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A B S T R A C T

Exposure to chronic skeletal muscle disuse and unloading that astronauts experience results in muscle decon
ditioning and bone remodeling. Tendons involved in the transmission of force from muscles to skeleton are also 
affected. Understanding the changes that occur in muscle, tendon, and bone is an essential step toward limiting 
or preventing the deleterious effects of chronic reduction in mechanical load. Numerous reviews have reported 
the effects of this reduction on both muscle and bone, and to a lesser extent on the tendon. However, none 
focused on the tendon enthesis, the tendon-to-bone attachment site. While the enthesis structure appears to be 
determined by mechanical stress, little is known about enthesis plasticity. Our review first looks at the rela
tionship between entheses and mechanical stress, exploring how tensile and compressive loads determine and 
influence enthesis structure and composition. The second part of this review addresses the deleterious effects of 
skeletal muscle disuse and unloading on enthesis structure, composition, and function. We discuss the possibility 
that spaceflight-induced enthesis remodeling could impact both the capacity of the enthesis to withstand 
compressive stress and its potential weakness. Finally, we point out how altered compressive strength at entheses 
could expose astronauts to the risk of developing enthesopathies.   

1. Introduction

Throughout their lives, people may be exposed to chronic periods of
inactivity and skeletal muscle disuse through a sedentary lifestyle, 
immobilization following an injury, bed confinement due to illness, 
aging, spinal cord injury, or certain chronic diseases. A striking but less 
common cause of reduced muscle activity is spaceflight, which places 
astronauts in a microgravity environment leading to hypokinesia and 
hypodynamia (Booth et al., 2017). Since mechanical stress is necessary 
to maintain the integrity of the musculoskeletal system, reductions in 
movement and mechanical loading lead to structural changes in the 
different components of the system and eventually to physiological and 
mechanical dysfunctions. Understanding the changes that occur in 
muscle, tendon, and bone is an essential step toward limiting or pre
venting the deleterious effects of inactivity. Space exploration, with its 
increasing long-term missions, requires this knowledge so as to antici
pate the effects of a microgravity environment on astronauts, as well as 
to optimize post-flight rehabilitation strategies. Many studies have 
investigated the effects of inactivity and microgravity on muscle and 

bone. Both factors not only result in muscle deconditioning, which 
translates mainly into decreased muscle mass and strength, and 
increased fatigability (Chopard et al., 2009; Dedley-Javoroski and 
Shields, 2008; Gao et al., 2018; Lang et al., 2017; Michael, 2000; Narici 
and De Boer, 2011), but also in bone remodeling characterized by losses 
in bone mass and bone mineral density (Bloomfield et al., 2016; 
Dudley-Javoroski and Shields, 2008; Lang et al., 2017; McGee-La
wrence et al., 2008; Sievänen, 2010; Vico and Hargens, 2018). 

In contrast, although the tendon and its myotendinous and osteo
tendinous interfaces support force transmission from muscle to bone, 
considerably less research has explored how the tendon is affected by 
disuse. A few reviews have summarized these effects of unloading on the 
tendon (Bloomfield et al., 2016; Dideriksen, 2014; Magnusson and 
Kjaer, 2019; McCrum et al., 2018; Reeves et al., 2005) and the myo
tendinous interface (Curzi, 2016). However, none focused on the tendon 
enthesis, the attachment site of a tendon to bone. To address this gap, 
our review first looks at the relationship between entheses and me
chanical stress, showing how mechanical stress influences the structure, 
composition, and function of this interface. The second part focuses on 



2. The Tendon and its Enthesis: role, structure and composition

Tendons are an integral part of the musculoskeletal system. They
play a role in proprioception by constantly informing the central ner
vous system about the tensile state of the muscle-tendon complex, 
through their mechanoreceptors (Jozsa et al., 1993; Proske and Gan
devia, 2012). In addition, tendons allow joint movement by transmitting 
forces generated by muscle to the bone with minimal energy dissipation 
and deformation (Franchi et al., 2007; Juneja and Veillette, 2013). The 
mechanical properties of tendons are determined by the biochemical 
composition and the structural organization of the tendon and its in
terfaces (Killian et al., 2012; Magnusson et Kjaer, 2019). The material 
properties of tendons and their high tensile strength ensure efficient 
force transmission with minimal risk of injury (Franchi et al., 2007; 
Magnusson and Kjaer, 2019; Reeves et al., 2005). The folded membrane 
of muscle fibers at the specific site of myotendinous junction reduces the 
stress applied on the interface (Charvet et al., 2012). Moreover, the 
enthesis fibrocartilage, which allows a gradual transition of mechanical 
properties between the tendon and bone, protects from the risks of wear 
and tear (Shaw and Benjamin, 2007; Zelzer et al., 2014). 

The tendon is a dense connective tissue containing few cells and 
whose main extracellular matrix (ECM) component is collagen fibers 
(Magnusson and Kjaer, 2019). The dry mass of the tendon is composed 
of 86% collagen, as well as 2% elastin and 1–5% proteoglycans (Juneja 
and Veillette, 2013). In a healthy tendon, almost all the cells are fibro
blasts, also called tenocytes (Juneja and Veillette, 2013), which are 
differentiated from tendon progenitor cells (Subramanian et schilling, 
2015). These cells not only synthesize the various components of the 

ECM (Juneja and Veillette, 2013), but also participate in its degradation 
(Leyden et al., 2019). The tendon has a very hierarchical structure. The 
collagens that are the main protein of the ECM assemble to form fibrils, 
and the latter are grouped into fibers, which assemble into bundles. 
Fibrils, fibers, and collagen bundles are mainly oriented along the 
force-producing axis (Leyden et al., 2019; Khayyeri et al., 2017). The 
collagen molecules that compose the fibrils of a healthy tendon are 
mainly type I collagen (Freedman et al., 2014; Killian et al., 2012). Type 
III and type II collagens have been described at the myotendinous 
insertion (Jakobsen et al., 2017; Kannus et al., 1992) and osteotendinous 
insertion (Friese et al., 2020; Jensen et al., 2018; Waggett et al., 1998), 
respectively. Inside the tendon ECM, collagen fibers are accompanied by 
elastic fibers that enable the tendon to recover its shape after being 
stretched (Killian et al., 2012; Leyden et al., 2019) and by small pro
teoglycans (SLRP) that ensure the cohesion of the fibrils and collagen 
fibers (Freedman et al., 2014; Leyden et al., 2019). The ECM also con
tains glycoproteins, water, and other large proteoglycans involved in the 
tendon’s capacity to resist compressive forces (Leyden et al., 2019; 
Juneja and Veillette, 2013). Large proteoglycans are also reported to 
provide the force transmission between the fibrils (Franchi et al., 2007; 
Magnusson and Kjaer, 2019). 

The tendon enthesis is the site where a tendon inserts into bone. 
There are two types of tendon enthesis : fibrous entheses and fibro
cartilaginous entheses. In a fibrous enthesis, the tendon’s collagen fibers 
attach to the periosteum of the long bone diaphysis by perforating 
mineralized collagen fibers, also called Sharpey’s fibers (Bunker et al., 
2014; Friese et al., 2020). In a fibrocartilaginous enthesis (Fig. 1), the 
tendon inserts into the long bone epiphysis through a fibrocartilaginous 
area (Friese et al., 2020). The present review only considers fibrocarti
laginous entheses. The tendon enthesis transmits forces from the tendon 
(soft tissue) to the bone (hard tissue), thereby exposing it to high tensile 
stress (Fig. 1). Due to the disparity in the mechanical properties of the 
two tissues it joins, this interface is a region where mechanical stress is 
highly concentrated, making it vulnerable (Benjamin et al., 2006; Der
win et al., 2018; Killian et al., 2012). However, tissue organization and 
molecular composition at a fibrocartilaginous enthesis provide protec
tion against wear and tear from tensile, shear, and compressive stress 
(Shaw and Benjamin, 2007). In addition to the tensile stress that the 

Fig. 1. Schematic representation of a fibro
cartilaginous enthesis exemplified by the 
Achilles tendon enthesis. The fibrocartilage of 
the enthesis consists of an unmineralized zone 
(UFC) and a calcified zone (CFC). The latter is 
distinguished from the UFC by the tidemark 
(dotted line) and forms the osteochondral 
interface with the bone. At the tendon-to-bone 
interface, tendon fibroblasts are replaced by 
chondrocytes within the fibrocartilage. The 
tendon zone of the enthesis consists mainly of 
well-aligned type I collagen fibers as well as 
some type II collagen, elastin, and SLRP (small 
leucin-rich proteoglycan) (Apostolakos et al., 
2014). The UFC zone contains multiple types of 
collagen, predominantly type II and type III 
(Waghray et al., 2015), as well as aggrecan 
associated with hyaluronic acid (Friese et al., 
2020). In the CFC zone, although collagen III is 
expressed (Cury et al., 2016), collagen II is the 
predominant type of collagen. There are sig
nificant amounts of aggrecan as well as type X 
collagen, a non-fibrillar collagen believed to 
stimulate tissue mineralization (Jensen et al., 
2018). The yellow, blue, and red arrows 
represent respectively the tensile, compressive, 
and shear stresses applied on the enthesis.   

the deleterious effects of disuse and unloading on enthesis structure, 
composition, and function. It discusses the consequences that 
spaceflight-induced remodeling of the enthesis could have on both its 
capacity to withstand compressive stress and its potential weakness. A 
parallel between the tendon and the tendon enthesis is drawn 
throughout this review to highlight the fact that, although it belongs to 
the tendon, the enthesis has different structural and molecular charac-
teristics from the tendon, which probably explains why it does not 
necessarily respond in the same way to inactivity. 



enthesis is subjected to, entheses also experience local compressive 
stresses, especially when the tendon fibers insert into the bone at an 
oblique angle. During movement of the articulation, the deep part of the 
enthesis and the bone are therefore pressed against each other, as occurs 
at the Achilles tendon enthesis during dorsiflexion of the foot (Benjamin 
et al., 2006). In addition, according to some authors, internal shear 
forces are created when the joint changes its position (Almekinders 
et al., 2003) not only in the deep part of the enthesis (Apostolakos et al., 
2014; Benjamin and McGonagle, 2009) but also at the osteochondral 
interface (Benjamin and Ralphs, 1998; Milz et al., 2002). 

The entheseal fibrocartilage has an uncalcified zone (UFC) in conti
nuity with the tendon, and a calcified zone (CFC) that inserts into the 
bone (Friese et al., 2020; Jensen et al., 2018; Lu and Thomopoulos, 
2013). There is no clear boundary between the tendon and the fibro
cartilaginous area (Benjamin et al., 1986), but rather a gradual transi
tion from tendon fibrous tissue to enthesis fibrocartilage (Cooper and 
Misol, 1970; Friese et al., 2020; Thomopoulos et al., 2010). The 
boundary between the UFC and the CFC (also called the tidemark) is the 
enthesis mineralization front (Friese et al., 2020; Juneja and Veillette, 
2013), which can be observed under light microscopy when using 
basophilic stains (Apostolakos et al., 2014). At the osteochondral 
interface, the collagen fibers whose cross-sectional areas decrease to
wards the enthesis, continue from the tendon and insert into the bone 
(Sartori and Stark, 2020). In transmission electron microscopy, collagen 
fibrils in mineralized fibrocartilage intermingle with those of lamellar 
bone (Cooper and Misol, 1970). Fibrocartilaginous and bone tissues are 
embedded in a puzzle-like fashion, which increases the mechanical 
adhesion between the fibrocartilage and the bone (Apostolakos et al., 
2014; Bunker et al., 2014; Milz et al., 2002). It appears that the fre
quency and the depth of fibrocartilage invaginations into the underlying 
bone is determined by the force transmitted (Gao and Messner, 1996). 

The fibrocartilage cells of the enthesis are chondrocytes with low 
proliferation capacity (Schwartz et al., 2015). They are located in 
lacunae in the ECM (Benjamin and Ralphs, 2004) and organized in 
columns parallel to the collagen bundles (Benjamin et al., 1986; Cury 
et al., 2016; Ralphs et al., 1992). There are fewer cells in the CFC, 
probably due to deposits of calcium salts that lead to cell death 
(Benjamin et al., 1986). Modulated by mechanical stress pre- and 
post-natally, the enthesis fibrocartilage cells are derived from enthesis 
progenitor cells, differing from the tendon midsubstance progenitors 
and primary cartilage progenitors in that they co-express Scx and Sox9 
as well as Gli-1, a transcriptor factor activated through the Hedgehog 
signaling pathways (Dyment et al., 2015; Jensen et al., 2018; Schwartz 
et al., 2015). 

3. Deleterious effects of inactivity on tendons and enthesis

Like muscle and bone, the tendon is a mechanosensitive structure. Its
molecular composition, structure, and mechanical properties change 
according to the level of mechanical stress to which it is subjected 
(McCrum et al., 2018; Magnusson and Kjaer, 2019). In both humans and 
animals, excepted for Botox-induced muscle paralysis, most experi
mental situations that induce a reduction in mechanical stress lead to a 
loss in tendon elastic properties. Over periods of less than a month of 
inactivity, most ex- and in-vivo studies, respectively carried out on an
imals and humans, reported a decrease in tendon stiffness and/or 
Young’s modulus (Almeida-Silveira et al., 2000; Couppé et al., 2012; De 
Boer et al., 2007; Kubo et al., 2000; Matsumoto et al., 2003). For 
example in rats, the Achilles tendon Young’s modulus, calculated from 
tensile test data, decreased by 41.5% after 21 days of hindlimb sus
pension (Almeida-Silveira et al., 2000). In humans, using an 
ultrasound-based technique assessing the elongation of the tendon 
during an isometric test associated with force measurements, Kubo et al. 
(2000) reported a 32% decrease in stiffness after 20 days of bed-rest. The 
longer the bed-rest, the greater the impact on stiffness, which decreased 
by 58% after 90 days of bed-rest (Reeves et al., 2005). From a functional 

point of view, the loss in tendon elastic properties may not only reduce 
the force output of the muscle-tendon unit but also reduce the speed of 
contractile force transmission to the skeleton, making the muscle-tendon 
unit less efficient (Narici and De Boer, 2011; Reeves et al., 2005; De Boer 
et al., 2007). 

In most cases, loss in tendon elastic properties was not correlated 
with tendon atrophy, suggesting that the material properties of the 
tendon were primarily affected by the unloading. In other words, al
terations to the mechanical properties were attributable to changes in 
the tendon itself (Almeida-Silveira et al., 2000; Couppé et al., 2012; De 
Boer et al., 2007; Kubo et al., 2000). Unfortunately, these authors did 
not conduct a tendon structural study in addition to their mechanical 
investigations, which would have allowed this hypothesis to be verified. 
However, it has been demonstrated that most unloading situations lead 
to collagen remodeling, with both a disorganization of collagen fibrils 
(Nakagawa et al., 1989; Yamamoto et al., 1993) and a decrease in their 
number and diameter (Nakagawa et al., 1989). This collagen remodeling 
could explain the loss in tendon elastic properties in response to 
unloading, since these properties are related to collagen structure 
(Svensson et al., 2016; Magnusson and Kjaer, 2019). In this context, the 
increased rat Achilles tendon stiffness reported after 5–6 weeks of 
Botox-induced muscle paralysis could be explained by increased 
collagen content (Eliasson et al., 2007; Khayyeri et al., 2017). 

In addition to loss in tendon elastic properties, reduced muscle ac
tivity and/or unloading alter the tendon’s resistance to tensile stress, 
resulting in functional weakness (Almeida-Silveira et al., 2000; De Boer 
et al., 2007; Yamamoto et al., 1993). As fibrillar collagens play a role in 
the mechanical resistance of the tendon (Banos et al., 2008), the alter
ations to collagen content, structure, and organization could be 
responsible for the lower tensile strength (Nakagawa et al., 1989; De 
Boer et al., 2007; Matsumoto et al., 2003). This was observed in simu
lated microgravity conditions where a 37.4% decrease in maximum 
stress was reported after 3 weeks of hindlimb suspension in rats 
(Almeida-Silveira et al., 2000). 

While an increasing number of studies address the effects of inac
tivity on the tendon, very few consider the enthesis, even though the 
idea that its structure is determined by mechanical stress is widely 
supported in the literature. Some studies investigating mechanical strain 
at the human entheses in vivo (Chimenti et al., 2016, 2017) and ex vivo 
(Almekinders et al., 2002; Bah et al., 2016; Bey et al., 2002; Huang et al., 
2005; Lyman et al., 2004) showed that the physiological load at the 
enthesis is a combination of tensile and compressive load. The latter 
seems to determine and influence the structure and the composition of 
the enthesis. At tissue level, the stress applied per unit area is mitigated 
by the flaring of the Achilles tendon when it approaches the calcaneus, 
the irregular CFC/bone interface, and the fibrocartilage (Milz et al., 
2002; Shaw et Benjamin, 2007). Moreover, the helical fiber courses of 
the Achilles tendon could contribute to homogeneous stress distribution 
among collagen fibers. The highest collagen fiber curvature, found 
within the UFC, seems to be the result of compressive loads (Sartori et 
Stark, 2020). UFC thickness not only varies according to the mobility of 
the tendon and the angle of its insertion into the bone, but also varies 
with position in the enthesis. The tendons that are the most mobile and 
have a large insertion angle are those where the enthesis fibrocartilage is 
the thickest. In addition, UFC is thicker in the deep part (joint side) of the 
enthesis (Benjamin et al., 1992; Evans et al., 1991; Frowen and 
Benjamin, 1995). This probably reflects the non-uniform distribution of 
compressive strain at the enthesis. For example, in the Achillean 
enthesis, where UFC is thicker in the area near the bursa, greater 
compressive strain was described in the deep region of the enthesis 
compared to the superficial region, due to tendon compression against 
the calcaneum during ankle dorsiflexion (Chimenti et al., 2016). Broadly 
speaking, these data suggest that the higher the compressive stress, the 
thicker the UFC (Benjamin et al., 1992; Frowen and Benjamin, 1995). 

When tendons transfer the force generated by muscles to bones, 
tensile load is placed on the tendon insertion. However, tensile strain 
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stress, the cells at the enthesis site lost their normal rounded appearance 
(Järvinen et al., 1999). In the ECM, collagen disorganization (Frizziero 
et al., 2011; Järvinen et al., 1999; Roffino et al., 2018) and a decrease in 
the expression of collagen II in the UFC (Roffino et al., 2018) were 
described. These changes indicate that the enthesis tends to lose its 
fibrocartilaginous characteristics in an environment where the me
chanical load is reduced. Furthermore, the mineral component of 
enthesis was affected. After 3 weeks of paralysis of the supraspinatus 
muscle, the size, the alignment, and the composition of CFC hydroxy
apatite crystals were altered (Deymier et al., 2019). Unloading induced 
by paralysis decreased bioapatite crystal size and crystallographic 
alignment in the enthesis, in addition to causing bone loss in the humeral 
head. This latter study is one of the few examining the functional con
sequences of unloading on the enthesis. Muscle paralysis was found to 
increase the risk and the extent of avulsion failure at the supraspinatus 
tendon enthesis level, without modifying its elastic properties (Deymier 
et al., 2019). On the same enthesis, the same authors studied the effects 
of short spaceflights (Deymier et al., 2020) and found, contrary to their 
previous study, that the structure and the mechanical properties of the 
enthesis of the supraspinatus tendon were not altered by microgravity. 
However, in contrast to the effects of paralysis, the supraspinatus was 
not subject to muscle atrophy after a 7-day spaceflight (Shen et al., 
2017), showing that the unloading induced by weightlessness is not 
sufficient to trigger muscle deconditioning. Under 7-day weightlessness, 
the tension generated by the supraspinatus appears to maintain the 
structural and functional integrity of the supraspinatus tendon enthesis. 
Thus, the magnitude of the load reduction seems to be a factor in the 
mechanical response of the enthesis. It is therefore highly likely that 
entheses of tendons transmitting force from muscles that atrophy during 
spaceflights will undergo structural remodeling, with possible func
tional consequences. Further studies are needed to support this hy
pothesis. Finally, it is interesting that the enthesis is able to retrieve its 
characteristics during the recovery period after inactivity. Eight weeks 
of low- or high-intensity treadmill running restored the fibrocartilage 
thickness of the enthesis of the quadricipital tendon in rats after 3 weeks’ 
immobilization by plaster cast (Järvinen et al., 1999). However, re
covery seems to involve a stage where fibrocartilage synthesis is exac
erbated. Only a few days after reloading, mice unloaded by hindlimb 
suspension for 2 weeks showed greater UFC and CFC surface areas than 
control entheses, an overexpression of type II collagen in the ECM, and a 
greater number of chondrocytes (Roffino et al., 2018). In addition, the 
magnitude of the load applied on the musculoskeletal system during 
remobilization could be an important factor to optimize enthesis re
covery. A recent study in healthy rabbits investigated the effects of 
electrostimulation of the quadriceps muscle on the patellar tendon 
enthesis. The authors reported a structural remodeling of the enthesis at 
low electrostimulation intensity, reflecting an adaptative response to the 
increase in mechanical stimulation. However, when the electro
stimulation induced a peak tetanic force of the quadriceps muscle 
beyond 18%, structural deleterious changes were observed at the 
enthesis (Fan et al., 2020). 

The mechanisms underlying enthesis structural remodeling in 
response to a chronic variation in mechanical loading have yet to be 
elucidated. However, a very recent study (Shen et al., 2020) provides 
some explanation, highlighting a possible role for connexin 43 in these 
mechanisms. Connexin 43 is a gap junction protein largely expressed in 
skeletal tissues like tendon or bone and thought to be involved in 
mechanotransduction (Ralphs et al., 1998; Banes et al., 1995; Buo and 
Stains, 2014). Shen et al. (2020) studied the response of wild-type mice 
and mice lacking connexin 43 to a treadmill exercise. They demon
strated that, unlike the enthesis anabolic response of wild-type mice, 
which increased with exercise, the anabolic response of connexin KO 
mice was attenuated. This indicates that connexin 43 is necessary for 
tendon enthesis responses to mechanical stimulus. In addition, since 
hedgehog/Gli1 are sensitive to connexin 43 deletion, the authors hy
pothesized that entheseal mechanoresponsiveness is linked to activation 

within the enthesis is not uniform. Most studies report the lowest tensile 
strain on the joint side of the enthesis and the highest tensile strain on 
the superficial side (Almekinders et al., 2002; Bey et al., 2002; Huang 
et al., 2005; Lyman et al., 2004), although only with certain angles of 
shoulder abduction in the case of the supraspinatus tendon enthesis 
(Bey et al., 2002; Huang et al., 2005). These results strongly suggest that 
tensile force is primarily transmitted through the superficial fibers of the 
tendon. Once again, the distribution of tensile stress seems to dictate the 
structure of the enthesis. Thus, the anterior side of the patellar tendon 
enthesis (Almekinders et al., 2002), which exhibits the highest tensile 
strain, has more calcified tissue in its superficial region (Evans et al., 
1991). At the Achilles tendon enthesis, contrary to the deep region, the 
superficial region of the tendon displaying higher tensile strain during 
ankle dorsiflexion (Lyman et al., 2004) also shows a higher density of 
bone trabeculae aligned and oriented along the force transmission axis 
(McGonagle et al., 2008; Milz et al., 2002). Moreover, this difference in 
tensile strain between deep and superficial zones of the enthesis suggests 
that internal shear forces are created when the joint changes its position 
(Almekinders et al., 2003), which could also explain the presence of 
fibrocartilage (Apostolakos et al., 2014; Benjamin et al., 1992; Frowen 
and Benjamin, 1995). Finally, the progressive mineralization of the 
enthesis (Cooper and Misol, 1970; Genin et al., 2009; Killian et al., 2012) 
and the presence of fibrocartilage ensure a gradual transition of the 
mechanical properties between tendon and bone (Liu et al., 2011; Zelzer 
et al., 2014). 

The structure-function relationship at the enthesis is also expressed 
at a molecular level. The entheses are enriched in type II collagen as well 
as in proteoglycans and glycoaminoglycans such as aggrecan and hyal-
uronic acid, which have a high water-binding capacity (Friese et al., 
2020; Jensen et al., 2018; Waggett et al., 1998). These molecules 
expressed in the enthesis fibrocartilage (Fig. 1) are characteristic of 
other fibrocartilage tissues, such as meniscus or intervertebral discs, 
where compressive stress is high (Chen et al., 2017). Fibrillar collagens 
such as collagen I and collagen III were also found at the enthesis, 
reflecting the tensile stress that the interface is subjected to (Cury et al., 
2016; Friese et al., 2020; Jensen et al., 2018). Additional findings from 
studies related to the development of the enthesis show that the me-
chanical load imposed on the enthesis also plays a role in its postnatal 
development and functionality. In the tendon of the supraspinatus 
muscle, enthesis fibrocartilage appears a few days after birth (Jensen 
et al., 2018; Thomopoulos et al., 2007). Furthermore, when the supra-
spinatus muscle was paralyzed by pharmacological agents in neonatal 
mice, collagen fibers were disorganized, fibrocartilage formation and 
mineralization of the ossification front were delayed, and osteoclastic 
activity increased at the osteochondral interface (Schwartz et al., 2013; 
Tatara et al., 2014; Thomopoulos et al., 2007; Zelzer et al., 2014). These 
structural changes were shown to result in alterations to the mechanical 
properties of the enthesis characterized by a decrease in stiffness and 
maximum force at failure (Schwartz et al., 2013; Zelzer et al., al.,2014). 

While all these studies strongly support the idea that the enthesis 
structure is determined by mechanical stress, very few assessed enthesis 
plasticity, i.e. its ability to adapt to chronic variations in mechanical 
load. Of these studies, most investigated the effects of a chronic reduc-
tion of mechanical load and all were on animals. The reduction in me-
chanical load was induced by different experimental situations such as 
immobilization by plaster cast, deviation of mechanical strain, muscular 
paralysis by botulinum toxin injection, but also by real and simulated 
microgravity. 

Most studies show that the tendon-to-bone interface is sensitive to a 
chronic reduction in mechanical load. This reduction induced a decrease 
in the area of fibrocartilage and its proteoglycan content (Frizziero et al., 
2011; Järvinen et al., 1999; Mutsuzaki et al., 2015; Roffino et al., 2018), 
a decrease in the number and proliferation of chondrocytes (Järvinen 
et al., 1999; Mutsuzaki et al., 2015), as well as a modification of 
morphological characteristics of the fibrocartilage cells (Järvinen et al., 
1999; Roffino et al., 2018). As a consequence of decreased mechanical 



4. Conclusion and perspectives

This review indicates that, like muscles and bones, tendons are
sensitive to a chronic decrease in mechanical load. However, the tendon 
response to unloading varies according to the anatomical site of the 
tissue. While the tendon midsubstance shows a decrease in both tensile 
stiffness and tensile strength, impairment to the tendon-to-bone inter
face, or enthesis, seems to concern resistance to compression. Fibro
cartilage gives the enthesis specific mechanical properties, notably its 
capacity to withstand compressive and shear stresses. Although studies 
on how disuse affects the enthesis are scarce, all agree that the fibro
cartilaginous characteristics of the enthesis disappear with chronic 
reduction in mechanical load. Because fibrocartilage not only ensures 
gradual transition of mechanical properties between a soft tendon and a 
hard bone but also affords protection against compressive and shear 
stresses, it seems reasonable to assume that fibrocartilage loss weakens 
the enthesis when loading returns to normal. This weakness could be 
expressed by premature wear and tear. Deymier et al. (2019) showed 
that muscle paralysis increases the risk of avulsion failure at the 
enthesis, which supports this hypothesis. However, it remains to be 
corroborated by further studies, firstly because the authors were unable 
to confirm it in another study (Deymier et al., 2020), and secondly 
because the authors only tested enthesis resistance to tensile stress. In 
view of the role played by fibrocartilage and its remodeling under 
unloading, future work should also address the resistance of the enthesis 
to compressive stress. 

Altered capacity to withstand compression could thus threaten the 
structural integrity of the enthesis when loading returns to normal. Here 
again, there is a lack of research, with only two studies investigating the 
effects of remobilization after a period of unloading (Järvinen et al., 
1999; Roffino et al., 2018). Järvinen et al. (1999) showed that 3 weeks of 
exposure to normal loads is not sufficient to restore the structural 
characteristics of the enthesis, but that recovery is possible when low- or 
high-intensity exercises are performed. Moreover, significant structural 
remodeling was described a few days after a return to normal loads 
(Roffino et al., 2018). Unfortunately, these studies did not investigate 
the effects of remobilization on the mechanical properties of the enthesis 
and its potential fragility. It is therefore not known whether an unloaded 
enthesis is mechanically weakened during remobilization, nor whether 
an alteration in its mechanical properties alters its mechanical response. 
Future studies will need to address these questions. In the field of 
space-related medical research, this information would provide guid
ance not only for countermeasures but also for post-flight rehabilitation 
strategies. 

Spaceflight’s effects on the tendon attracted attention when astro
nauts complained of tendinopathy-type pain (Shackelford et al., 2004). 
Recently, Lang et al. (2017) pointed out the need for extended investi
gation of the enthesis in spaceflight in order to identify the key risk 
factors for injury. Although these studies did not specify whether as
tronauts’ tendinopathies were enthesopathies, pain was reported in the 
shoulder and knee, where the supraspinatus, quadriceps, and patellar 
tendons are known to be almost exclusively affected by insertional 
tendinopathies. Whereas the role of excessive and repeated tensile loads 
in the etiology of enthesopathies is widely accepted, compressive stress 
also seems to be associated with the development of these pathologies 
(Maganaris et al., 2004). The study by Chimenti et al. (2016) strongly 
supports this hypothesis, since it shows that the deep region of the 
Achilles tendon enthesis (a common enthesopathy site) is subject to the 
greatest compressive stress during ankle dorsiflexion. Thus, astronauts’ 
enthesopathies could partly be related to compressive stress induced by 
countermeasure exercises on an enthesis whose fibrocartilage is altered 
by microgravity. 

Not only spaceflight, but all situations featuring transient inactivity, 

involve a return to normal load conditions. Future scientific in
vestigations of the biological and mechanical responses of the enthesis, 
therefore, should consider not only the effect of reduced mechanical 
stress but also the effect of a return to normal load. Another useful 
avenue of research would be to explore the as yet unknown mechanisms 
of fibrocartilage remodeling. 
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