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Abstract

Micro-cracks are known to greatly affect the mechanical properties of granite and subcritical crack growth (SCG) is
considered to be the main mechanism of brittle creep in rocks, including granite. Here, we provide new uniaxial
compressive strength and creep experiments for Lanhélin granite, and a new multi-crack numerical model to explain the
experimental observations. We first thermally-stressed our granite samples to create thermal micro-cracks. Uniaxial
compressive strength experiments were then used to find the uniaxial compression strength of the thermally-cracked granite,
a pre-requisite for brittle creep experiments. We introduced a new model that combines SCG theory and the numerical
manifold method (NMM) to link the local damage caused by micro-crack propagation and the macroscopic creep
deformation observed in the granite samples. We also investigated the influence of virtual micro-crack length, confining
pressure, and differential stress on brittle creep behavior. According to our model, we can numerically simulate the entire
creep process, from the small deformation caused by micro-cracks to the large displacement characteristic of brittle creep.
The fact that the numerical simulations are in good agreement with experimental results shows that the NMM combined

with the SCG theory is a suitable method for modeling the creep behavior of rocks.

Keywords: Time-dependent deformation; Numerical manifold method; Subcritical crack growth; Multi-crack

propagation; Lanhélin granite
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1. Introduction

The long-term stability of engineering rock mass structures have been of practical concern for many years[1].
Time-dependent deformation of rock has a significant influence on the stability of rock slopes and underground
structures such as mines and tunnels, as well as the long-term strength of the Earth’s upper crust[2, 3]. Time-
dependent deformation under these conditions is known as brittle creep[4], which is the name applied to the
slow deformation of solids under loads below their short-term strength [5]. Creep strain and strain rates are very
sensitive to differential stress, confining pressure, and temperature. Indeed, even small changes in any of these
parameters will produce order of magnitude changes in creep strain rates[6, 7]. Many researchers have found
that micro-crack propagation in a rock mass is one of main parameters that influences the creep strain rate[8§].
The influence of slow crack growth (subcritical crack growth (SCG)) on fracture stress was first examined in
detail by Charles[9]. One of the most important mechanisms of subcritical crack growth (known as static fatigue
or delayed failure) is stress corrosion[10]. During crack propagation, stress corrosion can explain a certain
proportion of the relationship between the stress intensity factor (K) and the crack velocity (V)[11]. SCG theory
in rock masses has been also used to explain the growth and development of joints, volcanic eruptions, and
underground excavations[12]. The double torsion experimental method was adopted to investigate SCG
theory[13, 14]. Nara and co-workers have provided a large number of SCG experiments to better understand
the influence of environment on crack velocities in rocks[15]. These authors also found that the physical
properties of different rocks also have an effect on SCG[16]. Because creep experiments take a lot of time,
numerical simulations, which can give good approximate results in a relatively short time[17], are of great
interest. Indeed, many researchers have used numerical simulations to study rock creep and SCG. For example,
Desai[ 18] used a finite-element (FE) program with the implementation of the disturbed-state concept (DSC)
creep model to study creep- and rate-dependent behavior of glacial tills to better understand the motion of
overlying glaciers. Brantut[19] used a micromechanical model to describe the brittle rock creep, based on the
sliding wing-crack model. Konietzky[20] used Fast Lagrangian Analysis of Continua (FLAC) to simulate time-
dependent crack growth of granite. These authors used the SCG theory to model a virtual crack within an
element to describe rock damage. Discontinuous deformation analysis (DDA), which analyzes the force-
displacement interactions of block systems, was proposed by Shi[21] and has also been used to investigate creep

problems[22]. Zheng[23] researched the contact force to improve the algorithm of DDA. Xu[24, 25] proposed
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a thermomechanical time-dependent deformation model based on laboratory tests on Beishan granite under
constant elevated temperatures and found that this model can accurately describe brittle creep.

The numerical manifold method (NMM) is a new simulation method which provides a unified framework for
solving problems dealing with continuous media, discontinuous media, or both[26]. The independent response
variables when using NMM, such as displacements, can be continuous or discontinuous throughout the problem
domain[27]. The NMM has gained a wide attention and application in rock mechanics and engineering due to
its efficient treatment of problems involving continuous and discontinuous deformations in a unified way[28-
32]. An[33] introduced a new concept of “weak-discontinuous physical covers” to improve the advantage of
the partition of unity of NMM. NMM is suitable to solve crack propagation problems in simulations (Wu[34],
Yang[35] and Zhou[36]). Zheng[37] combined the moving least squares (MLS) interpolation with NMM to
analyze the unconfined flow in porous media, which can provide high accuracy and numerical stability.
Yang[38] proposed a general mass lumping scheme applicable to higher order elements, which improved the
efficiency of NMM to calculate the large deformation of distorted meshes. Using the time step—initial strain
method, the creep equation was coupled with the NMM to simulate the time-dependent deformation of rocks[39,
40]. Wu[41] also used the NMM to analyze viscoelastic material creep crack problems by incorporating a

generalized Kelvin-Voigt model into the NMM.
2. Constitutive model

2. 1 Crack Growth Criteria

Before using the NMM to consider crack problems, the criteria that have an important influence on calculating
the crack initiation and propagation angle must be considered. In this paper, two different crack growth criteria
are introduced: the maximum circumferential stress criterion (MCSC)[42] and Mohr—Coulomb’s shear strength
criterion (MCSSC)[43]. For MCSC, the crack propagates in the direction of the maximum circumferential

stress. The stress field at the crack tip can be formulated in terms of stress intensity factors (SIFs):

K, sing,+ K, (—1+3cosg,)=0 (1)
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where K;and Ky are respectively the stress intensity factors corresponding to mode I and mode II loading, and
6 is the kinking angle, which corresponds to the crack propagation angle. The direction of maximum

circumferential stress is then:

6, = 2arctan

Ay

The MCSC can well predict the fracture direction in two mixed modes if there are several cracks in the
sample. In nature, however, there are many cracks, joints, and holes in rock masses, and every flaw will
influence the local stress field, which can greatly influence the direction of the maximum circumferential stress.
We used the MCSSC to deal with this problem.

In classical engineering science, the SIFs are greatly sensitive to the local stress. Coulomb postulated that the
crack initiation depends on the local stress relative to the strength of the material rather than on the SIFs[44]. In
this framework, the material strength parameters are the cohesion and the angle of internal friction, as shown in

Figure 1. The MCSSC can be used to calculate shear and tensile cracks. As shown in Figure 1, 1 and o3 are the

maximum and minimum principle stresses, respectively, o is the tensile stress, and R and r are expressed as:

o, +o, .
R=ccos¢+%sm¢

3)

Mohr—Coulomb linear envelope,

. . . . \
Tension region® — —|— — —»Compression region

Internal friction angle

crack 4

Tension condition

cohesion ¢
Tension cut-off~ \)‘l/

~ l4+p/2 o,
e /V\ ¢ A_ \
o,

> \
! 0 % o o ¥

crack ¢

0,
aa B $ oo

A: Uniaxial Tension  B: Uniaxial Compression C: Triaxial Compression

Shear condition

Figure 1 The Mohr—Coulomb criterion for the elements of the numerical model
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When the crack satisfies the shear condition:

R=r
{ 4)

o, >—0,
the crack initiation angle will be:
O=r/4+¢p/2 ®)
where ¢ is the crack initiation angle.

When the crack satisfies the tensile condition:

R>r
{ (6)

o, <—0,
According to Wu[43], when the condition expressed in Eq. 6 is satisfied, the direction of crack propagation will

be perpendicular to the direction of the minimum principal stress, 3. On the other hand, the crack initiation

angle will be in the direction of the maximum principal stress, o;.

2.2 Subcritical Crack Growth (SCG)

In classical fracture mechanics theory, the crack will not propagate if the SIFs at the crack tip are lower than
the fracture toughness Kc. However, some researchers also find that cracks still propagate when the SIFs are
lower than Kc, but at a certain lower velocity. This is called subcritical crack growth (SCG) theory[45]. Figure
2 shows a schematic stress intensity factor (K) against crack velocity (V) curve. Kscc is a critical value, which
is a material property. When K < Kscc, the crack cannot propagate. When Kscc <K< Kc, the crack propagates
as described by SCG theory (Figure 2). Nara and co-workers performed a lot of SCG experiments[46], which
show that, regardless of the environmental conditions, the subcritical crack velocity always increases as a

function of increasing stress intensity factor (Figure 2).
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Figure 2 Schematic diagram showing a typical stress intensity factor (K) against crack velocity (V) curve

The crack velocity is governed by Charles’ equation:
V=CK" ;
K=JKTK v
where C is a material constant, K is the total SIF, which consists of K; and Ky, n is the stress corrosion index,
is the crack velocity, and At is the time step. The crack length L' at every step is VAt.

The SIFs K; and Kj; are calculated as:

{KI =0, N7a )

K, =t Nra
When the crack is under the tension-shear condition, where 6, and T, are the maximum tensile normal stress

and maximum shear stress, respectively, a is the half crack length, and o, and T, are expressed as:

1
o, = E[(Gl +0,)+(o, —0'3)0052(/7]

©)

n

T :E(al -0,)sin2¢p

where ¢ is the original angle of the crack.

When the crack is under the compress-shear condition, where terr is effective shear stress and 4 is the

friction coefficient, Teir and Ky are expressed as:
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3. Fundamentals of NMM

3.1 Dual cover system of NMM

The NMM consists two of important components: the cover system and the block dynamics. The cover system
is a dual cover system, which includes a mathematical cover (MC) of three-node triangle elements and a physical
cover (PC) that includes the boundary, the material interface, and the crack. The block dynamics is used to solve
the mechanical behavior of block systems under loading and block contact. The NMM program runs on the
MATLAB® platform.

Figure 3 shows the dual cover system containing MC and PC. We can see in Figure 3(a) that there are three
MCs that are coloured orange, green, and red, that every MC is a hexagon consisting of six triangles, and that
the node of every triangle is at the centre of the MC. If there a crack that cuts through the triangle ABC (such
as D;-Ds in Figure 3), the three MCs are changed. It is shown in Figures 3(b) and (d) that the crack does not cut
the MC (A and C) into two parts. Instead, the hexagon and a part of the crack consist of a PC, which are A;-A,-
A3-A4-D3-Dy-Ds-D4'-Ds'-As-As-A1 and Ci-C-C3-C4-Cs-D5-D3-Ds-Ds-D4'-D3'-D»'-Ce-C, respectively. In Figure
3(c), the crack cuts the MC (B) into two parts (B and B’) and so there are two PCs, which are Bi-B,-D4'-Dj’-

Dz’—Dlr—Bs—Bs—B1 and D4—B3—B4—D1—D2—D3—D4, respectively.

(AsB1) (Be)
(A)
™) o ) (Bo) e &
) Dy
(Ay) (B,C)) (AsCe) (Ds\ (D) (Ds") (D)
A B (B5) DN (D5 D)
(D4)
(Ds) Dy D)\ O LA (A N\ L B2) &)
A B(B") (Cy) C (Cs)
(ABY) o OO o) (D5) (D) (D
(ACy) (B4Cs) (Ds) ) :
c ,
Do\ (Ds) D) N @ D)\ B
(As) (A) (By) (B4 (C3) (Ca)
o oJ@ (b) ©) (d)

Figure 3 Dual cover system and crack cutting theory of NMM

3.2 Contact theory of NMM
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The loop contact is very important in NMM to identify the physical cover (PC), which includes the boundary,
the material interface, and the crack. The loop consists of closed segments connected from the first to the last.
In Figure 4, the black line is the boundary of model and the blue line is the crack. In NMM, the loop rotates
counter-clockwise and a complete loop indicates a whole body (i.e. the crack boundary zone is empty in NMM),

which is the same as making a hole in the model (Figure 4).

- — ="
Loop 1 Loop 1 Loopl 4
/ \ v

// ‘— -~
Loop 2 l Loop 2

— — PSS
(a) (b) (c)

— — —

Loop 1 Loop 1 Loop 1
Loop 2 — —
R N I
Loop 2 L T
- \ ¥ Loop2
— — —

(d) (e) ®
Figure 4 Single-and multi-crack loop conditions of NMM
Figures 4(a), 4(b), and 4(c) are single crack loop models, which show different possible locations of cracks
within the model. Figure 4(a) shows the condition when there is a crack inside the model. In this case, the crack
itself can generate an independent loop. Indeed, the two loops in Figure 4(a) have no intersection point. Figure
4(b) shows the condition when there is crack tip on the boundary of model. In this scenario, the crack will
combine with the boundary to generate a single whole loop (Figure 4(b)). If the crack cuts the model into two
parts, which is shown in Figure 4(c), the program will generate two independent loops. However, the sample

will have to contain a lot of cracks to simulate a natural rock and, as the population of micro-cracks grow, they
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can coalescence and transform into a macro-crack. This transformation forms a large crack zone. It is therefore
important to study the coalescence of cracks. There are three crack coalescence types during crack propagation,
which are crack tip to crack tip (“tip and tip” crack model, TT model), crack tip to crack boundary (“tip and
boundary” crack model, TB model) and crack boundary to crack boundary (“boundary and boundary” crack
model, BB model) respectively. Figure 4(d) shows the TT model. In this case, the two cracks have a common
crack tip and so they can generate a new larger crack with an independent loop, and the crack tip of the
intersection will disappear (Figure 4(d)). If a crack propagates to another crack boundary, there will be a TB
model, which is shown in Figure 4(¢). In the TB model, the two cracks can generate a new crack with three

crack tips. If one crack propagates across the other crack boundary, there will be a BB model. In the BB model,

~—
Fracture B 3

the two cracks can generate a new crack with four crack tips (Figure 4(f)).

Fracture A » >>
X 1 s

2 | Fracture A
L— ]
Fracture B l I | I \1 2/

| Fracture C Three cracks

TT model | TB model

N O
(©) | (d)
Fracture A s | Fracture A / 3 4\
A —_— 1>
 —  —
| Fracture B
Fracture B Two cracks

TB model | BB model

I

Figure 5 Different types of loop intersection during crack propagation in NMM
Figure 5 shows the different types of loop intersection during crack propagation. The different loop
intersection types correspond to the different number of intersection points: the TT model has two intersection

points (Figure 5(a)), the TB model has three intersection points (Figure 5(b) and (c)), and the BB model has
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four intersection points (Figure 5(d)). The TB model has two different types, the first type is when three crack
tips propagate to the same intersection point (Figure 5(b)) and the second type is when a crack tip propagates to
the boundary of another crack (Figure 5(c)). When three crack tips are propagating, the order of the crack
propagation is that the first two cracks propagate according to the TT model and the third crack propagates
according to the TB model. As a result, the three crack tips propagation type is still considered as a TB model.
For a complete single loop connected from the first and last loop points, the loop segments at the intersection
points cannot be knotted, and the loop point is a whole loop that should rotate counter-clockwise. Inside every

crack loop should be empty.

(AeB1) (Be) (AeB1) (Bg) (A¢B)) \ (Bg)
(A) (A) (A) \
\
\
\
(A2) (B,C)) (AsCq) (Bs (A) (B:Cy) (AsCq) B (A2) B.C) \ P, (AsCq) B
~ =~ Cd ~ =~ rd =~
S N\ ~o /R P ~ Ayl S~ R -~ NS A \~Ip B
~ ~ - ~ \ ~ - ~ <
~o v o =® S~ ¢ =9 ~So ~o
RS P\ g ' 3 ol T P
P % 18 AN \ ~ P % Py O R Qs \ ~ /0 i 7 SN
Vs ! ~ AN Vi ~ N / 4 I SS
Vs / SAY N Vi \| 7 ~ | N / 7
~ (AsB3) / 3 R4 (AsB3) Pl (A4B3) N
(AsCy) (B,Cs) ao) [(NSL -~ (B,Cs) (AsCy) ~o -~ (B4Cs)
C R C Pyl C
\ \
R \ Py \
Vs \ /7 \
y \ ,/ \
\
(Cs) ) s . N (C3) (Cy) /7 P, (Cy) (Cq)
(a) (b) ()

Figure 6 Form of element cutting during multi-crack intersection in NMM (Fig. 6 shows the propagating and
cutting progress during multi-crack intersection in NMM. In Fig. 6(a), the black crack tip is P4 and, when
black crack propagates to the blue crack tip Qu, this is TT model. Following crack propagation, crack tips P4
and Qs disappear. The dotted line is the element segmentation progress. Fig. 6(b) is the TB model. There are
three cracks in the TB model: cracks PiPs, RiR4, and Q,Qa. These three cracks propagate to the same point O.
Cracks PP; and Q;Q4 first propagate according to the TT model and, later, the crack RiR4 propagates. After
the three cracks propagate, the three crack tips P4, R4, and Q4 disappear. Fig. 6(c) is the BB model. In this
model, the crack P;P4 propagates across the crack Q;Qs, and the crack tips Ps and Qs do not disappear.)

Figure 6 shows the form of element cutting by multi-crack intersection. Figure 6(a) shows the intersection of
two crack tips, which is a TT model. We assume that crack P propagates, and that crack Q does not propagate.
The new crack is P4Q4. After the crack propagation event, the program generates four new elements, which are
AP4Ps, CPsPs4, APsQ4, and CQ4Ps, respectively. The two cracks then connect to form a new crack and the

intersection point of the new crack is Qa. In order to have the new loop, the program rearranges the four new

10
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elements and the former elements cut by cracks P and Q. The program deals with multi crack intersection in the
same way. Figure 6(b) shows the three crack tips intersection: the three cracks propagate to the same point O,
which is the intersection point. Figure 6(c) shows the two cracks boundary intersection, and the intersection
point is Qa.

Each element on the loop is likely to come into contact with other elements on the loop. As a result, both the
contact search and judgment are based on elements that are located on the loop. These elements located on the
loop are the contact elements. NMM uses the Mohr—Coulomb criterion and maximum tensile strength criterion
to handle the possibility of embedding, pulling, and friction during contact. The laws of contact theory of NMM
are as follows:

1. Penetration does not occur during contact.

2. The pulling stress is less than the tensile strength during contact.

3. The Mohr—Coulomb criterion is satisfied during contact.

These three laws are executed by applying or releasing contact springs (open—close iteration) to modify the
contact status and realize the no tension force and no penetration between two contacts[32, 47, 48].

The rectangular contact search method (RCSM) is used to determine whether there is a contact between two
potential CE. Figure 7 shows a diagram of the RCSM, where dy is the one step maximum displacement (safe
displacement). Before every time step of the numerical simulation, the program makes contact judgements and
calculates the contact condition of every element in the model. There are two contact conditions. If distance
between two contact elements is larger than do, these two elements are non-contact elements (Figure 7(a)).
However, if distance between two contact elements is smaller than do, these two elements are contact elements

(Figure 7 (b)).

11
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(b)

Figure 7 Diagram of rectangular contact search method of NMM: (a) non-contact element; (b) contact

element

In NMM, there are three contact conditions, as shown in Figure 8: (a) angle to angle, (b) angle to edge, and
(c) edge to edge. “A” and “B” are two elements. Both angle to angle and edge to edge contacts can be converted
into angle to edge contacts. Therefore, it is the distance between the angle in one loop and edge of other loops
that influences the contacts judgment in the NMM. Contact distance can be obtained by calculating the distance
from angle to edge.

When we find the angle and edge of two contact elements, the program will calculate the distance between
the angle and the edge. Figures 8(d) and (e) show examples before and after the penetration of two elements,
respectively. Py is the angle before moving, P4 is the angle after moving, and P,Ps is the penetration edge. The

equation for judging penetration is:

I x+u  y+v
A=1 x,+u, y,+v, (1)
I ox;+u,  y,+v,

where (Xi, y;) and (ui, v;) are coordinate and displacement of P; (i=1,2,3).
If A<0, the two elements have penetrated, and the program moves the penetration angle back to the outside

of the element along the minimum distance.

12
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Figure 8 Three contact conditions and open-close iteration penetration judgement of NMM: (a) angle to
angle, (b) angle to edge, (c) edge to edge, (d) before penetration of two elements, (d) after penetration of two

elements

3.3 Crack initiation and coalescence of NMM

Crack initiation and coalescence are a prerequisite for the macroscopic failure of rock. This is true for samples
deformed at a constant strain or loading rate and those deformed under a constant stress (i.e. time-dependent
brittle creep). During deformation, micro-cracks initiate and coalesce to form a macro-crack zone. It is therefore
important to study the connection between micro-crack initiation, propagation, coalescence, and time-dependent
deformation.

Compared to XFEM, GFEM, and DEM, NMM is the most advanced to simulate crack initiation, propagation,
and coalescence. The dual cover system and the loop concept in NMM allow for crack identification and crack
propagation simulation without incorporating additional unknowns to the related nodes through enrichment
functions.

Figure 3 introduces the dual cover system and crack cutting theory of NMM, which are the basic theories to
realize crack initiation. There is a difference between crack initiation and propagation in the model. When cracks
propagate, the crack tip can be located on either the boundary, node, or in the element, and there is no limit to
the length of the crack propagation at each step. When cracks initiate, the crack has to traverse the boundary of

three MCs at the same time where it is located. Figure 9 shows the crack initiation theory of NMM. In Figure

13
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9(a), a crack “D;D,” initiates in the triangle ABC, which is in contact with three MCs that are coloured orange,
green, and red. The locations of crack “DiD,” in every MC are shown in Figures 9(b)-(d). In Figures 9(c) and
(d), one of the crack tips is located on the boundary of MC, the crack “D;D,” can form in these two MCs.
However, in Figure 9(b), both crack tips are located in the MC and so the crack “D;D,” cannot generate in this
MC. In order to make the crack “D;D,” generate in this MC, we have to extend one of the crack tips to the
boundary of MC and make sure the extended length is smaller than the other crack tip. For example, in Figure
9(e), the two crack tips Dy and D, extend to D4 and D3, respectively. D2Ds is smaller than DDy and so the final
initiated crack is D;D,Ds. When the crack initiates, it will transform into a real crack, cut the element, and

propagate according to the MCSSC theory.

(Ae) (B1) (Bo)
(A1)
D, B,)  @PIN\B (Bs)
(A2) A ‘ (As 1
D* * D
D> D, (BJ)

(b) (A3) (Ay) (C) (By)

5,
N\ p * (Ce

D,

(C2) C (Cs)
(C5) (Cy)

(2) (d)

Figure 9 Crack initiation theory of NMM (Fig. 9 shows the crack initiation and element cutting progress. If

crack DD initiates at triangle element ABC, the crack center D is also the center of the triangle element. Every
triangle element in NMM has three nodes, and every node is the center of a hexagon physical cover. Figs. 9(b),
(c), and (d) are three hexagon physical covers. In NMM theory, if one crack wants to initiate successfully, the
crack tip has to propagate to the boundary of three hexagons at the same time. In Figs. 9(c) and (d), the crack
tip Dy is at the boundary of hexagon B, and the crack tip D; is at the boundary of hexagon C. In Fig. 9(b), these
two crack tips are inside hexagon A. Therefore, the crack tip propagates in two directions, yielding the shortest

new crack DD in Fig. 9(e).)
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4. Experimental materials, methods, and results

4.1 Sample preparation

The material used in this research is Lanhélin granite, which is a coarse-grained, blue—grey granodiorite from
Brittany, France. It has an average crystal size of 2 mm[49, 50]. Lanhélin granite has important research value
in studies of rock deformation and fracture[49-54]. We prepared nine cylindrical rock samples that were 20 mm
in diameter and nominally 40 mm in length. We then thermally-stressed the nine rock samples in a furnace to a
maximum temperature of 600 °C so that our samples contained thermal micro-cracks. The samples were
thermally-stressed in an electric box furnace at room pressure. The furnace was programmed to heat at 1 °C/min
to a target temperature of 600 °C. The samples then held at the target temperature for two hours before being
cooled at 1 °C/min back to room temperature. Figure 10 shows the thermal-stressing procedure. The prepared
samples were then separated into two groups. The first group is the uniaxial compressive strength group, which
has five samples (U-1, U-2, U-3, U-4, and U-5). The second group is the creep deformation group, which has

four samples (C-1, C-2, C-3, and C-4).

23°C

/| 1\

i

9.61h 2h 9.61h

Figure 10 Heating curve of Lanhélin granite samples
Following thermal-stressing, we determined the connected porosities of the nine samples. Connected porosity
was determined using the bulk sample volume (measured using digital callipers) and the connected (skeletal)
volume measured by an AccuPyc II 1340 helium pycnometer. Following thermal-stressing to 600 °C, the
connected porosity of the thermally-stressed samples of Lanhélin granite was about 2%, in agreement with

previously published porosity data for thermally-stressed granites[55].
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292 Uniaxial compressive strength (UCS) tests and uniaxial creep experiments were performed on dry samples
293 of thermally-stressed Lanhélin granite under ambient laboratory conditions (pressure and temperature) using a
294  uniaxial load frame (Figure 11). Axial displacement and axial load were measured by a linear variable
295  differential transducer (LVDT) and a load cell, respectively. Axial displacement and axial load were converted
296  to axial strain and axial stress using the sample dimensions. During the UCS tests, we also recorded the output
297  of acoustic emission (AE) energy using a USB AE Node (from Physical Acoustics). The threshold for an AE
298  hit was set at 30 dB in the accompanying program, AEwin. The UCS tests were performed at a constant strain
299  rate of 1 x 107 s until macroscopic sample failure. For the creep tests, the samples were first loaded at a
300  constant strain rate of 1 x 10~ s! to a pre-ascribed axial stress (a high percentage of the short-term failure stress
301  determined from the UCS tests). The samples were then left to deform under a constant stress until macroscopic

302  sample failure.

| Actuator Piston

L | Dry Sample
AE Transducer

303
304 Figure 11 Uniaxial compression apparatus used for the uniaxial compression strength tests and creep
305 experiments presented in this study

306 4.2 Uniaxial compressive strength experiments
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The stress-strain curves for the five UCS tests performed on samples of thermally-stressed Lanhélin granite
are shown in Figure 12. These stress-strain curves are typical for crystalline rock deforming under uniaxial
compression[56, 57]. The UCS values of the five samples are 123.0, 139.2, 127.6, 120.6, and 139.9 MPa,
respectively, and the mean UCS is 130 MPa (o). The mean UCS was used to determine the constant stresses
used in the uniaxial creep experiments. We can also calculate the Young’s modulus (the slope of the stress-
strain curve in the elastic region), which are 26.2, 24.7, 25.5, 26.9, and 16.4 GPa for the five samples,

respectively. The mean Young’s modulus is 23.9 GPa.

160
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) Y
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o U_4
100r U5
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D
o
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0.0 0.2 0.4 0.6 0.8 1.0 1.2

Axial strain (%)

Figure 12 Stress-strain curves for the five uniaxial compressive strength (UCS) tests performed on samples
of thermally-stressed Lanhélin granite

In Figure 13 we show the stress-strain curve for sample U-2 alongside the output of AE energy (the area

under the received waveform, in arbitrary units). Figure 13 shows that the AE activity increases during the

approach to macroscopic sample failure, and that the AE activity was greatest at the point of failure (marked by

the stress drop in the mechanical data).
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Figure 13 Stress-strain curve for a uniaxial compressive strength (UCS) test performed on a sample of

thermally-stressed Lanhélin granite (sample U-2) alongside the output of acoustic emission (AE) energy
4.3 Uniaxial creep experiments

Conventional creep experiments were performed on thermally-stressed samples of Lanhélin granite at
constant uniaxial stresses of 113.75, 115.5, 117, and 120.25 MPa, corresponding to 87.5, 88.8, 90, and 92.5%
of op, respectively. Table 1 shows a summary of these uniaxial creep tests. The minimum creep strain rates of
the four samples were determined to be 1.9 x 10°, 7.4 x 103, 4.2 x 10%, and 5.8 x10® s”!, respectively. The
time-to-failure of the four samples were 73.79, 2.12, 2.91, and 2.36 h, respectively. These data show that, as the
constant axial stress was increased, the minimum creep strain rate and the time-to-failure increased and
decreased, respectively (Table 1).

Table 1 Summary of the conventional uniaxial creep tests performed on thermally-stressed Lanhélin granite

Sample Constant Percentage  Minimum Creep Strain ~ Time to failure/h
number  stress/ MPa of /% Rate/s™!

C-1 113.75 87.5 1.9 x 10° 73.79

C-2 115.5 88.8 7.4 %10 2.12

C-3 117 90 42 %10 291

C-4 120.25 92.5 5.8 x 1038 2.36
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335 The four uniaxial creep (i.e. strain as a function of time) curves (for Lanhélin granite performed at constant
336  stresses corresponding to 87.5, 88.8, 90, and 92.5% of o,) are shown in Figure 14. The strain rate as a function
337  of time for these four experiments is shown in Figure 15. These curves all exhibit the decelerating followed by

338  accelerating creep behavior observed in previous laboratory creep experiments[6].
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340 Figure 14 Uniaxial creep curves for thermally-stressed Lanhélin granite performed at different constant
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351  C_1, (b) the axial strain rate curves for experiments C 2 and C_4, (c) the axial strain rate curve for experiment

352 C3
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5. Numerical simulations

5.1 Multi-crack NMM model

A pre-cracked granite specimen model of 20 mm in diameter and 40 mm in length is shown in Figure 16(a).
The real crack half-length is 4 mm, and the crack angle ¢ is 45°. The meshed specimen that contains multi-
cracks is shown in Figure 16(b). The three-node triangular elements in Figure 16(b) consist of mathematical
covers, and the solid black line in Figure 16(a) represents the physical boundary and discontinuities in the
specimen. The thick and thin red solid lines in Figures 16(c) and (d) represent real and virtual cracks,
respectively[20]. The model consists of 1108 elements, which means that this model has more than 1000 virtual
cracks. Every crack in the model has two crack tips, and the SIF of every crack tip can be calculated at every
simulation step. The initial virtual crack half-length is 0.042 mm. The real crack is a part of the physical cover,
and it can therefore cut an element and open and slide. There are no virtual cracks in the area of the real crack,
because these elements are damaged. Virtual cracks are only present in the three-node triangular elements, and

will not cut the elements. The angle and length of the virtual cracks is arbitrary, and their lengths are equal.

(a) (b) (d)
Figure 16 NMM model of size and multi-crack distributions
When the SIFs at the crack tips are lower than the fracture toughness Kc, both the real and virtual cracks will
propagate according to SCG theory. The elastic modulus of an element in which the virtual and real crack tips

are located will be damaged according to Equation (12):
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E'=D*E
D=Q1-L/L)" (12)
L'=V*At

where E is the last step elastic modulus, E' is the damaged elastic modulus, D is the damage factor, L is the
original crack length, L' is the crack propagation length, and n is the damage index.

Because the real crack length is larger than that of a virtual crack, the SIFs of the real crack will be first equal
to Kc and then propagate according to the MCSSC. The virtual crack is very small and, because the crack length
at each step is very small, crack growth will occur along the original direction and will take a long time. Before
the virtual crack can change into a real crack, the main role of the virtual crack is to reduce the elastic modulus.
The virtual cracks will not cut the elements. Once the virtual crack length propagates to a pre-defined value
(related to model size and mesh density), it will be converted into a real crack according to the principles of
NMM. During crack propagation, the boundary and node of the element cannot influence the crack direction.
The crack can grow across the element boundary, and crack tip can be located on either the boundary, node, or

within the element, which results in more freedom when simulating crack propagation.

5.2 Simulation results

The improved NMM program was then used to simulate the time-dependent deformation of Lanhélin granite
under constant uniaxial stress. The macroscopic mechanical properties of rock are shown in Table 2. An axial
stress of 117 MPa was applied to the numerical specimen. The bottom of specimen was fixed.

Table 2 Physico-mechanical parameters of the numerical model

Items Value
Elastic modulus: E(GPa) 21
Poisson’s ratio: v 0.25
Fracture growth constant: C 1x10%°
Stress corrosion index: n 20.3
Time step: At (h) 0.04
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Figure 17 Comparison between experimental (black curve) and numerical (red curve) creep strain curve of

Lanhélin granite

The classical creep simulation methods are the empirical method and the rheological component method,
which use differential equations to realize the different stages of rock creep. In this research, when the SIFs of
crack tips are smaller than Kc, both the virtual and real cracks propagate according to the SCG theory. During
crack growth, when the crack is under the tension-shear condition, the program calculates the maximum tensile
normal stress and maximum shear stress according Equation (9), when the crack is under the compress-shear
condition, the program calculates the effective shear stress, after these judgements, the program then calculates
the SIFs according to Equation (8), and gets the crack velocity according to Equation (7).The elastic modulus
is decreased according to Equation (12) at the same time. When the SIFs are smaller than Kc, the axial strain
decreases as an increasing function of time (i.e. the decelerating creep phase). When the SIFs are larger than
Kc, the real crack propagates according to the MCSSC.

A comparison between experimental and numerical creep curves is shown in Figure 17. The experiment is a
creep test performed on Lanhélin granite under uniaxial compression and room temperature, and the numerical
model was performed under the same conditions. The experimental results clearly show the two stages of creep
curve, decelerating and accelerating creep, and the numerical results are in good agreement with the experiment.

In Figure 17, the initial axial strain is about 0.5%. In the first 0.6 h, the initial crack length is very small and, the
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cracks are growing at a slow rate. As a result, the strain increases slowly. From 0.6 to 2.9 h, the axial strain
remains at almost a constant value. After 3 h, the axial strain increases quickly, the cracks propagate quickly
and connect together to generate a macro-crack zone that, eventually, results in macroscopic sample failure.
Figure 18 shows the influence of virtual crack length (VL) on the time-dependent deformation of granite. As
shown in Figure 18, the creep strain increases with increasing VL. The larger the VL, the faster the specimen
goes through the decelerating creep stage and the sooner the specimen reaches the accelerating creep stage.
Before the simulation, the virtual crack angles in every element were fixed. During the time-dependent
deformation progress, the axial stress is a constant value and so the SIFs of crack tips will not increase according
to fracture mechanics. However, during the subcritical crack growth progress, crack tips will propagate
according to Eq. 7 (Charles’ equation), and the crack speed and SIFs are positively correlated. The crack speed
and the virtual crack length (VL) are also positively correlated. We also note that increasing VL cannot change
the axial strain when the strain rates are constant values. The VL increase as the crack velocity increased
according to Equation (12), and crack velocity increase as the SIFs increased according to Equation (7). So, VL
and SIF are positively correlated: the longer the VL, the larger the SIF. Further, with an increase of SIF, the
velocity of SCG also increases. So, the propagation of micro-cracks can result in the failure of the specimen.
Figure 19 shows the influence of axial stress on the axial creep strain and strain rate. Five axial stress levels
were chosen to simulate the creep deformation, which are 116, 116.5, 117, 117.5, and 118 MPa (in Figure 19(a)).
The confining pressure was set to 0 MPa for these simulations. As the axial stress level was increased, the axial
strain also increased (Figure 19(a)). Figure 19(a) also shows that the time-to-failure decreased as the axial stress
level was increased. Figure 19(b) shows the evolution of axial strain rate as a function of time for the different
axial stress levels. We find that the axial strain rates are very sensitive to axial stress levels: the larger the axial
stress, the sooner the axial strain rate arrives at the minimum value, the sooner the sample enters the accelerating

creep phase, and the sooner the sample fails macroscopically (Figure 19(b)).
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Figure 19 Influence of axial stress on time-dependent deformation. (a) Axial strain as a function of time

(creep curves) and (b) axial strain rate as a function of time for modeled samples at a confining pressure of 0
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Figure 20 Influence of differential stress (DS) and confining pressure (CP) on time-dependent deformation.

(a) Axial strain rate as a function of differential stress and (b) time-to-failure as a function of differential stress

for models performed at confining pressures of 0, 1, and 2 MPa
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The influence of differential stress (DS) and confining pressure (CP) on the time-to-failure and creep strain
rate is illustrated in Figures 20(a) and (b), respectively. The data show that DS and CP has a profound influence
on times-to-failure and creep strain rates. In Figures 20(a) and (b), when the CP is a constant value, the axial
strain rate increases as a function of increasing DS: the larger the DS, the faster the axial strain rate. The time-
to-failure also decreases with increasing DS. When the CP is increased, the axial strain rate and time-to-failure
curves are shifted to higher values of DS. When we consider a constant value of DS (118 MPa, for example),
the axial strain rates are lower for the model performed at the highest CP, and the times-to-failure were
increased. These observations are similar to the experimental results of Heap[3] and Brantut[6]. These
simulation results also illustrate that a small change in differential stress and confining pressure can lead to
significant changes in axial strain rate and failure time.

According to the SCG theory, when K is smaller than K¢, both the virtual and real cracks will propagate at a
very low velocity. It is therefore not easy to observe the crack propagation process. On the other hand, if K is
larger than Kc, the real crack will propagate according to the MCSSC. According to Bobet[58, 59], since the
stresses adjacent to the flaw tip are much higher than the strength of the material, the crack tip will likely
propagate. In other zones of the material, it is not as easy to initiate cracking. Stress concentration effects at the
crack tips can also inhibit the initiation of surrounding cracks. The area where crack initiation is most likely is
the area containing the crack initial tip and crack boundary. Figure 21 shows the real crack propagation path
under a constant stress. Figures 21(a), (d), (g), and (j) show the initial real crack propagation, crack initiation,
and coalescence. As SCG progresses, the real crack propagates according to the MCSSC, because o is larger
than o3. As a result, the crack extends in the direction of o;. Because of NMM theory, the crack can propagate
by cutting through the elements, which is different from FEM and DEM in which the crack can only propagate
along the boundary of the elements. Crack tips in this simulation are not restricted to the node or boundary, but
can also exist within the element. After the crack propagates, the crack face is opened too. The program can
calculate the contact state at every node of the crack by adding and subtracting the spring to make sure the crack
surface is not embedded according to contact theory. Figures 21(b), (c), (¢), (f), (h), (i), (k), and (1) show the
displacement of the specimen in the X- and Y-direction under a constant stress. At the beginning of simulation,

the X-direction displacement is symmetric from left to right, and the Y-direction displacement is symmetric
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from top to bottom. The crack propagation can greatly influence the displacement and facilitate macroscopic
failure. The maximum displacement moves gradually toward the crack during crack propagation. Figure 22
shows a comparison between the failure mode of a specimen with a 45° crack from one of the NMM numerical
simulations and a sample deformed under a constant uniaxial stress in the laboratory (the experiment was
performed by Qin[60]). Figure 22 shows that the failure mode observed during the NMM simulation is very

similar to that observed in the laboratory.

uy

0.016 -0.01
00128 -0.028
00096 -0.046
0.0064 -0.064
o 0032 -0.082

/ 01

4) 0032 -0.118
-0.0064 0136
-0.0096 0.154
0.0128 0172

-0.016 0.19

(@) (©)

ux uy

0.016 -0.02
0.0126 -0.038
0.0092 -0.056
0.0058 -0.074
0.0024 -0.092

-0.001 -0.11
¢ -0.0044 -0.128
-0.0078 0.146
-0.0112 -0.164
-0.0146 -0.182

-0.018 0.2
() (H

28

(d)



485
486

487
488

489
490

491
492

493
494
495

ux

0.02

0.009
-0.002
-0.013
-0.024
-0.035
-0.046
-0.057
-0.068
-0.079
-0.09

(€]

ux

0.04
- 0.028
0.016
0.004
-0.008
-0.02
-0.032
-0.044
-0.056
-0.068
-0.08

0 k) )

Figure 21 Crack propagation path and displacement in the X- and Y-direction under time-dependent

deformation when K is larger than Kc

Figure 22 Comparison between the failure mode of a specimen with a 45° crack from one of the NMM
numerical simulations and a sample deformed under a constant uniaxial stress in the laboratory (the

experiment was performed by Qin[60])
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6. Concluding remarks

In the present paper, the time-dependent deformation of granite is modeled by combining SCG and NMM on
the MATLAB® platform. This combined method replaces the traditional creep component model method. In
the model, we introduced virtual cracks into the NMM to realize crack initiation. Before the virtual crack can
change into a real cack, the virtual crack must be located at every element of the NMM, propagate in a line, and
reduce the elastic modulus of the elements. No opening or sliding occurs during virtual crack propagation: only
real cracks can open and slide. Because crack coalescence is very complicated during crack propagation, we
introduce three coalescence models to deal with this problem, which are the “tip and tip”, “tip and boundary”,
and “boundary and boundary” crack models. In order to reflect the influence of crack propagation on the creep
deformation of Lanhélin granite, we use Charles’ equation to calculate the crack velocity. When stress intensity
factor K is smaller than the fracture toughness Kc, the crack growth length is linked to the local damage (using
an exponential material softening law) to reduce the strength of the granite. When K is larger than Kc, the cracks
propagate according to the MCSSC. Parameter sensitivity analysis for the improved NMM program was
performed and validated against experimental data. The influence of crack length, confining pressure, and
differential stress were then investigated. The results show that the microstructure of granite has a great
influence on time-dependent deformation. We found that the virtual crack length (VL), differential stress (DS),
and confining pressure (CP) all play a major role in governing elastic deformation. With an increase of VL, the
specimen can reach the accelerating creep stage quickly, because the VL can greatly influence the SIF at the
crack tips. Therefore, the larger the VL, the higher the crack velocity. CP increases rock strength and therefore
decreases the creep strain rate and increases time-to-failure at a constant stress. Even a small change of DS can
significantly increase and decrease the creep strain rate and time-to-failure, respectively. In addition, we find
that the cracks propagate along the direction of the maximum principle stress. When the SIF of the crack tip is
larger than Kc, the real cracks start to initiate and propagate. The crack can also influence the specimen
displacement greatly during propagation. The maximum displacement also moves towards the crack during
crack propagation, which means that the crack zones are more likely to be broken. The results of the numerical
simulations are in good agreement with the experimental results and therefore show that the improved NMM
program is suitable for modeling the time-dependent creep deformation of rocks. Last but not least, the improved

NMM program also simulates large displacements during creep deformation. The cracks in the specimen can
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open and slide without the influence of the element node or boundary, therefore reducing the reliance on the
grid, which makes it possible for the program to more accurately simulate crack propagation during creep

deformation.
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