to control what happens within the438

branch volume by defining Bézier elements between the two extremity kites. The central edge of a branch439

corresponds exactly to the edge in the stick figure, we then explain how we position the remaining internal440

control points of the branch.Two main considerations improve the geometric aspect of our branches:441

• Minimize twisting: twisting happens when the square sections of a branch rotate around the central442

axis. In some extreme cases of twisting, some sections of the branch may collapse to a single point.443

• Preserve section surface: Along a branch, the surface of the section depends on the intermediate444

control points. We aim here at preserving the branch section surface, that is, the thickness of the445

branch, in order to keep the volume distribution along the branch as constant as possible.446

Coherent orienting of a branch kite447

We first define the geometry criteria we use to attach the kite K of a branch to the corresponding kite448

K of the kite folio. In Panotopoulou et al. (2018), they propose to define a frame at each degree two vertex449

using Rotation Minimizing Frames (RMF); we use the same double-reflection algorithm proposed by Wang450
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et al. (2008) to determine the best matching between K and K according to geometry. When a branch451

extremity K has been identified to K and we traverse the branch for attaching the other side K ′ (see452

Section 4.1), we first compute the RMF frame from K to K ′. We compute which points of K ′ and K ′ best453

match by choosing the points correspondence minimizing the total distance between corresponding points.454

We consider identifying points of similar colors (that is, we choose one of the two possible configurations).455

When the branch is the first to be attached on the kite folio hosting K ′, we also consider a red/blue swapping456

of the SQS (that leads to choosing the best configuration among four possible). This minimizes the twist457

at K ′, thus along the branch. After this step, the parametric domain defined by the semi-simploidal set is458

entirely defined, and thus the set of control points to be embedded in 3D.459

Defining control points along a branch460

The control points of branch extremities are now positioned according to the kites, and the control points461

of the central Bézier curve c of the branch are mapped to the control point of the stick figure. In order to462

define the branch section around c, we need a frame along c to determine the set of control points to be463

embedded in 3D. We now determine the internal control points of the Bézier volume elements, aiming to464

ensure consistent volume distribution along the branch. A first idea is to place the internal control points465

of a branch by interpolating the control points between the starting and ending kites control points. This466

idea would be adapted for straight branches. For a non linear curve c, in order to prevent a flattening of the467

branch, the slices of control points need to be as orthogonal to the curve as possible – when a slice of control468

points becomes tangent to the curve, the corresponding part of the branch flattens. We thus define a local469

frame at each internal control point of c. Note that the rotation minimizing frames are a priori defined on470

the curve and not for the control points. Nevertheless the double-reflection algorithm Wang et al. (2008)471

only needs the tangent at a point to compute its local frame. In order to define a rotation minimizing frame472

for each internal control point we thus need a tangent at each control point. A Bézier control polygon with473

n+1 control points converges smoothly to its curve Morin and Goldman (2001), but has n control tangents.474

We use degree elevation to associate a tangent to each control point: we can deduce n+ 1 control tangents,475

thus, a frame per internal control points (see Figure 7 (a) − (c)). Interpolating the intermediate control476

points and expressing them into this local frame gives our branches a more intuitive (and not flattened)477

shape (see Figure 7 (d)).478

This last step completes the automatic process for creating the volume model from the stick figure.479

4.3. Results480

Figure 8 shows piecewise polynomial volumes we automatically generate from the stick figures on the481

left. We focus in particular in challenging situations regarding topology. The first example contains cycles,482

and all vertices of the stick graph are of degree at most 3. The second and third examples: a clover and an483

octopus has a central vertex of degree 9, and contains double edges. The last example, the snake, contains484

loops and curves of different degrees, and illustrates the smoothness of the proposed polynomial model.485

5. Conclusion and Future Work486

In this paper, we proposed a method for generating tubular piecewise polynomial volume objects from487

stick figures. We show that semi-simploidal sets can directly be used for handling both topology and488

geometry of volume tubular objects, providing a consistent structure together with a parametric domain for489

Bézier embedding.490

We propose a branch structure made of four prisms which preserves the minimal number of cells on the491

object surface. If hexahedral volumes are needed, the presented approach still holds using a branch structure492

made of four hexahera (as cubes are also simploids). However, in this case, the boundary surface would493

have twice the number of quads.494

The structure of junctions are defined by their corresponding SQS. In our approach, SQS are obtained by495

considering green points sequentially, so given a set of green points, different SQS may be obtained depending496

on the chosen order. It would be interesting to find a canonical SQS for a given set of green points, i.e.,497
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independent of ordering. In this case, a global optimization approach could be considered for defining the498

topology and the geometry of the sphere quadrangulation. We do not consider here the possible collisions499

between different parts of the model. It would be interesting to link geometric properties of the skeleton500

to prevent intersection of the model, and place the Bézier volume control points to avoid the geometric501

singularities despite the smoothness of the parameterized volume. We would also like to investigate varying502

thickness within the model. Branches could have different and varying thickness. This would implies an503

adaptation of junction handling.504

Figure 8: From left to right: stick figures made of Bézier curves in green; the control points are the black dots, then 3D volume
meshes, volume object rendered, and another view of the same object. Even if performance is not a main keypoint of this
work, we provide the computation time for this volume models: 750ms for the bin (first row), 117ms for the clover (second
row), 80ms for the snake (third row) and 175ms for the octopus (last row).
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