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Micro-cracks are known to greatly affect the mechanical properties of granite and subcritical crack growth (SCG) is 

considered to be the main mechanism of brittle creep in rocks, including granite. Here, we provide new uniaxial 

compressive strength and creep experiments for  granite, and a new multi-crack numerical model to explain the 

experimental observations. We first  Uniaxial 

compressive strength experiments were then used to find the

We introduced a new model that combines SCG theory and the numerical 

manifold method (NMM) to link the local damage caused by micro-crack propagation and the macroscopic creep 

deformation observed in the granite samples. We also investigated the influence of virtual micro-crack length, confining 

pressure, and differential stress on brittle creep behavior. According to our model, we can numerically simulate the entire 

creep process, from the small deformation caused by micro-cracks to the large displacement characteristic of brittle creep. 

The fact that the numerical simulations are in good agreement with experimental results shows that the NMM combined 

with the SCG theory is a suitable method for modeling the creep behavior of rocks. 

Time-dependent deformation; Numerical manifold method; Subcritical crack growth; Multi-crack 

propagation; Lanhélin granite



The  long-term stability of  engineering rock mass structures have been of practical concern for many years[1]. 

Time-dependent deformation of rock has a significant influence on the stability of rock slopes and underground 

structures such as mines and tunnels, as well as the long- [2, 3]. Time-

dependent deformation under these conditions is known as brittle creep[4], which is the name applied to the 

slow deformation of solids under loads below their short-term strength [5]. Creep strain and strain rates are very 

sensitive to differential stress, confining pressure, and temperature. Indeed, even small changes in any of these 

parameters will produce order of magnitude changes in creep strain rates[6, 7]. Many researchers have found 

that micro-crack propagation in a rock mass is one of main parameters that influences the creep strain rate[8]. 

The influence of slow crack growth (subcritical crack growth (SCG)) on fracture stress was first examined in 

detail by Charles[9]. subcritical crack growth (known as static fatigue 

or delayed failure) is stress corrosion[10]. During crack propagation, stress corrosion can explain a certain 

proportion of the relationship between the stress intensity factor (K) and the crack velocity (V)[11]. SCG theory 

in rock masses has been also used to explain the growth and development of joints, volcanic eruptions, and 

underground excavations[12]. double torsion experimental method was adopted to investigate SCG 

theory[13, 14].

Because creep experiments take a lot of time, 

numerical simulations, which can give good approximate results in a relatively short time[17], are of great 

interest. numerical simulations to study rock creep and SCG. For example, 

Desai[18] used a finite-element (FE) program with the implementation of the disturbed-state concept (DSC) 

creep model to study creep- and rate-dependent behavior of glacial tills to better understand the motion of 

overlying glaciers. Brantut[19] used a micromechanical model to describe the brittle rock creep, based on the 

sliding wing-crack model. [20] used Fast Lagrangian Analysis of Continua (FLAC) to simulate time-

dependent crack growth of granite. These authors used the SCG theory to model a virtual crack within an 

element to describe rock damage. Discontinuous deformation analysis (DDA), which analyzes the force-

displacement interactions of block systems, was proposed by Shi[21] and has also been used to investigate creep 

problems[22]. Zheng[23] researched the contact force to improve the algorithm of DDA. Xu[24, 25] proposed 



a thermomechanical time-dependent deformation model based on laboratory tests on Beishan granite under 

constant elevated temperatures and found that this model can accurately describe brittle creep. 

The numerical manifold method (NMM) is a new simulation method which provides a unified framework for 

solving problems dealing with continuous media, discontinuous media, or both[26]. The independent response 

variables when using NMM, such as displacements, can be continuous or discontinuous throughout the problem 

domain[27]. NMM has gained a wide attention and application in rock mechanics and engineering due to 

its efficient treatment of problems involving continuous and discontinuous deformations in a unified way[28-

32].

Using the time step initial strain 

method, the creep equation was coupled with the NMM to simulate the time-dependent deformation of rocks[39, 

40]. Wu[41] also used the NMM to analyze viscoelastic material creep crack problems by incorporating a 

generalized Kelvin-Voigt model into the NMM.
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123.0, 139.2, 127.6, 120.6, and 139.9 MPa, 

respectively, and the mean UCS is 130 MPa ( p). The mean UCS was used to determine the constant stresses 

odulus (the slope of the stress-

strain curve in the elastic region), which are 26.2, 24.7, 25.5, 26.9, and 16.4 GPa for the five samples, 
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Conventional creep experiments were performed on thermally-stressed samples

p, respectively. Table 1 shows a summary of these uniaxial creep tests. The minimum creep strain rates of 

the four samples were determined to be 1.9  10-9, 7.4  10-8, 4.2  10-8, and 5.8 10-8 s-1, respectively. The 

time-to-failure of the four samples were 73.79, 2.12, 2.91, and 2.36 h, respectively. 

creep strain rate and the time-to-failure increased and 

decreased, respectively (Table 1).  

Table 1 Summary of the conventional uniaxial creep tests performed on thermally-stressed  

Sample 

number 

Constant 

stress/ MPa 

Percentage 

of p/% 

Minimum Creep Strain 

Rate/s-1 

Time to failure/h 

   1.9  10-9 73.79 

   7.4  10-8 2.12 

   4.2  10-8 2.91 

   5.8  10-8 2.36 

 



The four uniaxial creep (i.e. strain as a function of time) curves (for

p) are shown in Figure 14. The strain rate as a function 

of time for these four experiments is shown in Figure 15. These curves all exhibit the decelerating followed by 

accelerating creep behavior observed in previous laboratory creep experiments[6].  
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