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Single Gain Super Twisting Algorithm Application to PMSM

In this paper, by means of a parametrization leading to a single gain, a tuning method is proposed to simplify the implementation of the well known Super Twisting Algorithm (STA). Furthermore, inspired by ideas from the high-gain observer design, and using a Lyapunov approach, the stability analysis of the closed-loop system is presented. Thanks to a simple Lyapunov function, sufficient condition are obtained to prove the finite-time convergence. Finally, the performances of the proposed strategy are illustrated experimentally on a Permanent Magnet Synchronous Motor (PMSM) using an industrial benchmark for generating the desired trajectories to be tracked, in presence of external disturbances.

I. INTRODUCTION

Sliding mode theory has received a large interest in the last years. It is commonly used for the design of robust nonlinear observers or control laws. Indeed, sliding modes have interesting properties such as: disturbance and uncertainty compensation and the finite-time convergence. Moreover, the use of second-order sliding modes reduces the high-frequency commutations known as chattering [START_REF] Kamal | Higher order super-twisting algorithm[END_REF]. According to the literature, sliding mode control has been successfully applied to in electrical engineering [START_REF] Sun | Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control[END_REF], [START_REF] Sun | Practical tracking control of linear motor via fractional-order sliding mode[END_REF], [START_REF] Yang | Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers[END_REF], [START_REF] Liu | Disturbance-observerbased control for air management of pem fuel cell systems via sliding mode technique[END_REF], [START_REF] Yin | Observer-based adaptive sliding mode control of npc converters: An rbf neural network approach[END_REF] and many others systems as mentioned in [START_REF] Lee | DSP-based sliding-mode control for electromagnetic-levitation precise-position system[END_REF], [START_REF] Lee | Adaptive integral sliding mode control with time-delay estimation for robot manipulators[END_REF], [START_REF] Zad | Design and adaptive sliding-mode control of hybrid magnetic bearings[END_REF], [START_REF] Matraji | Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control[END_REF], [START_REF] Dev | Prediction-based super twisting sliding mode load frequency control for multi-area interconnected power systems with state and input time delays using disturbance observer[END_REF].

From a practical point of view, PMSM are widely used in the industry, due to the growing interest in electrical applications and for their attractive advantages compared with other electrical machines. For instance, PMSM are more robust than brushed DC motors and produce higher torque per volume. However, robust PMSM control is a challenge because such motors have parameters uncertainties, unknown load torque as well as noise measurement.

Several solutions based on sliding mode techniques have been proposed to control PMSM in presence of uncertainties and noise measurement and several control strategies based on backstepping design, passivity, neural-networks, H ∞ adaptive,control have been proposed to solve this control problem. In the literature, sliding mode control as been widely used for electro-mechanical systems to overcome such difficulties (see [START_REF] Utkin | Sliding Mode Control in Electromechanical Systems[END_REF]), in which AC motor control is successfully applied. A particular attention has been paid to motor control, see for instances [START_REF] Glumineau | Sensorless AC Electric Motor Control[END_REF]. The sliding mode control and observation of PMSM in particular has been the subject of a large number of publications. In [START_REF] Utkin | Sliding Mode Control in Electromechanical Systems[END_REF], [START_REF] Zhang | Sliding mode observers for electric machinesan overview[END_REF], [START_REF] Zhang | Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques[END_REF] control and observation using first order sliding mode have been proposed. On the other hand, in order to tackle the chattering problem, sigmoid function was introduced instead of the sign function in [START_REF] Kim | A high-speed sliding-mode observer for the sensorless speed control of a pmsm[END_REF]. Then, the attention was focused on higher order sliding modes. Research can be found for control and observation using largely the STA in the case where position is measured [START_REF] Lascu | Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives[END_REF], fault tolerant control [START_REF] Kommuri | A robust observer-based sensor fault-tolerant control for pmsm in electric vehicles[END_REF] but above all sensorless control (without mechanical sensors) [START_REF] Hamida | An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification[END_REF], [START_REF] Bernardes | Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine[END_REF], [START_REF] Delpoux | High-order sliding mode control for sensorless trajectory tracking of a PMSM[END_REF]. However, the introduction of high order sliding mode increases the number of gains to be tuned. To the knowledge of the authors, few methods for gain tuning are proposed in the literature [START_REF] Pilloni | Oscillation shaping in uncertain linear plants with nonlinear PI control: analysis and experimental results[END_REF], [START_REF] Oza | Lyapunov-based settling time estimate and tuning for twisting controller[END_REF], [START_REF] Levant | Homogeneous filtering and differentiation based on sliding modes[END_REF], [START_REF] Chalanga | Finite Time Stabilization of An Uncertain Chain of Integrators by Integral Sliding Mode Approach[END_REF]. In contrast with the gain tuning proposed in the above references, in our method, the convergence time is directly related to the gain which allows a simple selection of the gain for a given convergence time. In addition the proof in our work is simplified because it is based on a standard Lyapunov function and this is made possible by using the high-gain theory.

In this paper, by means of a single parameter, a simple methodology to tune the gains of a STA [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] is proposed, in order to compensate for the effect of a perturbation and its timederivative, which are assumed to be bounded. Furthermore, using a Lyapunov approach, sufficient conditions are given to guarantee the finite time convergence to zero, in presence of matched disturbances/perturbations. The stability analysis of this algorithm is inspired by ideas from high-gain theory. Experimental results are obtained under the action of the proposed control strategy in order to validate its performance and its easy implementation on a PMSM. Moreover, based on the Lyapunov approach, a Lyapunov function is proposed to analyze the convergence of the closed-loop system to zero [START_REF] Moreno | Lyapunov Approach for Analysis and Design of Second Order Sliding Mode Algorithms[END_REF]. Furthermore, instead of the two conditions required to design the gains of the classical STA [START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF], which are obtained using linear matrix inequalities techniques, in the proposed methodology, a single condition has to be verified.

On the other hand, inspired by the design of the high-gain observer given in [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF], it is possible to derive an observer (controller) based on sliding mode techniques that shares all the appealing features of the high-gain concept. Following this ideas, the gains of the proposed STA are determined, first, from a parameterization in terms of a single parameter. Then, after a variable change, the resulting STA structure is equivalent to a high-gain observer design.

Then, the contribution of this paper can be summarized as follows:

i) Thanks to a parmetrization of the gains, in terms of only single parameter, a simple method to tune the gains of the STA is derived, reducing the number of gains to a single gain to be tuned instead of two gains required in the classic STA of [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]. Furthermore, STA is tuned through the choice of a single design parameter, satisfying a condition obtained from the stability analysis of the closed-loop system. More precisely, using a Lyapunov approach, sufficient conditions are obtained to ensure the finite time convergence towards zero (see tuning guidelines at the end of Section III).

ii) The performance of the proposed method is validated experimentally on a PMSM, where a speed control based on the proposed sliding mode observer-control strategy is implemented.

iii) The proposed methodology based on a single gain is very interesting from the engineering point of view since it reduces the computational effort (no LMIs are solved), and the ease of implementation Finally, the proposed methodology can be easily be extended for sensorless control of machines based on STA.

This paper is organized as follows. In Section II, some preliminaries on high-gain observer design and the problem statement are introduced. The main result which concerns the design of the single gain Super Twisting algorithm and its convergence proof is given in Section III. Section IV is devoted to the application of the proposed algorithm to control a PMSM. Furthermore, experimental results to illustrating the performance of the proposed strategy are presented in Section V. Finally, some conclusions are given in Section VI. 

LIST OF ACRONYMS

FOC

ẋ(t) = f (x(t), t) + g(x(t), t)u(t) (1) 
where x(t) ∈ R n is the state vector, u(t) ∈ R is the input, f and g are smooth uncertain functions, with g(x(t), t) = 0.

For the controller design, a scalar sliding variable s(t) can be defined so that s(t) is considered as the output of the system (1) and the following assumption holds. Assumption 1: System (1) admits a relative degree equal to one with respect to the sliding variable s(t).

To synthesize the control law, taking the time derivative of s(t) such that the sliding surface dynamics can be given by

ṡ(t) = φ(x(t), t) + ϕ(x(t), t)u(t) + ρ(x(t), t) (2) 
where s ∈ R, φ and ϕ are nominal nonlinear functions and ρ represents parametric uncertainties and external disturbances. These functions satisfy the following assumption. Assumption 2: The functions φ : R n × R + → R and ϕ : R n × R + → R are known and ρ : R + → R is differentiable and its derivative is unknown but bounded, i.e. there exists a known constant d > 0 such that for all t ≥ 0 it follows that

| ρ(x(t), t)| ≤ d. (3) 
Notice that (3) is usually verified in practice because physical systems have bounded states. In the sequel, ρ(t) = ρ(x(t), t) will be used.

Problem: Consider the linearizing state feedback u defined as :

u = 1 ϕ -φ + w λ STC , (4) 
Then, system (2) in closed-loop with the control (4) leads to

ṡ(t) = w λ ST C (s(t)) + ρ(t) (5) 
Then, the control objective is to design a controller w λ STC based on STA in closed-loop with the system [START_REF] Delpoux | High-order sliding mode control for sensorless trajectory tracking of a PMSM[END_REF], such that the sliding condition holds, i.e. the sliding surface and its firsttime derivative are equal to zero: s(t) = ṡ(t) = 0 in finite time for every disturbance ρ(t) satisfying Assumption 2.

A. High-gain Concepts

We introduce the high-gain observer design for a class of uniformly observable nonlinear systems (observable for any input).

Consider system (1) with the measured output

y = h(x) (6) 
with y ∈ R and h a smooth known function, that can be transformed, by means of a transformation ξ = T (x) into the following form

ξ = Aξ + Φ(ξ, u) y = Cξ (7) 
with ξ ∈ R n , and a function Φ : R n × R → R n . Then, under the following assumptions it is possible to design an observer.

A1. The state x(t) and the input u(t) are bounded,. i.e. there exist compact sets X and U such that for all t , x ∈ X and u ∈ U . A2. The functions φ i , which are the components of Φ, are Lipschitz with respect to x(t) and uniformly with respect to u(t).

A high-gain observer for system [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF] is given by

ξ = A ξ + Φ( ξ, u) + λ∆ -1 λ S -1 C T C( ξ -ξ) ŷ = C ξ (8)
where λ > 0 is a real parameter and S is the unique solution of the following algebraic Lyapunov equation

S + A T S + SA -C T C = 0 (9) 
and

∆ λ = diag(1, 1 λ , ..., 1 λ n-1
). Then we have the following result that provides the performance of the observer.

Theorem 1: Under Assumptions A1 and A2, system ( 8) is an exponential observer for system [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF].

The proof of convergence of this observer is as follows. Let e = ξ -ξ be the estimation error. Then, the dynamics of the estimation error is given by

ė = (A -λ∆ -1 λ S -1 C T C)e + Φ( ξ, u) -Φ(ξ, u).
(10) Using the following change of coordinates = ∆ λ e, and the identities ∆ λ A∆ -1 λ = λA and ∆ -1 λ C = C, then the dynamics of the estimation error can be rewritten as follows

˙ = λ(A -S -1 C T C) + ∆ λ (Φ( ξ, u) -Φ(ξ, u)).
(11) Considering the Lyapunov function V ( ) = T S , and taking the time derivative along the trajectories of ( 12), and from Assumption A2, it follows that

V ( ) = -λV ( ) + 2 T S∆ λ (Φ( ξ, u) -Φ(ξ, u)) < -(λ -k 1 )V ( ) (12) 
where

k 1 = 2µ 1 ||S|| λ m (S)
with λ m (S) the minimum eigenvalue of S, and

µ 1 the Lipschitz constant, i.e. ||Φ( ξ, u) -Φ(ξ, u)|| < µ 1 || ||.

III. MAIN RESULT

Consider the classical STA (see [START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF]) given by

w λ STC (s) = -k 1 |s| 1 2 sign(s) + ζ λ ζλ (s) = -k 2 sign(s), ζ λ (s(0)) = 0 (13) 
where k 1 and k 2 are the gains of the controller. The gains are selected using LMI techniques, and hence two inequalities must be satisfied (see [START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF] for more details).

The following parametrization is introduced

k 1 = 2λ, k 2 = λ 2 2
where λ is a positive constant to be tuned.

Then, the proposed Super Twisting Controller (STC) w λ STC is given by

   w λ STC (s) = -2λ|s| 1 2 sign(s) + ζ λ ζλ (s) = - λ 2 2 sign(s), ζ λ (s(0)) = 0. ( 14 
)
Inspired by the high-gain observer design, given in Section II-A, the main result of the paper is established in the following theorem.

Theorem 2: Consider system (2) where Assumptions 1 and 2 are satisfied, in closed-loop with the control (4) and combined with STA [START_REF] Lee | Adaptive integral sliding mode control with time-delay estimation for robot manipulators[END_REF]. Then, the sliding surface s converges in finitetime to zero provided that λ is large enough.

Proof: Consider the following change of coordinates

   ξ 1 (t) = |s(t)| 1 2 sign(s(t)) ξ 2 (t) = - λ 2 t 0 sign(s(τ ))dτ + ρ(t)/λ ( 15 
)
whose dynamics is given by

ξ = λ 2|s| 1 2 {(A -KC)ξ + ∆ λ Φ} (16) 
where

ξ = ξ 1 ξ 2 T , A = 0 1 0 0 , C = 1 0 , ∆ λ Φ =    1 λ 0 0 1 λ 2    0 2|s| 1 2 ρ
.

where K = S -1 o C T with S o is a symmetric and definite positive matrix solution of the following Algebraic Lyapunov Equation:

S o + A T S o + S o A -C T C = 0. (17) 
Then, S -1 o is given by

S -1 o = 2 1 1 1 it follows that K = 2 1 T .
Notice that system ( 16) has a structure similar to [START_REF] Kim | A high-speed sliding-mode observer for the sensorless speed control of a pmsm[END_REF], then an analysis of convergence similar to the high-gain observer design can be applied (see [START_REF] Hamida | An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification[END_REF]).

It is clear that system ( 16) is defined for s = 0, which is the case before reaching the sliding surface. In order, to analyze the convergence of the tracking error dynamics [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], consider the following candidate Lyapunov function

V (ξ) = ξ T S o ξ (18) 
which is quadratic in the new coordinates. Note that V (ξ) is continuous and continuously differentiable everywhere except in a domain given by [START_REF] Moreno | Lyapunov Approach for Analysis and Design of Second Order Sliding Mode Algorithms[END_REF] for more details). Since the trajectories of the system cannot stay in the set Ψ before reaching the origin, the time derivative of V (ξ) can be calculated in the usual way everywhere except when the trajectories intersect the set Ψ. If the trajectories reach the origin after a time T , then they will remain there.

Ψ = {(ξ 1 , ξ 2 ) ∈ R 2 |ξ 1 = 0} (see
The time derivative of V (ξ) along the trajectories of ( 16) is

V (ξ) = λ 2|s| 1 2 [ξ T (A-KC) T S o +S o (A-KC))ξ+2ξ T S o ∆ λ Φ.]
Using [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF] and the definition of

K = S -1 o C T , one gets V (ξ) = λ 2|s| 1 2 [-ξ T S o ξ -ξ T C T Cξ + 2ξ T S o ∆ λ Φ]
or equivalently

V (ξ) ≤ λ 2|s| 1 2 [-ξ T S o ξ + 2ξ T S o ∆ λ Φ]. (19) 
From ( 15), the inequality |s|

1 2
≤ ||ξ|| holds, and from Assumption 2, it follows that ||∆ λ Φ|| ≤ 2d||ξ||/λ 2 . Then, substituting in the above inequalities in [START_REF] Liu | Disturbance-observerbased control for air management of pem fuel cell systems via sliding mode technique[END_REF], we obtain

V (ξ) ≤ - λ 2|s| 1 2 V (ξ) + 4d 2|s| 1 2 λ ||S o || • ||ξ|| 2 . ( 20 
)
Taking into account the following inequality

λ min (S o )||ξ|| 2 ≤ V (ξ) ≤ λ max (S o )||ξ|| 2 (21) 
where λ min (S o ), λ max (S o ) are the minimum and maximum eigenvalues of S o respectively, it follows that

V (ξ) ≤ - λ -µ(λ) 2|s| 1 2 V (ξ) (22) 
where

µ(λ) = 4d||S o || λ • λ min (S o )
. From the inequality |s|

1 2 ≤ ||ξ|| ≤ V (ξ) λ min (S o ) 1 2
, it follows that

V (ξ) ≤ -γV 1 2 (ξ) (23) 
where

γ = λ -µ(λ) 2λ -1 2 min (S o ) . ( 24 
)
Choosing λ sufficiently large such that the inequality

λ > µ(λ) (25) 
holds, then V (ξ) is definite negative, V (ξ) is a Lyapunov function and the trajectories converge to zero in finite-time.

It is clear that the stability of the closed-loop system to zero is determined by only a single condition, which depends on the choice of the parameter λ.

For estimating the convergence time, note that the solution of the differential equation

v = -γv 1 2 , v(0) = v 0 ( 26 
)
is given by

v(t) = v 1 2 0 - 1 2 γt 2 . ( 27 
)
From the comparison principle [START_REF] Pachpatte | Comparison theorems related to a certain inequality used in the theory of differential equations[END_REF], one has V (ξ) < v(t) when V (ξ(0)) < v 0 , then ξ converges to zero in finite-time and reaches that value at the instant T defined by

T = 2V 1 2 (ξ(0)) γ . (28) 
Thus, the states ξ 1 and ξ 2 converge to zero in finite-time. As a result, the surface s will converge to zero in finite-time.

Substituting γ in [START_REF] Sun | Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control[END_REF], it follows that

T = 4V 1 2 (ξ(0))λ -1 2 min (S o ) λ -µ(λ) (29) 
Note that the STA ( 14) depends on λ only, which simplifies the tuning. From (29) it can be seen that choosing the gain λ sufficiently large, the convergence time of the algorithm is reduced. Note that this convergence time depends on the initial conditions through ξ(0).

The choice of λ can be made as follows:

Choose λ ≥ λ s where

λ s = 4d||S 0 || λ min (S 0 ) . ( 30 
)
The value of S 0 is known, then λ s ≈ 5.24 √ d, where d is given in (3). This will ensure that γ defined in [START_REF] Pachpatte | Comparison theorems related to a certain inequality used in the theory of differential equations[END_REF] is positive, and thus the whole system in closed-loop with STA is stable. The stability condition is more conservative than that proposed in [START_REF] Chalanga | Finite Time Stabilization of An Uncertain Chain of Integrators by Integral Sliding Mode Approach[END_REF] and references therein. Reducing this conservatism is an objective for a future work. Then we can increase λ in order to obtain the desired convergence time using [START_REF] Sun | Practical tracking control of linear motor via fractional-order sliding mode[END_REF]. Note that increasing λ will also result in noise amplification so there is a trade-off between convergence speed and noise amplification. Fig. 1: Comparison with [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF] and [START_REF] Levant | Homogeneous filtering and differentiation based on sliding modes[END_REF] Numerical comparison with existing method: The proposed approach is compared with existing algorithm presented in [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF] and [START_REF] Levant | Homogeneous filtering and differentiation based on sliding modes[END_REF]. This comparison is illustrated trough a numerical example.

Consider system (5) with:

ρ(t) = p(t) + n(t), p(t) = sin(10t) + 1, n(t) ∈ (0, 0.01 2 ). (31) 
In [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF] and [START_REF] Levant | Homogeneous filtering and differentiation based on sliding modes[END_REF] the STA is expressed as

wλ STC (s) = -g 1 λ|s| 1 2 sign(s) + ζλ ζλ (s) = -g 0 λ 2 d • sign(s) ( 32 
)
where d is defined as in Assumption 2, and G = [g 1 g 0 ] are the tuning gains of the controller, using the values (G = [1.5 1.1] and λ = √ d). Notice that no conditions are given to increase the speed convergence and ensure the stability to zero.

From [START_REF] Yang | Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers[END_REF], the bound d is fixed as d < 100. Simulation results using four different gains are plotted in Fig. 1, as follows :

1) For G = [1. d: choosing λ ≥ λ s increase convergence speed. Finally, the simulation results have demonstrated the efficiency of the proposed approach compared with those proposed in [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF] and [START_REF] Levant | Homogeneous filtering and differentiation based on sliding modes[END_REF]. Note that the implementation of these algorithms is similar but the novelty of the proposed algorithm lies in the form of the gain which allow to adjust the convergence rate.

IV. OBSERVER BASED SLIDING MODE CONTROL FOR PMSM

Permanent magnet synchronous motors have an important role in motion control applications in the low and medium power range. PMSM have desired features such as high torque to weight ratio, fast dynamical response. Traditionally this kind of motors have been controlled using the Field Oriented Control (FOC). However, accurate motor parameters and load conditions are necessary to guarantee good performance under disturbances. The parameter variations are a recognized problem and several robust control techniques have been proposed to overcome this difficulty. For instance adaptive control, backstepping control or those based on network-based control.

In this section, the proposed control algorithm is applied to a three-phase PMSM in order to track a desired reference speed under parametric uncertainties (load torque). The control algorithm is designed from a d-q model of the PMSM, which is obtained from Clarke and Park transformations [START_REF] Park | Two-reaction theory of synchronous machines generalized method of analysis -part I[END_REF].

A. PMSM Model in d-q coordinates

First, consider the mathematical model, described in d-q reference frame, of the PMSM:

                       L di d dt = v d -Ri d + LpΩi q L di q dt = v q -Ri q -LpΩi d -φ f pΩ J dΩ dt = p 3 2 φ f i q -f Ω -τ l dθ dt = Ω (33) (34) (35) (36) 
where Notations used for the PMSM R stator resistance L stator inductance φ f permanent-magnet flux linkage i d , i q stator d -q currents v d , v q stator d -q voltages Ω rotor mechanical speed θ rotor angular position J moment of inertia f viscous friction coefficient p number of pole pairs τ l load torque

The control strategy is designed from the flatness property of the motor. Indeed, in [START_REF] Sira-Ramirez | A passivity plus flatness controller for permanent magnet stepper motor[END_REF] it was shown that PMSM are flat systems, where the flat outputs are the direct current i d and the speed Ω. Then, to control the PMSM, it is necessary to design a control loop for the direct current i d and another for the rotor speed Ω.

For the current loop, the sliding variable is chosen such that the system has relative degree equal to one, thus a STA can be used.

For the speed control loop, the sliding variable is selected, in terms of the rotor speed Ω and its derivative for the system to have relative degree equal to one with respect to the sliding variable. The motor acceleration is usually not available so a STA-based observer will be designed to overcome this difficulty.

Furthermore, the stability of the overall observer-controller scheme in closed-loop with the system is developed. The proposed control scheme is represented Fig. 2.

Assumption 3: The conditions under which the approach works are :

1) the currents i d and i q are measured, 2) the position θ and the velocity Ω are measured, 3) the torque τ is C 1 and its time derivative is bounded i.e.

dτ l dt < η *
where η * > 0.

B. Direct current control

The following sliding surface

s d = i d -i d ( 37 
)
where i d is the direct current reference is defined. Now, taking the time derivative of s d , it follows that

ṡd = 1 L [-Ri d + LpΩi q ] + 1 L v d - di d dt . (38) 
Choosing the control v d as

v d = Ri d -LpΩi q + L di d dt + Lw λi d ST C (s d ) (39) 
where the function w λ ST C is defined in [START_REF] Lee | Adaptive integral sliding mode control with time-delay estimation for robot manipulators[END_REF]. Then, it follows that

   ṡd = -2λ i d |s d | 1 2 sign(s d ) + ζ λ ζλi d (s d ) = - λ 2 i d 2 sign(s d ), ζ λ (s d (0)) = 0 (40) with λ i d > 0.
Notice that the closed-loop system (40) is in the form of ( 5) with ρ = 0. As a consequence, Theorem 1 guarantees the existence of a sufficiently large λ i d in order to stabilize the surface s d to zero.

C. Observer based speed control

For designing a speed control, taking the time derivative of [START_REF] Zhang | Sliding mode observers for electric machinesan overview[END_REF] and substituting [START_REF] Zhang | Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques[END_REF], one gets

d 2 Ω dt 2 = 3pφ f 2J 1 L [v q -Ri q -LpΩi d -φ f pΩ] - f J dΩ dt - 1 J dτ l dt . ( 41 
) Defining x Ω = Ω Ω T , the above equation can be written, in a state space representation, as follows

ẋΩ,1 = x Ω,2 ẋΩ,2 = - f J x Ω,2 + Γ(v q , i d , i q , Ω) - 1 J dτ l dt (42) 
where x Ω,1 -Ω x Ω,2 -Ω T , the tracking error vector, with Ω is a smooth speed reference. Then, the tracking error dynamics is given by

Γ(v q , i d , i q , Ω) = 3pφ f 2JL [v q -Ri q -LpΩi d -φ f pΩ] (43)
ėΩ,1 = e Ω,2 ėΩ,2 = - f J x Ω,2 + Γ(v q , i d , i q , Ω) - 1 J dτ l dt -Ω .
(44) Defining the following sliding surface :

s Ω = c Ω e Ω,1 + e Ω,2 (45) 
it follows that system (44) has a relative degree equal to 1 with respect to the s Ω . Since e Ω,2 is not available for measurement, then in order to implement a control STA it is necessary to estimate it.

1) Acceleration Super Twisting Observer (STO): A Super Twisting observer is designed to estimate the acceleration, in order to implement the speed controller.

Consider the following Super Twisting observer for system (42)

   ẋΩ,1 = xΩ,2 + 2λ â|e â,1 | 1 2 sign(e â,1 ) ẋΩ,2 = - f J xΩ,2 + Γ(v q , i d , i q , Ω) + λ 2 â 2 sign(e â,1 ) (46) 
with λ â > 0 and e â = x Ω -xΩ . Then. the estimation error dynamics is given by

   ėâ,1 = e â,2 -2λ â|e â,1 | 1 2 sign(e â,1 ) ėâ,2 = - λ 2 â 2 sign(e â,1 ) - f J e â,2 + ρâ (47) 
where

ρâ (t) = - 1 J dτ l dt . Defining s â = e â,1 , one gets ṡâ = w λ â ST C (s â) - f J t 0 e â,2 (τ )dτ + ρ â. (48) 
Notice that equation ( 48) is in the form of the general dynamics [START_REF] Delpoux | High-order sliding mode control for sensorless trajectory tracking of a PMSM[END_REF], with an extra term -

f J t 0 e â,2 (τ )dτ . 
Noting that -(f /J)e â,2 is a stabilizing term of the second equation in (47), it will only result in an extra negative term in the Lyapunov stability analysis.

As a consequence, form Assumption 2, it follows that the external torque derivative is bounded, then Theorem 1 ensures that for a sufficiently large gain λ â, s â tends to zero in finitetime.

2) Speed control: Substituting the estimated acceleration in the sliding surface (45), it follows that:

ŝΩ = c Ω e Ω,1 + êΩ,2 (49) 
where c Ω > 0 and êΩ,2 = xΩ,2 -Ω . Notice that e Ω,2 =

x Ω,2 -Ω = e â,2 + êΩ,2 , then (49) is given by

ŝΩ = c Ω e Ω,1 + e Ω,2 -e â,2 = c Ω e Ω,1 + ėΩ,1 -e â,2 . (50) 
It follows that

ėΩ,1 = s Ω -c Ω e Ω,1 + e â,2 . (51) 
Taking the time derivative of s Ω , one gets

ṡΩ = c Ω ėΩ,1 + ėΩ,2 = c Ω e Ω,2 + ẋΩ,2 -Ω = c Ω (e â,2 + êΩ,2 ) - f J xΩ,2 + Γ(v q , i d , i q , Ω) + λ 2 â 2 sign(e â,1 ) -Ω . (52) 
Choosing the controller v q as follows

v q = Ri q + LpΩi d + φ f pΩ + 2JL 3pφ f -c Ω êΩ,2 + f J xΩ,2 - λ 2 â 2 sign(e â,1 ) + Ω + w λΩ ST C (s Ω ) (53) 
where the function w λ ST C is defined in ( 14), λ Ω > 0. Then, substituting (53) in (52), it follows that

ėΩ,1 = ŝΩ -c Ω e Ω,1 + e â,2 , ṡΩ = c Ω e â,2 + w λΩ ST C (ŝ Ω ). (54) 
3) STC based on STO: The system in closed-loop with the control (53) using the estimates given by the observer (47) composed by the STO can be represented as

Π : ėΩ,1 = ŝΩ -c Ω e Ω,1 + e â,2 , ṡΩ = c Ω e â,2 + w λΩ ST C (ŝ Ω ). Ξ :    ėâ,1 = e â,2 -2λ â|e â,1 | 1 2 sign(e â,1 ), ėâ,2 = - λ 2 â 2 sign(e â,1 ) - f J e â,2 + ρâ . (55) 
As already discussed before, since the estimation error of Ξ converges to zero in finite time, then it follows that e â,1 = e â,2 = 0. Furthermore, if the observer gains are chosen such that observation error converges faster than the dynamics of system Π, then one gets:

ėΩ,1 = ŝΩ -c Ω e Ω,1 , ṡΩ = w λΩ ST C (ŝ Ω ). (56) 
The second equation of ( 56) is the STA, thus from Theorem 1, and taking λ Ω sufficiently large ensures that ŝΩ = ṡΩ = 0 is achieved in finite-time. As a result, the dynamics of e Ω,1 will converge asymptotically to zero and the convergence rate will depend on the value of c Ω .

Remark 1: The practical implementation of STA for sliding mode observer based approaches was studied in [START_REF] Chalanga | Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches[END_REF] where the strategy proposed here is discussed. It has the disadvantage that the control (53) contains the discontinuous term

- λ 2 â 2
sign(e â,1 ) which is not ideal for practical implementation. The observer proposed in [START_REF] Chalanga | Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches[END_REF] Section IV is indeed more suitable for our application. However the gain tuning approach proposed here can not be applied for third order system yet. A perspective of this work is the extension of the proposed approach for higher order system and not only limited to STA.

In Table I, we recall the notation used for control and observer designs, and in Table III Experimental results are presented to illustrate the performance of the proposed control algorithm applied to the PMSM. The experimental test bench consists of two motors connected by their shafts. A PMSM is used as a motor while a DC motor is used as a generator and act as a load. The PMSM is a Hurst motor (60W, 24V, 3000 rpm) and the DC motor is a Parvalux Brushed DC Motor (90W, 24Vdc, 3000 rpm). The DC load was chosen to be able to reach the PMSM limits. Both motors are driven using a dSPACE® MicroLabBox. The test bench is represented in Fig. 3. The parameters of the PMSM have been identified using [START_REF] Delpoux | Parameter estimation of permanent magnet stepper motors without mechanical sensors[END_REF] and are given in Table II along with some experimental characteristics.

Note that for this experimentation, to show the robustness of the proposed approach, a low cost motor was used, with a 250-line incremental encoder only (to be compared with classical 12 bits encoder with 4096 lines). It follows that the information of the motor d -q variables is not very accurate , since they are obtained using the measured position. The speed and load torque references are given in Fig. 4, which correspond to a standard industrial benchmark [START_REF] Hamida | An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification[END_REF]. As can be seen from Fig. 4, from 0 to 0.7 s the speed reference is equal to 0, from 0.7 to 4.2 s the control scheme is tested at low speed. From 5.7 to 8.6 s the proposed scheme is tested at high speed. For each speed level, a load torque is applied. The load is realized with the use of a current control on the DC motor. Note that the dynamics of the load torque has to be bounded.

Remark 2: In practice, the dynamics of physical signals is always bounded, then Assumption 2 is always verified. Notice that for the current and the speed loops, there is no perturbation as explained after (40) and (56), then the gains only need to be positive to guarantee the stability. For the observation loop, the bound d defined in (3) can be computed as d

= 1 J τ lmax T r ,
where τ lmax is the maximum of the perturbation and T r is the rising time of the DC motor used as a load. According to Fig. 4-bottom, τ lmax = 0.25 N.m and from the DC motor characteristics one gets T r ≈ 100 ms, then λ s ≈ 515 (see definition in [START_REF] Utkin | Sliding Mode Control in Electromechanical Systems[END_REF]). Note that the chosen λ â value (Table III) is smaller to limit the noise amplification, and it is reminded that the condition is conservative as explained at the end of Section III that is why the system can be stable even if the condition λ ≥ λ s is not verified. The controller gains have been chosen as shown in Table III in order to achieve a good performance. It is important to recall that only four parameters are needed and that the tuning is simple, because each gain can be increased till getting the desired convergence time. Furthermore, one gain is used for the current control: λ i d , and two gains are necessary for the velocity control: c Ω , λ â. Finally, the last gain is required for the observer: λ â. The number of gains for the single gain and classical Super Twisting Algorithm [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] is compared in Table IV. Note that for classical STA the number of gains is two instead of a single gain for the proposed approach. For the speed control, the extra gain comes from the computation of the sliding surface (49).

In Fig. 5a the speed reference, the measured speed as well as the estimated velocity used for the control are displayed and the observed acceleration is shown in Fig. 5b. The figure highlights very good reference tracking. The small overshoots on Fig. 5a are at the instant where the load torque is applied, it demonstrates that perturbation rejection is fast. Indeed the zoom of Fig. 5a, when the load is applied at high speed is represented in Fig. 6. In less than 0.15 seconds, the perturbation is rejected. Note that at high speed, the available voltage to produce torque to reject the perturbation is lower. The phase voltages v d and v q are represented in Fig. 7. In the d-q coordinates one has

v d v q = v 2 d + v 2 q < V M AX = 12 V
The applied torque at high speed reaches these limits. It explains the fact that overshoots are present at high speed but not at low speed. Fig. 5a also shows the accuracy of the speed observation. Note that the motor is a low cost motor that has a high cogging torque and low cost encoder. It results in period the oscillations on Fig. 6, indeed, the oscillation period around 0.031s corresponds to the motor speed at 200rad/s. In addition, to the good tracking performances, one can see that the observed speed is filtered compared to the measured speed (Fig. 6).

All the figures presented in this section demonstrate the efficiency of the proposed control strategy with the use of four tuning gains only.

VI. CONCLUSION

In this article, a new method to tune sliding mode controllers and observers based on STA has been presented. This method relies on the high-gain theory and allows to easily tune the gains of the algorithm by using one gain only. It is essential to mention that the novelty of this article is based on the gain tuning method and not on the control design of the STA. Furthermore, a stability analysis, based on a Lyapunov approach, which guarantees the finite-time towards zero of the proposed algorithm has where sufficient conditions have been obtained. The performances of the method have been evaluated experimentally on a PMSM and shows very good performances. This new method will make the tuning of controllers much easier for the control engineers because it reduces the number of tuning gains and the tuning only consists in increasing each gain till achieving the desired convergence time. Future developments will target the extension to higher order systems as well as the reduction of the conservatism of the stability condition.
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  gathers the four gains used in the control design.

	Loop	Description	Symbol
	Current	current reference	i d
	control	sliding surface for i d current control	s d
		mechanical state (rotor speed and acc.)	x Ω
	Acceleration acceleration observer state	xΩ
	observer	acceleration observer error	e â
		sliding surface for acceleration observer	s â
		speed reference	Ω
	Speed	trajectory tracking error with x Ω	e Ω
	Control	trajectory tracking error with xΩ	êΩ
		sliding surface for trajectory tracking error	s Ω
		TABLE I: Notations	
		V. EXPERIMENTAL RESULTS	

TABLE II :

 II Parameters of the PMSM and experimentation characteristics

		Parameter	Symbol	Value	Unit
	Stator resistance	R	0.405	Ω
	Stator inductance	L	300 • 10 -6	H
	Viscous friction coefficient	f	1.044 • 10 -4	Nm/(rad/s)
	Moment of inertia	J	2.5908 • 10 -4	kg.m 2
	Permanent-magnet flux linkage Φ f	7.63 • 10 -3	Wb
	Number of poles	p	5
	Maximum voltage	V M AX	12	V
	PWM Frequency Dead time	f P W M Tm	20 0.5 • 10 -6	kHz s
	Sampling period	Ts	1 • 10 -4	s
		A		
				B
	F	E		
			D	C

TABLE III :

 III Controllers and observer tuning gains

	Gain	Symbol Value
	d-axis current gain Acceleration observer gain	λ i d λ â	1500 100
	Speed gain	λ Ω	3000
	Speed control surface constant c Ω	100

TABLE IV :

 IV Comparison of number of gains