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1. Introduction

One of the objectives of the InSight mission is to constrain Mars interior structure. Previous missions to 
Mars have focused on the surface characteristics of the planet by examining features like canyons, vol-
canoes, and rocks. However, to better understand the early formation and evolution of Mars, we need to 
obtain constraints on its internal structure. Several Mars seismological models have been proposed over 
the years based on the estimated bulk density and moment of inertia of Mars, as well as geochemical and 
equation of state data (e.g. Gudkova & Zharkov, 2004; Nimmo & Faul, 2013; Sohl & Spohn, 1997). There are, 
unfortunately, large uncertainties associated with these indirect methods and our prior knowledge of the 

Abstract One of the goals of the Interior Exploration using Seismic Investigations, Geodesy and 
Heat Transport (InSight) mission is to constrain the interior structure of Mars. We present a hierarchical 
transdimensional Bayesian approach to extract phase velocity dispersion and interior shear-wave velocity 
(VS) models from a single seismogram. This method was adapted to Mars from a technique recently 
developed for Earth (Xu & Beghein, 2019, https://doi.org/10.1093/gji/ggz133). Monte Carlo Markov 
Chains seek an ensemble of one dimensional (1-D) VS models between a source and a receiver that 
can explain the observed waveform. The models obtained are used to calculate the phase velocities of 
fundamental and higher modes at selected periods, and a subsequent analysis is performed to assess 
which modes were reliably measured. An advantage of our approach is that it can also fit unknown data 
noise, which reduces the risk of overfitting the data. In addition, uncertainties in the source parameters 
can be propagated, yielding more accurate model parameter uncertainties. In this study, we first present 
our technique and discuss the challenges stemming from using a single station to characterize both 
structure and the source and from the absence of a Mars reference model. We then demonstrate the 
method feasibility using the Mars Structure Service blind test data and our own synthetic data, which 
included realistic noise levels based on the noise recorded by InSight.

Plain Language Summary In preparation for the InSight mission that landed on Mars on 
November 26, 2018, we adapted an algorithm developed for Earth to measure the dependence of the speed 
of Rayleigh waves with frequency. These waves are useful to constrain the interior structure of planets 
because of their ability to resolve vertical changes in elastic parameters. This is because data at lower 
frequencies are sensitive to deeper structure than at higher frequency, a property called dispersion. The 
original method to measure this dispersion was modified for Mars because of the lack of a good starting 
interior reference model, and because of the larger uncertainties in estimating the quake parameters 
with one seismic station only. Here, we explain the method, which involves searching for hundreds of 
thousands of interior models that can explain the seismic recording and using them to determine the 
wavespeed as a function of frequency. We provide details about the modifications brought to the original 
algorithm, and test it on a blind data set provided to the Mars Structure Service team as well as on our own 
synthetic data set. We show that the method can find the real structure as long as a good starting model is 
available.
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Earth and Space Science

Martian interior is still limited. Seismology remains the most direct and efficient way to probe the interior 
of a planet.

InSight landed in Elysium Planitia on November 26, 2018 and the Seismic Experiment for Interior Structure 
(SEIS) instruments were successfully deployed a few weeks later. These consist of a Very Broad Band (VBB) 
seismometer and a short period sensor to record Marsquakes and meteoric impacts. The VBB is an ul-
tra-sensitive very broad band 3 axis oblique seismometer, which transforms the ground motion into analog 
electrical signals (Lognonné et al., 2019). The VBB can record signals from quakes to meteoric impacts, and 
thus provide valuable constraints on Mars interior structure.

Generally, earthquakes with magnitude between 5 and 7 are preferred for seismic inversions based on 
waveform fitting, since smaller earthquakes suffer from low signal-to-noise ratio (SNR), while larger ones 
may have complicated focal mechanisms and thus can no longer be approximated as point sources. Mars is 
not as geologically active as the Earth, so the number of marsquakes with intermediate to large magnitudes 
is likely limited. This has been verified by the InSight SEIS data collected so far: most of the marsquakes 
detected during the first year of operation of SEIS have moment magnitude between 3 and 4 (Giardini 
et al., 2020). Besides the limitation of the number of large enough events, other complications result from 
the fact that InSight only has one seismic station. Surface wave inversion techniques and receiver function 
analyses become thus natural choices to obtain models of Mars interior. While the first constraints on the 
properties of the shallow upper crust using InSight data and receiver functions were recently published 
(Lognonné et al., 2020), surface waves have not been detected yet. However, if they were to be observed 
in the future, dispersion measurements of fundamental and higher mode surface waves would provide 
depth constraints on the planet’s internal structure, which was expected to be a primary means of con-
straining velocity structure by the Mars Structure Service (MSS; Panning et al., 2017), and demonstrated 
by the MSS blind test (Drilleau et al., 2020). In addition, the method presented in this study to measure 
dispersion data, and the modifications we brought to our original code to allow for less well-constrained 
reference models and source parameters, are extremely important for any planetary seismology applica-
tion, including the likely future missions on the moon and on Titan (Dragonfly), as well as the ones that 
have been proposed for other bodies like Europa, Enceladus, from balloons on Venus, and even possibly 
on the surface of Mercury.

Surface wave dispersion data primarily constrain the path-averaged shear velocity structure between a sta-
tion and a seismic event, with longer period data more sensitive to deeper structure. On Earth, fundamental 
mode surface waves, with their usually high SNR, are the most commonly used types of surface waves. For 
Earth applications, measurements at intermediate periods (between ∼30 s and 200 s) can resolve struc-
ture down to 200–300 km. Higher mode surface waves are less commonly used, but they carry unique, 
independent constraints on structure at greater depths. Higher modes (n > 0) surface waves are sensitive 
to deeper structure than fundamental modes at the same periods and can thus enhance the vertical reso-
lution of surface wave tomographic models in the deep mantle. Examples of multiple-mode surface wave 
sensitivities calculated with software package Mineos (Masters et al., 2011) are shown in Figure 1. For these 
partial derivative calculations, we used one of the Zheng et al. (2015) Martian models as reference. More 
specifically, we chose the model that does not have a low velocity zone (LVZ), hereafter referred to as their 
noLVZ model.

Higher modes dispersion is undoubtedly more challenging to measure than fundamental mode surface 
waves due to their lower SNR and to the fact that the group velocities of different modes overlap signifi-
cantly in a broad frequency range. They usually do not appear as a clear wave train on the seismogram, and 
thus are difficult to separate. Methods developed to measure higher mode surface waves on Earth can be 
categorized into two groups: One group directly invert waveforms to get shear-wave velocity structure (e.g., 
Cara & Lévêque, 1987; Lebedev & Nolet, 2003; Li & Romanowicz, 1995, 1996; Nolet, 1990), and the second 
group measures higher mode phase velocity dispersion curves that are then inverted for structure (Beucler 
et al., 2003; Cara, 1978; Nolet, 1975; van Heijst & Woodhouse, 1997, 1999).

The method presented here was modified from that of Xu and Beghein (2019), which itself was inspired 
by the techniques of Yoshizawa and Kennett (2002) and Visser et al. (2007). The idea is to perturb the 
path-averaged 1-D shear velocity profile to fit the data in a nonlinear waveform inversion and calculate 
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the corresponding phase velocities at different periods. Our method takes advantage of the flexibility 
of the reversible jump Markov Chain Monte Carlo (rj-MCMC) approach (Bodin & Sambridge, 2009) 
to perform a thorough yet efficient sampling of the shear wave velocity model space to fit the filtered 
multimode waveform. The posterior distributions of shear wave velocity models and corresponding 
phase velocity dispersion curves can be estimated from the ensemble of VS models sampled. We adapted 
our method to Mars and present it in this study. We first provide information regarding the rj-MCMC 
method and how we apply it to our problem. We then discuss in detail the modifications brought to the 
original method to deal with complications pertaining to InSight, including the lack of a good reference 
model and the large errors in source parameters. Finally, we present applications of our technique using 
a blind InSight data set distributed to the MSS team (Drilleau et al., 2020; van Driel et al., 2019) as well 
as another synthetic data set we created and to which we added realistic noise based on real recordings 
by the VBB.

2. Method
The method presented here is a waveform fitting technique based on the work of Xu and Beghein (2019), 
which was originally developed for Earth applications and was modified to adapt to Mars. The primary 
goal is to find models of Mars interior that fit the observed long-period waveforms. Our technique adopt-
ed the rj-MCMC method of Bodin and Sambridge (2009) and Bodin et al. (2012) to perform an efficient 
transdimensional model space search and to seek all possible path-averaged 1-D VS models that can fit 
the filtered waveform. Our method additionally enables us to use these models to measure the dispersion 
of fundamental and higher mode surface waves. We will be able to use these dispersion curves in future 
work in combination with other data sets, thereby improving the resolution of the initial path-averaged 
interior models.
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Figure 1. Sensitivity kernels ∂ ln c/∂Vs at different periods for fundamental mode surface waves (left), the first overtone (middle), and the second overtone 
(right) at periods between 5 s and 200 s. They were calculated using software package Mineos (Masters et al., 2011). The model of Zheng et al. (2015) with no 
low velocity zone was used as reference.
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In this section, we briefly summarized the framework of our original inversion method, which was de-
scribed in Xu and Beghein  (2019) in detail, and emphasized the improvements we made to adapt it to 
studying Mars.

2.1. Waveform Modeling

Synthetic seismograms can be calculated by normal mode summation (Dahlen, 1968):

            exp Δ /m m
m

s A i c (1)

where ω is the angular frequency of a mode m, cm(ω) is its phase velocity, Δ is the epicentral distance, and 
Am is the amplitude of the mode. Here, we used software package Mineos (Masters et al., 2011) to perform 
these calculations for a reference 1-D model of Mars interior. Ideally, one would calculate a seismogram 
for every interior model generated by the rj-MCMC method using the fully nonlinear formulation of Equa-
tion 1. However, since this would mean solving the forward problem hundreds of thousands of times during 
one single inversion, it would be too time-consuming to calculate normal mode eigenfunctions and eigen-
frequencies at each iteration of the MCMC scheme. Instead, we chose to linearize the forward modeling 
by assuming that the perturbation relative to the reference model is small. Under this assumption, the 
perturbed eigenfrequencies δω can be calculated as:

                          



        0ln ln , ln , ln ,a

S V P V dS P d
V r K r V r K r r K r dr d K (2)

where δ ln(ω) = δω/ω, a is the radius of the planet, and VP, VS, ρ, and d are P-wave velocity, S-wave ve-
locity, density, and radius of discontinuities, respectively. , ,V VP SK K K  and Kd are the Fréchet derivatives 
(Woodhouse, 1980).

In principle, all parameters could be inverted for. However, strong trade-offs can affect them, and only 
shear-wave anomalies are usually resolvable (e.g., Meier et al.,  2009; Montagner & Nataf, 1986). At-
tempts to invert for δVP, δVS, δρ, δd, and/or anisotropic parameters in Earth’s mantle have been pre-
viously done, either with regularized inversions (e.g., Panning & Romanowicz, 2006) or model space 
search techniques (e.g., Beghein,  2010; Beghein & Trampert,  2006). The resulting VS models do not 
generally depend on the inclusion of the other unknowns in the inversions, but the less well-resolved 
parameters have large uncertainties and are dependent on the prior information introduced (Beghe-
in,  2010). Visser  (2008) also demonstrated that P-wave velocity and density have little influence on 
phase velocity perturbations in the frequency range considered for our measurements (5–20  mHz). 
In addition, increasing the number of parameters in a model space search significantly adds to the 
computational costs. We therefore decided to scale δVP and δρ to δVS using relations derived for Earth: 
δ ln VP  =  mαδ ln VS and δ ln ρ  =  mρδ ln VS. For the P-wave speed scaling, we used a linearly varying 
scaling relation, with mα = 0.8, and for the density scaling, we set mρ to 0.3 (Anderson et al., 1968). 
These choices do not typically affect the VS models in Earth applications so we do expect it to play an 
important role here either. The shear wave velocity is allowed to change by [−10%, +10%] relative to the 
reference model. While the depth of mantle discontinuities has been shown to not be resolved by sur-
face wave data (Meier et al., 2009), the crust thickness has been shown to have strong nonlinear effects 
on waveform modeling and phase velocity calculations (Montagner & Jobert, 1988). We thus included 
perturbations in the depth of the crust-mantle boundary in our inversion scheme and allowed it to vary 
by 5 km around the Moho depth in the reference model.

An important point to make here is that we need a good reference model for these assumptions of small 
perturbations to be valid. This may generally be an achievable goal for Earth since we have very good 
reference and 3-D models of its interior. However, we do not currently have a good reference model for 
Mars, which is one of the reasons for the InSight mission. In an attempt to circumvent this issue and to 
get better model uncertainty estimates than can be obtained with our linearized approach, we test dif-
ferent mantle models with different starting Moho depths and perform the model space search multiple 
times. This is not an ideal scenario but, as explained above, it is one with more reasonable computational 
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costs. As the mission continues and models of Mars interior become available, these issues will become 
less important.

2.2. Source Parameter and Cycle Skipping Considerations

The phase velocity at angular frequency ω for a seismogram recorded at time t and distance x from an earth-
quake is given by:

     


   


  Φ 2 Φi

xc
t n (3)

where Φi includes the initial phase at the earthquake and any phase shift introduced by the seismometer 
and Φ(ω) is the total phase of the seismogram, which can be obtained by Fourier transform of the time-se-
ries. The 2nπ term reflects the periodicity of the complex exponential that describes the displacement pro-
duced by a plane wave.

Phase velocity measurements and synthetic waveform calculations on a single-station therefore require ac-
curate knowledge of the event locations and focal mechanism. In Earth studies, these source parameters are 
generally determined prior to the inversion for structure and the GCMT catalog (Dziewonski et al., 1981; 
Ekström et al., 2012) is a common choice in long-period waveform modeling (e.g., Visser, 2008; Yoshizawa 
& Kennett,  2002). However, even on Earth where multiple receivers are usually employed to constrain 
the earthquake source parameters, these parameters have nonzero uncertainties and can be biased by the 
choice of the reference Earth model used to obtain them.

Ideally, one should recalculate source parameters jointly with structure during the inversion to constrain 
the interior model more reliably (Valentine & Woodhouse, 2010). This is not often done in practice but in 
the case of the InSight mission this may be a crucial part of the inversion since we only have one seismome-
ter and no good reference model yet. The source parameters constrained by the Mars Quake Service (MQS) 
team of the InSight mission are thus expected to have even larger uncertainties than for quakes happening 
on Earth and propagating these uncertainties will be an important step in our search for Mars interior mod-
els. We thus modified our original code (Xu & Beghein, 2019) to include source parameters in the rj-MCMC 
sampling scheme, allowing us to vary them around the values reported by the MQS team and thereby ena-
bling the propagation of source errors into the velocity models.

Because of the 2π ambiguity in Equation 3, care must be taken when inverting single seismograms for phase 
velocities. Cycle skipping can happen when the reference model deviates too much from the true model. 
To avoid this, one often tries to “lock” the 2nπ term in the correct phase at the longest periods (100–150 s), 
and assumes the dispersion curve is smooth and continuous to extrapolate to the correct number of cycles 
at shorter periods. This helps infer short period phase velocities without ambiguity. This locking is usually 
done by choosing a good reference model (e.g., Visser, 2008) or by adding extra constraints from the enve-
lopes of the filtered seismogram (Yoshizawa & Ekström, 2010). Here, because we do not have a good 3-D 
reference Mars model yet, we opted to test two methods: in one we simultaneously invert the waveform and 
the envelope as in Yoshizawa and Ekström (2010) and in the other we invert both waveform and group ve-
locity dispersion curve. Group velocities can be measured with other techniques and serve as independent 
constraints on the sought-after 1-D average structure. By including information from group velocities, we 
narrow down the range of VS profiles. In this study, we compare the results between inversions including 
envelopes and group velocity data.

2.3. Misfit Function

When calculating a misfit from multiple types of data (in this case waveform and envelope or waveform and 
group velocities), it is important to determine the proper weights for each of the data sets. In this study, we 
adopted a L2 norm and the misfit of each data type was normalized by the sum of squares of the data. The 
normalization operation guarantees that the amplitudes of different types of misfits are comparable.
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For the joint waveform and envelope inversion, the misfit function is thus:

      

 

   
 

 

2 2
0 , , 0 , ,

2 2
0 , 0 ,

Misfit
N M
i p i d i i p i d i

N M
i d i i d i

w w e e

w e
m (4)

where w and e denotes the waveform and the envelope, respectively, and N and M are their respective num-
ber of data points. The subscripts p and d represent predicted (synthetic) and observed values, respectively.

For the joint waveform and group velocity data inversion the misfit function is defined as:
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Misfit
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w U
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where M is now the number of group velocity measurements, and Up and Ud denotes the predicted and 
measured group velocities, respectively. The group velocity dispersion measurements we used in this study 
were presented in Drilleau et al. (2020). They were measured using a method based on probability density 
functions and described in Panning et al. (2015).

2.4. Bayesian Inference

We solve the inverse problem in a Bayesian framework, where model parameters are described by proba-
bility density functions (PDFs). The posteriori probability distributions of model parameters describe the 
uncertainties associated with these parameters. The posterior is given by Bayes’ theorem:

     obs obsp p pm d d m m∣ ∣ (6)

where A|B means A given (or conditional on) B, that is, the probability of having A when B is fixed. m is 
the vector of model parameters and dobs is the observed data. p(dobs|m) is the likelihood function, which 
shows the probability of observing data dobs given a particular model m. The a priori probability of the 
model, p(m), contains what we assume about the model m before having the observed data. In this study, 
we adopted a similar prior distribution, p(m), as in our previous work (Xu & Beghein, 2019): model param-
eters are assumed to have uniform prior distributions with relatively wide bounds so that the final posterior 
distribution is dominated by the data.

The likelihood function p(dobs|m) describes the probability of data given the current model. As is de-
scribed in Xu and Beghein (2019), if we assume the data noise in the waveform follows a multivariate 
normal distribution with zero mean and covariance matrix Cd, then the likelihood term can be expressed 
in this form:

 
 

 


 
   

  

Φ1 exp
22

i
i i n

di

p
m

d m
C

∣

∣ ∣
 (7)

where i is the index for different frequency-time windows. Φi(m) is the function describing the distance 
between the real data and the synthetics predicted by the current model. As in Xu and Beghein (2019), we 
assumed the Gaussian noise to be uncorrelated, in which case the covariance matrix Cd becomes diagonal. 
The Φ(m) term is then simplified to:

     2Φ /i i iMm m (8)

where Mi is the L2 norm between data and synthetics predicted by the current model. σi is the standard 
deviation of the Gaussian uncorrelated noise in the ith frequency-time window.
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In this study, the misfit function describes the errors between different types of observed data and values 
predicted by models. For the misfit function, we assumed equal relative variance as a percent of amplitude 
for all inverted parameters. We also decided to assign the same adaptive noise levels to the two data types 
to guarantee that our Hierarchical Bayesian inversion won’t favor one data type over the other too. The 
standard deviation of the Gaussian uncorrelated noise accounts for both the primary misfit of the waveform 
fitting and the secondary misfit of the envelope or group velocity fitting. Here we use a different notation,  *

i  
instead of σi, to denote the normalized overall standard deviation of the noise.

With all these assumptions, the updated likelihood function is given by:

 
   

 
 

 
   

  
*22*

Misfit1 exp
22

i
i i nn i

i

p
m

d m∣ (9)

As is shown in Xu and Beghein (2019), the overall standard deviations are considered as unknowns in the 
Hierarchical Bayesian inversion, rather than being fixed at a presumed level as in traditional inversion 
methods. This allows us to invert for the unknown noise level in addition to the targeted parameters and 
reduces the risk of mapping noise into the models.

2.5. Reversible Jump-MCMC Inversion Scheme

The rj-MCMC method enables us to obtain an ensemble of 1-D models that represent the dispersion of 
surface waves along the source-receiver path. The uncertainties of all the model parameters can be esti-
mated a posteriori from this ensemble. The rj-MCMC algorithm generates Markov Chains by iteratively 
perturbing the model currently being sampled. As we did in Xu and Beghein (2019), the VS perturbation is 
described by linear splines represented by a variable number of interpolation points. Two adjacent interpo-
lation points are connected by line segments, and thus the shear wave velocity perturbation at a given depth 
can be interpolated from its two nearby interpolation points. The vertical and horizontal positions of these 
points define the depth and amplitude of VS perturbation, respectively. Considering the large uncertainties 
in Martian reference models and Marsquake focal mechanisms, we modified the inversion scheme of Xu 
and Beghein (2019) to include the depth of the crust-mantle boundary and the source parameters among 
the unknowns.

In most inversion schemes the dimension of the model space is fixed. However, since we do not know the 
complexity of the VS profile, that is, the dimension of the model space, a priori, fitting different seismograms 
may mean that different numbers of model parameters are needed, and the results could depend on the 
prior parametrization. We adopted a trans-dimensional rj-MCMC method instead to be able to change the 
number of model parameters (in our case the parameters representing the depth dependence of the velocity 
model) during the sampling. The algorithm is designed to find a parsimonious solution (Malinverno, 2002), 
that is, it naturally discourages high dimensional models and the least complex model is preferred to avoid 
overfitting the data.

In a typical trans-dimensional rj-MCMC algorithm, every new model is generated by perturbing the previ-
ous one according to some chosen proposal distribution (see Bodin et al., 2012 and Xu & Beghein, 2019 for 
details). If the newly proposed model is rejected, then the last model is retained for another iteration. In our 
new inversion scheme for Mars, there are seven types of perturbations of the current hyperparameters in 
order to get the next iteration:

1.  Change the velocity of one interpolation point
2.  Change the depth of the crust-mantle boundary
3.  Change the source parameters (focal depth, strike, slip, and dip)
4.  Birth: create a new interpolation point
5.  Death: remove one interpolation point at random
6.  Move: Randomly pick one interpolation point and move it to a new depth
7.  Change the noise level
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During the Birth step, we add a new interpolation point at a certain depth, so that the model complexity 
around that depth increases to account for more complicated structure. During the Death step, we random-
ly remove one interpolation point to make the model representation more efficient at depths without large 
versus anomalies. The Markov Chain is generated for hundreds of thousands of iterations. The first part of 
the Markov Chain, or burn-in period, is discarded, after which the random walk is assumed to be stationary 
and it begins the sampling of the model space according to the posterior distribution. Here, we used 180,000 
as the burn-in length, followed by 60,000 samplings for each Markov Chain.

3. Tests and Results
In this section, we present different tests to illustrate our method and determine how well it can recover an 
input model. One of the tests performed made use of a blind data set (van Driel et al., 2019) that was distrib-
uted to the MSS team to validate multiple methodologies proposed to estimate Marsquake locations and 1-D 
Martian structures between source and receiver (Drilleau et al., 2020). Other tests were conducted using our 
own synthetic data sets because the MSS blind data did not display any higher modes in the frequencies for 
which our method is reliable, as explained below.

3.1. Blind Test

3.1.1. Blind Test Data and Reference Model Search

The synthetic data set that was distributed to the MSS and MQS teams was generated using a 3-D crust 
model overlaying a 1-D base model from the Moho discontinuity to the core and synthetic noise was added 
to the waveform. All parameters of the Martian model and the Marsquake were unknown during the blind 
test period. The MQS team first calculated a reference focal depth of 36 km using the arrival time of the pP 
phase and an assumed crustal velocity of 5 km/s. They then determined the posterior distributions for focal 
depth and focal mechanism parameters (Böse et al., 2017; Drilleau et al., 2020) using the method of Stähler 
and Sigloch (2016). In this study, we employed the mean and width of these distributions as prior values for 
the source parameters in our waveform modeling.

We used the vertical component of the blind data set with the goal of measuring Rayleigh wave dispersion. 
The raw data were filtered in different frequency bands, but no clear signals of higher mode Rayleigh waves 
were visible. The fundamental mode Rayleigh waves were, however, clearly visible at periods between 25 
and 50 s (Figure 2). This absence of clear surface waves at long periods (>50 s) is consistent with true Mar-
tian noise levels (Banerdt et al., 2020). If the real VBB noise level is larger at long periods than at shorter 
periods, surface waves on Mars are generally going to be more difficult to measure at periods >50 s since 
their signal-to-noise ratio is expected to be lower than at shorter periods.

The first step in our procedure was to find a suitable reference model to calculate the waveform. We thus cal-
culated waveforms using MINEOS for several published 1-D Mars interior models (e.g., Sohl & Spohn, 1997; 
Zheng et al., 2015) using the source parameters determined by the MQS team. The estimated Marsquake 
location, depth, magnitude as well as origin time we employed are listed in Table 1. We found that the 
seismogram calculated using model no Low Velocity Zone (noLVZ) from Zheng et al. (2015) resembled the 
filtered blind waveform the best, apart from a time-shift of about 300 s (Figure 2). We then performed a 
rough grid search to change both the VS profile and the depth of the crust-mantle boundary to time-shift the 
synthetic waveform closer to the blind test waveform. It should be noted that the model considered for the 
blind test was comparable to those included in Smrekar et al. (2019), which did not include either the Sohl 
and Spohn (1997) model or the Zheng et al. (2015) models, making this test of our method more realistic.

3.2. Waveform Modeling: Effects of the Source Parameters

Because the uncertainties in the estimated source parameters by a single-station method can be large and 
underestimated, we included the focal mechanism as free parameters during our MCMC sampling. This 
helps avoid the propagation of errors in the quake source into the interior model. We let the focal mecha-
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nism parameters and the source depth vary using prior uniform distributions with ranges roughly matching 
the MQS error estimates. The source latitude, longitude and origin time were kept fixed due to the strong 
trade-offs between source location and travel time. The magnitude was also kept constant and equal to the 
MQS estimate. The amplitude mismatch between the MSS blind test data and the predicted waveforms were 
corrected by energy equalization rather than including source magnitude simultaneously in the MCMC 
sampling, as the latter may result in the instability of the MCMC algorithm as explained in Xu and Beghe-
in (2019). Details about the source priors are given in Table 2.

Figures 3 and 4 compare results of inversions performed using fixed source parameters and inversions in 
which the focal mechanism and focal depth were allowed to vary as explained above. Waveform envelopes 
were used as constraints to avoid cycle skipping. The fixed source values employed were the mean values 
shown in Table 2. The reference model used for both tests was the modified model of Zheng et al. (2015) as 
previously described and is represented by the dashed gray line. The color scale in Figure 3 represents the 
likelihood of a given VS model parameter. Because the model used to generate the blind test data contained a 
3-D crustal model, there is a range of VS values and Moho depths along the source-receiver great circle path 
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Figure 2. Comparison of the MSS blind test waveform (a) and synthetic waveforms predicted by three different 
reference models: (b) model LVZ by Zheng et al. (2015), which included a low velocity zone; (c) model noLVZ by 
Zheng et al. (2015) without Low Velocity Zone; (d) Sohl and Spohn (1997)’s model A. All traces were bandpass-filtered 
between 25 and 50s. LVZ, low velocity zone; MSS, Mars Structure Service.

(a)

(b)

(c)

(d)

Event parameters Computed origin True origin

Origin time(UTC) January 3, 2019 15:00:53.0 January 3, 2019 15:00:30.0

Lat(°) 26.0 S 26.443 S

Lon(°) 53.0 E 50.920 E

Depth(km) 38.4 38.4

Magnitude MsM = 3.7 (Mw = 4.2) Mw = 4.46

Abbreviation: MQS, Mars Quake Service.

Table 1 
Comparison Between MQS-Estimated and True Source Parameters
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in addition to the base 1-D model that is shown in red. This range is rep-
resented by the shaded area. Figure 4 shows that both the free-source test 
and fixed-source test favor a shallower Moho than the true value in the 
1-D base model. The fixed-source test also shows a bi-modal distribution 
for the Moho depth, with the highest peak at about 46 km. This bi-mod-
al pattern does not exist in the free-source test, which likely reflects the 
existence of trade-offs between source parameters, Moho depth, and Vs.

Figure 5 shows how the misfits change with the iteration number in both 
tests. On average, the two ensembles of models have similar misfits. Sta-
tistical F-tests (Bevington et al., 1993) were performed on a number of 
“best” models selected in each ensemble to determine to which level of 
confidence the difference between model misfits is significant. They re-
vealed that the two sets of inversions explain the data equivalently well. 

We would like to point out, however, that although the free-source inversion results do not necessarily fit 
the data better than to the fixed-source inversion, the former is still preferred to avoid mapping errors in the 
source into the velocity models since the source parameters were determined by a single station.

Figure 6 represents the source parameter posterior distributions obtained in the free source inversion in 
comparison to the true values used to generate the MSS blind data. Since the source is a double couple, the 
two complimentary planes calculated from the true source moment tensor are also plotted for comparison. 
We found that our posterior distribution for the strike includes and peaks near one of the two solutions cal-
culated from the true source. Both possible values for the true dip are, however, outside the search range es-
timated based on the MQS results. The posteriors for the slip and focal depth both show a relatively uniform 
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Focal mechanism parameters Prior range

Strike(°) 85–135

Slip(°) 40–60

Rake(°) 50–100

Depth(km) 36.4–40.4

Abbreviation: rj-MCMC, Monte Carlo Markov Chains.

Table 2 
Prior (Uniform) Distributions of Source Parameters Used for the rj-MCMC 
Sampling

Figure 3. Inversion results with fixed source parameters (left) and free source parameters (right). The gray dashed line 
represents the reference model used for MCMC sampling and partial derivative calculations. The red line is the 1-D 
base model used to compute the blind test data. The gray shaded area is for the maximum and minimum VS and Moho 
depth along the source-receiver path based on the 3-D crust model used to generate the blind test data. The color scale 
represents the likelihood of a given model parameter. MCMC, Monte Carlo Markov Chains.
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pattern, which include but do not prefer the true values. But the posterior distribution of the strike fits well 
if we regard plane 2 as the true plane. The reader should be reminded that our method should, of course, 
not be considered as a way to jointly constrain the source parameters as well as the Martian structure. The 
source parameters were included to reduce the mapping of errors in the quake focal mechanism and depth 
into the velocity models.

3.3. Effects of Reference Crustal Thickness

The Moho depth in a Martian model can have significant influence on the synthetic waveforms, so we al-
lowed it to vary in ± 5 km relative to the reference model using a linearized perturbation method as shown 
in Equation 2. However, this search range was still too limited to cover a wide enough set of possible Moho 

XU ET AL.

10.1029/2020EA001263

11 of 20

Figure 4. Posterior distributions of Moho depth in the fixed-source test (left) and in the free-source test (right). The 
dark blue dashed lines represent the Moho depth in the 1-D base model used to generate the MSS blind test data. The 
light blue dotted line represents one of the best fitting values. MSS, Mars Structure Service.

Figure 5. Waveform fitting misfits as a function of iteration number for free source MCMC sampling (top) versus fixed 
source MCMC sampling (bottom). MCMC, Monte Carlo Markov Chains.
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depths due to our yet poor prior knowledge of Martian interior. Consequently, we ran our inversions mul-
tiple times, using different reference models with different Moho depths. To generate these new reference 
models, we changed the crustal thickness of the Zheng et al. (2015) model and proceeded as explained in 
Section 3.1.1: we adjusted the reference VS in order to roughly match the synthetics with the observed blind 
test surface waves. In Figure 7, we compare the results for model space searches done with a 50 km and a 
75 km reference Moho depth. Note that while the 50 km reference Moho falls within the range of Moho 
depths along the source-receiver path that were used to calculate the blind test seismograms, the reference 
model with a 75 km Moho depth is outside of that range. Here, waveform envelopes were used as con-
straints to avoid cycle skipping.

An example of best fitting waveforms is shown in Figure 8. We found that, on average, the inversions with 
a reference Moho depth at 50 km have a slightly lower misfit than the one with the Moho depth at 75 km. 
This may seem promising since the range of true Moho depth along the path did include 50 km and not 
75 km depth. However, the difference in misfits did not appear to be significant and we could not simply 
exclude the second inversion due to its slightly higher misfit values. This is to be expected as fundamental 
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Figure 6. Posterior distributions of strike, dip, slip, and focal depth (red shaded area) for the inversion with free 
source parameters shown in the right panel of Figure 3. The prior distributions used for each of those parameters are 
represented by the shaded gray areas. The true values used to generate the MSS blind test data are shown by the dark 
blue dashed lines, including the strike, dip and slip for both planes calculated from the true source moment tensor. The 
best fitting parameters obtained by the MCMC sampling are indicated by the dotted line. MCMC, Monte Carlo Markov 
Chains; MSS, Mars Structure Service.
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mode surface waves alone cannot uniquely constrain both Moho depth and velocity due to the existence of 
trade-offs. By comparing the VS posterior distribution to the true values used to generate the blind data, we 
found that the inversions with reference Moho depth at 50 km recover the true 1-D base model better. Not 
only does it find posterior Moho values closer to the true values, but we also see that starting from a Moho 
depth that is outside of the range of true values yields a set of VS models that could be misinterpreted as 
constraining a high velocity lid if care is not taken. These observations highlight how important it will be to 
obtain prior, independent constraints on crustal structure (e.g., from receiver functions) in order for surface 
waveform inversions to provide reliable velocity models.
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Figure 7. Ensemble of models resulting from inversions with waveform envelopes and starting models of different 
crustal thickness: 50 km (left) and 75 km(right). The color scale and different curves are described in Figure 3.

Figure 8. Best fitting waveforms for the test with Moho depth at 50 km.
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3.4. Effect of Envelopes and Group Velocities

Because the envelope fit can be strongly affected by the noise level, we also tested whether the inclusion of 
group velocity measurements instead of the envelope affects or improves the results. The misfit function in 

this case is given by Equation 5. We found that the VS profiles (Figure 9) 
do not strongly differ from those of Figure 7, but the range of allowable VS 
models is slightly larger with the group velocities than with the envelope.

Similar to Figure 7, the mean misfit was slightly lower with the reference 
model that has a 50 km thick crust than with the 75 km thick thrust. But, 
again, the difference in average misfits was not significant, so neither of 
these two tests can exclude one crustal thickness. By comparing the in-
version results with independent group velocity measurements included 
versus the inversion results with waveform envelopes in the previous sec-
tion, we found these two strategies yield similar VS posteriors. This is to 
be expected as the envelopes of waveforms mainly provide group velocity 
constraints on the VS models, though group velocities may be preferable 
since the envelope can be affected by noise more strongly.

We also obtained the posterior distributions of phase velocities from 
the ensembles of models for each test. The predictions for the four tests 
with free source parameters and for the true 1D base model are shown 
in Figure 10. Note, however, that the phase velocities calculated from 
the 1-D base model should not, however, be treated as the true phase 
velocities since the 3-D crust effects on surface wave dispersion were 
not taken into account. Our inverted phase velocities are lower than 
the phase velocities of the 1-D base model. However, for tests with ref-
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Figure 9. Ensemble of models resulting from inversions with group velocities and starting models of different crustal 
thickness: 50 km (left) and 75 km(right). The color scale and different curves are described in Figure 3.

Figure 10. Measured phase velocity dispersion curves for the 
fundamental mode Rayleigh wave with two standard deviations obtained 
from the posterior distributions, and dispersion curve for the 1-D base 
model (purple dashed curve) used in the blind test. M50 and M75 
represent the inversions with Moho depth at 50 and 75 km, respectively. 
“Env” stands for envelope and “Grv” stands for group velocity.
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erence Moho depth at 50 km, the 2σ error bars contain the 1-D base model, while for tests with reference 
Moho depth at 75 km, their error bars barely contain the phase velocities predicted by the 1-D base mod-
el. Overall we found that the models that were obtained with a reference model whose Moho depth was 
included in the range of true Moho depths predict phase velocities that are closer to the 1-D base model 
predictions.

4. Additional Synthetic Test with Realistic Martian Noise
Since higher mode surface waves were not visible in the blind test waveforms, we created our own synthet-
ic data set to test our method on a waveform with higher modes. We selected the noLVZ model of Zheng 
et al. (2015) to generate the synthetic waveform data due to its similarity to the MSS blind test 1-D base 
model. We calculated the vertical component synthetic waveforms with Mineos. Only the fundamental 
mode and the first three overtones were included for the purpose of this test.

In addition, we should point out that the forward modeling method used to generate the synthetic test 
data was the same as the forward modeling in the inversion, and a 1-D model was used to generate 
the synthetic data. This makes this synthetic test less challenging than the MSS blind test, for which 
the data were generated with a 3-D crust and a different algorithm than the one used for our forward 
modeling.

In order to generate data noise that represents a realistic overall noise level on Mars, we obtained noise 
amplitude information from the probabilistic power spectral density (Figure 11). The phase information for 
different periods were assigned randomly between [0, 2π]. Realistic Martian noise waveforms were calcu-
lated by inverse Fourier Transform of the amplitude and phase information, and were superimposed to the 
synthetic waveforms calculated by Mineos.

One way to generate waveforms with higher mode amplitudes larger than the ambient noise is by increas-
ing the magnitude of the Marsquake. However, the likelihood to have a Marsquake larger than the quake 
used in the blind test is not high based on the observations we have from SEIS so far. Instead, we set the 
magnitude of the synthetic source at the same value as for the blind test (Mw = 4.46), and tweaked other 
parameters to find a scenario where the higher modes waveform is clear in the time domain and separates 
well from the fundamental mode. With these considerations in mind, we chose a focal depth of 40 km and 
an epicentral distance of 50°.
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Figure 11. Probabilistic power spectral density (PPSD) measured during the “quiet” time (less windy) on Mars 
(18:00–23:00 LMST) in July 2019. The dashed lines mark the 10th and 90th percentiles. The PPSD was calculated using 
the method of McNamara and Buland (2004).
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The filtered synthetic data is shown in Figure 12. It was bandpassed in the 
25–50 s period range and higher modes wave trains are visible between 
650 and 850 s, although the signal-to-noise ratio is on the low side. The 
goal of this synthetic test is to see whether our method can still resolve 
the higher modes and use them to constrain structure under a relatively 
realistic best-case scenario on Mars.

4.1. Results and Reliability Analysis

The procedures to invert this synthetic waveform is the same as for the 
blind test as described in detail in the previous section. The reference 
model was created by randomly perturbing the true model at a few depth 
nodes. We used waveform envelopes to avoid cycle skipping issues. Moho 
depth and source parameters were allowed to vary together with the ve-
locity profile and the posterior noise level. The posterior VS distribution 
is shown in Figure 13. We found that we can recover the true model well 
at most depths down to 400 km. The Markov Chains clearly converged 

toward the true model. We also noted that the posterior model distribution is narrower than for the blind 
test, likely due to the fact that the blind data set was generated with a 3-D model and ours was obtained with 
a 1-D model instead.

The posterior distribution of phase velocities for the multimode surface 
waves can be calculated using the posterior distribution of models. In 
theory, one can calculate an infinite number of modes from these mod-
els. However, in practice, not all of them will be resolved as higher modes 
tend to have weaker energies and low SNR in addition to overlapping in 
the time domain. A reliability analysis was thus performed to determine 
in which modes and at which periods the phase velocities were reliably 
measured with our technique. In practice, for each mode, we would only 
keep the measurements at periods with reliability scores higher than a 
defined threshold. Our reliability test considers the waveform fit and the 
intensities of each single mode in the time-frequency domain. Further 
details on this reliability analysis can be found in Xu and Beghein (2019)

The results of our reliability analysis for the fundamental mode and the 
first three overtones are given in Figure 14. We found that the fundamen-
tal mode is reliably measured at all periods considered, which is identical 
to what is found for Earth since they have larger SNR and separate well 
from the higher modes. We also found, similar to Earth, that the higher 
modes are reliably measured at the shortest periods (<35 s in this case). 
Considering the sensitivity kernels for these first few higher modes (Fig-
ure 1), this means that the data employed are sensitive to structure down 
to 300–400 km depth.In Figure 15, we plotted the dispersion curves for 
the reliably measured modes in addition to the dispersion curves predict-
ed by the true model. The measurements are displayed with two stand-
ard deviations. We found that in all cases, the dispersion values for the 
true model are included within the 2σ uncertainties estimated with our 
method.

In Figure 16, we showed the posterior distributions of the source param-
eters and Moho depth. Even though the initial model is relatively close 
to the true model, especially in terms of the Moho depth, we cannot re-
liably use the posterior distributions of the source parameters as direct 
estimations of the true source. We interpret this as the outcome of strong 
source-structure trade-offs in this inversion problem.
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Figure 12. Vertical component waveform calculated using Zheng 
et al. (2015)’s model noLVZ and filtered at 25–50 s (thin red line). Realistic 
Martian noise was added to the synthetic waveform (thick black line).

Figure 13. Ensemble of VS solutions obtained from the MCMC sampling. 
The thin black dashed line represents the true model and the thick white 
line is for the starting model. The color scale represents the likelihood of a 
given model parameter. MCMC, Monte Carlo Markov Chains.
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Before concluding, we should remind the reader that our results do 
strongly depend on having a good reference model. Further analysis of 
the resolvability of Mars structure with higher modes under different 
conditions will be performed in a later study.

5. Conclusions
In this study, we presented a method to invert multimode surface-wave 
waveforms and measure dispersion curves based on a single station-event 
pair. While surface waves have not yet been observed with InSight, this 
method and the modifications we brought to the original technique will 
be important for all future seismological exploration of other planetary 
bodies. We showed the feasibility of our method using the MSS blind 
data set in the first example, and our own synthetic data in a second ex-
ample. We modified our original algorithm to help account for the large 
uncertainties in the source parameters as well as the lack of a good Mar-
tian reference model. Source parameters were included in the inversion 
together with the parameters describing the velocity profile in order to 
reduce the risk of mapping errors in the source into the models. We also 
added constraints from the waveform envelope to prevent cycle skipping. 
We showed tests for different reference models and we also compared the 
use of group velocities instead of envelopes.

Because the higher modes were not visible on the blind data, only the 
fundamental mode Rayleigh waves were inverted. We found that includ-

ing the waveform envelope or group velocities did not affect the results strongly and both are good choices 
to prevent cycle skipping. Neither method was able to determine which reference model led to the recovery 
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Figure 14. Reliability scores for the fundamental mode (n = 0) and first 
three overtones (n = 1, 2, or 3) as a function of periods. The horizontal red 
dashed lines indicate the empirical thresholds we defined for each mode. 
Only periods with reliability scores higher than the thresholds will be kept.

Figure 15. Measured phase velocity dispersion curves for the fundamental mode Rayleigh wave (n = 0) and the first three overtones (n = 1, 2, 3) with two 
standard deviations as error bars. The dispersion curves from the 1-D true model (dashed curve) were plotted for comparison.
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of the input 1-D base model as strong trade-offs between Moho depth and velocity structure exist. As long as 
the reference model has a Moho depth that is not too far from the true value, our method could find a suite 
of velocity models that included the true model and could measure phase velocities such that their error 
bars included the predictions from the true 1-D model. However, the inversions with reference Moho depths 
that were off the true value yielded apparent features in the VS models that could be erroneously interpreted 
if care is not taken. This highlights how essential it will be to have good prior constraints on the Moho depth 
before inverting the surface-wave waveforms to constrain velocity structure on Mars.

In our second example, we applied the same method to synthetic data showing higher modes in the period 
range 25–50 s and that included realistic Martian noise levels. The higher mode wave trains in our test wave-
form visible in the time domain, but very noisy. Nevertheless, by including higher modes in the inversion we 
were able to recover the VS structure well down to 400 km depth at true average Martian noise level, despite 
the low SNR in the synthetic waveform. We further obtained the phase velocity dispersion curves for multiple 
modes and implemented a reliability analysis to assess which were confidently measured. Phase velocities at 
periods with high reliability scores generally fit the true phase velocities well. This demonstrates the feasibility 
of our method on higher modes measurements, though we want to stress the importance of having a good 
reference interior model to obtain reliable interior models with our waveform modeling approach.

Data Availability Statement
InSight seismic data presented here (http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016) is publicly avail-
able through the Planetary Data System (PDS) Geosciences node, the Incorporated Research Institutions 
for Seismology (IRIS) Data Management Center under network code XB and through the Data center of 
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Figure 16. Similar as Figure 6 but is for the synthetic test. (Red) The posterior distributions of strike, dip, slip, focal depth as well as Moho depth. The prior 
distributions used for each of those parameters are represented by the shaded gray areas. The true values used to generate the synthetic waveform are shown by 
the blue dashed lines.

http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016
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