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We compute exactly the average spatial density for N spinless noninteracting fermions in a 2d
harmonic trap rotating with a constant frequency 2 in the presence of an additional repulsive central
potential v/r?. We find that, in the large N limit, the bulk density has a rich and nontrivial profile
— with a hole at the center of the trap and surrounded by a multi-layered “wedding cake” structure.
The number of layers depends on N and on the two parameters 2 and - leading to a rich phase
diagram. Zooming in on the edge of the k" layer, we find that the edge density profile exhibits
k kinks located at the zeroes of the k*" Hermite polynomial. Interestingly, in the large k limit,
we show that the edge density profile approaches a limiting form, which resembles the shape of a
propagating front, found in the unitary evolution of certain quantum spin chains. We also study
how a newly formed droplet grows in size on top of the last layer as one changes the parameters.

I. INTRODUCTION

Noninteracting spinless fermions in a confining trap is
a subject of much current theoretical and experimental
interest [IH7]. On one hand, this system is realisable in
cold atom experiments, and several techniques such as
absorption imaging [S8HI0] for collective density measure-
ments and quantum gas microscopes [ITHI3] for direct
in situ imaging of the individual fermions with remark-
ably high resolutions are available. On the other hand,
it is simple enough to be analytically tractable and yet
exhibits rich and nontrivial spatial fluctuations, even at
zero temperature, due to the Pauli exclusion principle
[14H20]. While the bulk density is usually well described
by the local density approximation (LDA) [8] 2], this
approximation breaks down near the edges of the Fermi
gas, induced by the trap. A number of recent studies
have pointed out that LDA is not sufficient to capture
the density fluctuations and correlations near the edges
[15, [I7HI9) 22]. For certain one-dimensional trapping po-
tentials, such as the harmonic trap, an exact mapping
was found between the positions of the fermions in the
ground state and the eigenvalues of a suitable random
matrix ensemble [I5] [I6] — for a recent review see [23)].
Using results from the random matrix theory (RMT), the
density correlations near the edges were computed ex-
actly and their universal properties (with respect to the
shape of the trapping potential) were elucidated [I5] 17+
19, 24H28]. The connection to RMT does not hold gener-
ically in higher dimensions. However, using the determi-
nantal properties of the noninteracting fermions, the edge
properties in higher dimensions could still be computed

analytically [I8] [19].

A particularly interesting situation corresponds to
fermions in a rotating trap in two-dimensions, which has
been studied recently both experimentally [29H31] and
theoretically [32H34]. In this system, the single particle

Hamiltonian, in the rotating frame, is given by [35, [36]

A p2

H= o +V(r)—-QL, (1)
where V(r) is a confining central potential, L, = xp, —
ype = —i(x0, — y0,) is the z-component of the angular
momentum and {2 is the rotation frequency. For the har-
monic trap V(r) = (1/2)mw?r?, an important parameter
is the ratio v = Q/w, which must satisfy 0 < v < 1 to
keep the fermions confined. The limit ¥ — 0 corresponds
to fermions in a non-rotating harmonic trap while in the
opposite limit v — 1, this problem can be mapped to the
celebrated Landau problem of noninteracting fermions in
a plane in the presence of a perpendicular magnetic field
[37]. Interestingly, in this ¥ — 1 limit, the positions of
N fermions in the ground state map onto the eigenval-
ues of the classical complex Ginibre ensemble of RMT
[34], where one considers a random N x N matrix with
independent complex Gaussian entries [38]. In this map-
ping, one assumes that the N fermions are confined in
the lowest Landau level, which can be realized by setting
1-2/N < v < 1. With this assumption, the bulk density
for large N is rather simple: it is just uniform over the
disk of radius v/N centred at the origin [34].

This uniform bulk density emerges because, in the
ground state, the fermions are all in the lowest Lan-
dau level. A natural question then is: how the density
may change if the many-body ground state also contains
single-particle states belonging to higher Landau levels?
Indeed, this is a generic situation as one increases N,
for fixed v. In addition, since the potential V' (r) is radi-
ally symmetric, it is convenient to solve the correspond-
ing Schrodinger equation in polar coordinates, which will
automatically generate an effective repulsive interaction
~ 1/r% in the radial direction. Hence it is natural to
consider a more generic potential from the start

1
V(r) = —mw?r?® + e

2 27‘27’}/20' (2)
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FIG. 1. (a): Phase diagram in the (M, ¢) plane. It is divided
into regions labeled by k* = 0,1, 2... denoting the number of
bands (n) that are below the Fermi level. The lines ¢, (M)
separates the regions between k* = n — 1 and £ = n. In
each of the regions, a typical (representative) density profile
is shown (blue). We see that every new band creates a new
layer in the density. (b): A 3D representation of the exact
density in @ A hole around the origin is surrounded by a
multi-layered “wedding cake” structure. (c): Plot showing
the comparison between the exact density in @ (red solid)
and the large N asymptotic bulk density (black dashed)
for c =1, M =10 and N = 8000 (this corresponds to k* =1
in the phase diagram). We zoomed in on the left edge of the
k =1 layer and the inset shows the scaling function ff%°(u)

in plotted vs u.

We thus have two parameters 0 < v < 1 and v > 0. In
this paper we investigate the density profile in the ground
state, for large IV, as a function of v and v and find an
extremely rich phase diagram in the (v,v) plane.

Let us first summarise our main results. We find that
in the large N limit the appropriate rescaled parameters

are

and M= (1-1*)N, (3)

‘TN
which are both kept of order O(1) as N — oo. We will
show later that this scaling is necessary to keep the av-
erage density of fermions of order O(1) as N — oco. The
phase diagram in the (M, ¢) plane is depicted in Fig.
a). There are series of critical lines ¢i (M), ca(M),---
that separate the regions labelled by k* where k* 4+ 1
is the number of Landau levels included in the ground
state. As one crosses these critical lines, the density pro-
file undergoes abrupt changes, as shown in Fig. a).
For a given k* the bulk density vanishes for r < /I_(0)
thus creating a hole around the origin [see Fig. [1| b)].
Outside the hole, the density is nonzero over an annulus
VI-(0) < r < /1:(0). On top of this annulus, there is
a “wedding cake” structure [see Fig. |1| b)] with &* lay-
ers with progressively smaller supports but with equal
heights 1/m. For example the k-th layer has support on
ViIe(k) < r < y/li(k) (see Fig. . As shown later,
I+ (k) = O(N). We also investigated the change in the
density profile as one crosses the critical lines in the phase
diagram and found an interesting “travelling front struc-
ture” in the density. Furthermore, if we zoom in on the
left boundary of the k-th layer (and symmetrically on
the right boundary), i.e., close to 1/l_(k) (and symmet-
rically at 1/l (k)) we find a nontrivial edge-profile of the
density (11)) with k& kinks whose locations coincide with
the zeros of the k-th Hermite polynomial Hy(—u) = 0
with u denoting the scaled distance from +/I_(k) (see
inset of Fig. |1| (¢)). Finally, in the limit where k > 1,
the edge profile approaches a nontrivial limiting form,
which we compute exactly. Interestingly, the same limit-
ing form has appeared in completely different problems,
such as in a propagating one-dimensional fermionic front
separating a high and low density phases and evolving

unitarily in time [39-43].

II. MODEL AND PROPERTIES

We start with the single particle Hamiltonian in
with V(r) in Eq. (2). The model turns out to be
integrable in the sense that the Schrodinger equation
I:.kaJ(r, 0) = Ej 195,(r, 0) is exactly solvable in the po-
lar coordinates (see Appendix@ for details). For conve-
nience, we set m = h = 1. We get

Vi (r,0) = ak,ng(TQ)rAe_TZ/QeM , with A=/~ +12,
(4)
where Lg (z) are the generalised Laguerre polynomials
T(k+1)
aD(k+1+A) "
ciated eigenvalues, in units of w, are given by (see Ap-
pendix [B| for details)

Ek7l:2k‘+1+\/7+12—yl. (5)

and the normalisation gives a% = The asso-
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FIG. 2. Energy levels Ej; in vs [ for kK = 0,1,2,3, for
v =5 and v = 0.9. The purple (dashed) horizontal line
marks the Fermi level, p = 7.5. Only the states with energy
below p can contribute to the ground state.

The single particle states are labelled by a pair of inte-
gers (k,l) with k = 0,1,2... and | = 0,£1,£2,.... The
energy levels are shown in Fig. [2| Different values of
k correspond to different bands or Landau levels.

We now consider N spinless noninteracting fermions in
their ground state. The many-body ground-state is thus
given by a Slater determinant constructed from N single
particle eigenfunctions associated to the lowest N eigen-
values. For a given N, the eigenfunctions participating
in the Slater determinant may belong to multiple bands
of the spectrum in Fig. [2| with £* denoting the label of
the highest band which is at least partially filled. We
also denote by p the Fermi energy, i.e. the energy of the
highest occupied single particle energy level. The Fermi
energy 4 can be tuned by varying N. As u increases, one
sees from Fig. where p is indicated by a horizontal
line, that more and more states with energy levels below
w contribute to the ground state since k* also increases.

The average number density, normalised to N, at a
point r = (r,6) is given by p(r,0, N) = YN (5(r — 1;))
where (- -) denotes the expectation value in the ground
state. For noninteracting fermions, it can be computed
explicitly in terms of single particle eigenfunctions

p(r,0,N) ZWJ“TH ZkaHN (6)

k=0

where py,(r, 0, N) denotes the density from the k" band
and is given by

2 (k)

T(k+1)e 5

I=I_ (k)

L) 2
TAt+k+1)

Pk (Tv 0, N) = (7)

Here, [ (k) are the locations where the Fermi level p
intersects the k" band, i.e. By, (k) = p. Solving this
equation using (shifting energy by 1, effectively ab-

sorbing it in p) gives

— 2k)?
1—v2

p—2k) £ /(p

1y (k) = —=vh

(8)

For a given k, Ey,; (Eq. has a minimum at [ = [*
where [* = ﬁ\ﬁ Note that [* is independent of

k and the energy of the k'" band at this minimum is
given by Ej ;« = 2k + /(1 — v2)y. If the Fermi level has
to intersect at least one band, we must have Ey;» < p
which implies g > /(1 — v?)~. For a fixed p, the num-
ber of bands k* below u can be obtained by simulta-
neously requiring Ej«;« = 2k* + /(1 —v?)y < p and

Egey10+ = 2k* +2 4+ /(1 —v?)y > p which yields
k* = Int “_(;_lﬂh} where Int(z) denotes the inte-
ger part of x (see Appendix (Bl for details). The relation
between the Fermi energy p and N can be obtained by
counting the total number of single particle levels with
energy below . This gives Y6 (14 (k) —1_(k)] = N
which fixes p in terms of N (see Appendix [B| for de-
tails). For large N, it turns out that u ~ O(1). So
far, the results are exact for arbitrary N, v € (0,1)
and v > 0. To make further progress we now work in
the large N limit and re-scale the two parameters v and
~v as in Eq. . Thus ¢ and M are the new rescaled
parameters. It turns out that this scaling is necessary
to keep p(r,0,N) = O(1) for large N. In terms of ¢
and M, we have from Eq. (8), {+(k) = AL (k)N where

A (k) = 2R xfz’“)“M and k* = Int [“ F]

III. CRITICAL LINES IN THE (M,c) PLANE

The (M,c) plane is divided into different regions
labeled by k* = 0,1,2,... separated by critical lines
[see Fig. a)]. For there to be k* bands, we re-
quire, 2k* +vVeM < p < 2(k* + 1) + VM. Setting
the upper bound, u = 2(k* 4+ 1) + vcM, one gets

i Zk (g + VeM) 1 (see Appendix for

details).  Solving this equation for ¢ as a function
of M gives the critical line cg-41(M).  Thus, in
the (M,c) plane, we get different regions labeled
by k* = 0,1,2.... The region between c¢,(M) and
¢n+1(M) corresponds to the region with k* = n, ie.
the Fermi level includes n bands below it. For instance,
c1(M) and co(M) can be explicitly computed (see
Appendixfor details) and are plotted in Fig.|l|a), e.g.,
c1(M) = (1/M) (M2/16 —1)* ©(M — 4) where O(z) is
the Heaviside step function.



IV. DENSITY IN THE LARGE-N LIMIT

We start by analysing the large N limit of pi(r, 0, N) in
Eq. upon setting r = zv/N. Since l+(k) = A+ (k)N
we can replace the discrete sum over [ by an integral. We
show (see Appendix@andfor details) that it converges
to the following form

VNN~ /al(k)d “H@)P ()
z T e T
7T3/2k‘l a_ (k) §

where a4 (k) = W and Hy(z) is the k' Her-
mite polynomial. For fixed z, as N — oo, the two
bounds a4 (k) — oo and a_(k) — —oo iff \/A_(k) <
z < \/Ax(k). If z is outside this interval, both bounds
tend to either +o00 or —oo simultaneously. In the lat-
ter cases, the integral in (9) vanishes as N — oco. In
contrast, in the former case, the integral approaches a
finite value [*_dx e~ [Hy(z)]? = 2¥k!\/7. Hence we
conclude that the density from the k*" band at a fixed
rescaled distance z = r/y/N converges to

1
;Iq/)\,(k))<z<w/)\+(k) ) (10)

where the function Z takes value 1 if the inequality in
the subscript is satisfied and 0 otherwise. Thus the bulk
den81ty is flat (with value 1/7) inside the £*® annulus
VAZ(k) <z < /A (k SeeFlg Ib Weﬁnd1nF1g
¢) an excellent agreement between the results obtained
from the exact evaluation of the sum in @ and . for
k* = 1 and the large N bulk density in Eq. . For a
fixed k* > 1, the sum in Eq. (@ gives a superposition of
contnbutlom of the type . 110 for each k& < k*, leading to
the “wedding cake” structure in Fig. 1| b).
If z is close to one of the two edges, say the left edge
A_(k), we can estimate the limiting form of the edge
density when N — oo from the same Eq. @ For this,
we set 22 = A_(k) + LQ\;%WU where u ~ O(1). In this
case, the lower limit in the integral in Eq. @ becomes
a_(k) ~ —u (with u measuring the scaled distance from
the left edge), while the upper limit still approaches to
400 as N — oo. Hence, we get,

A0, N)

Fi () (11)

where [P (u) = Wi,’fk! [ da e~ [Hy(x)]2. Note that
when u — oo, fEdge(u) — 1/, and the edge density
matches smoothly with the bulk density. In Fig. [l we
have zoomed in on the left edge of k£ = 1 layer and plotted
the scaling function f%8°(v) in the inset, which clearly
shows a kink where dff*®°/du = 0. For the k'™ layer,
setting dfy " (u)/du = 0 (which implies Hy(—u) = 0), it
follows that there will be k kinks in f£98°(u) whose loca-
tions coincide with the k zeros of Hj(—u). The scaling
function f{98°(u) is actually universal in the sense that

pnge(r O,N) =~

]

FIG. 3. Density profile in Eq. for M = 5 plotted as a
function of the scaled distance s [49] for increasing values of
t = 1,10,15 and 25. As t increases, the scaled density ap-
proaches the constant value 1 for |s| < v1t and decays rapidly
to 0 for |s| > vit. For ¢t > 1, the forward and backward fronts
separating the constant density 1/7 and the zero-density out-
side move ballistically in opposite directions with a constant
speed v;.

it does not depend on ¢ and M explicitly. In fact, in the
special case v = 0 and v = 1, but with fixed N (the clas-
sical Landau problem) — hence not in the scaling limit
discussed here —, the edge density pj, for the k** Landau
level was studied in [45] and similar kinks were found for
finite IV, but the scaling function fe £¢(u) was not com-
puted (see also [46] in the mathematics literature in the
context of polyanalytic Ginibre ensembles).
Furthermore, an interesting limiting shape emerges for
zdge(u) in the scaling limit of k large and u large but
with the ratio y = u/v/2k fixed. In this case, we find (see
Appendix [E| for details)

llrn fedge(\ﬁy) —cos “Hey) Torcy<r, (12)

and for y > 1 it takes a value of 1/7. Interestingly, a sim-
ilar shape appeared in the description of a propagating
front in the quantum evolution of a spin chain (equiva-
lent to free fermions on a lattice) [39H43]. It turns out
that there is yet another interesting scaling regime close
to the two endpomts u ~ +v2k. For example, setting
u=—2k+ Tape With w = 0(1)

\fkl/6

where F(w) = ([A'(—w)]? + wAi*(—w)) where Ai(z) de-
notes the Airy function. Interestingly, the same scaling
function describes the tail of the density of eigenvalues

(centered and scaled) in the Gaussian Unitary Ensemble
of RMT [47] [48].

kli)ngokl/g edge( V2k + )zf(w) (13)



V. CROSSING THE CRITICAL LINE IN THE
(M,c) PLANE

When k* changes from k* = 0 to k* = 1 (which
means a new band is included below the Fermi level),
one may wonder how the density profile changes from a
one-layered structure to a two-layered structure. When
one crosses this critical line ¢ = ¢; (M) = ¢1, the second
layer appears on top of the first layer (Fig. (). Here,
we describe the evolution of the density profile of this
newly formed droplet as a function of the distance ¢; — ¢
below the critical line ¢y for fixed 4 < M < 12 (see Ap-
pendix [F| for details). As k* changes from 0 to 1, the
Fermi level i exceeds the value p = 24+/c1 M by a small
amount §: =2+ +c1M 46 where 6 < 1. As k™ jumps
from 0 to 1, we find that the additional macroscopic den-
sity in the second layer appears over the scaled region

\/%—le/g <2< \/%—H)l\/gwhere v = %(ClM)lﬂl
and z = 7/v/N. Therefore, the center of the second layer
appears at z. = (¢ /M)Y*. Here, we give a scaling de-
scription of this density in the second layer just after its
appearance, i.e., in the limit 6 — 0. Let 22 = i te
where € measures the distance from the center of the sec-
ond layer. We analyse Eq. with £ = 1 by replacing,
for large N, the sum by an integral and evaluating it by
the saddle point method (see Appendix [F| for details).
This leads to the following density profile of the droplet
(for a plot see Fig. |3)

p1(zV/N,0,N) ~ % [F1(s 4 vit) — Fi(s —vit)] ,(14)

N
ing the complementary error function. Here s =
ey/N/2(M/c1)** is the scaled distance measured from
the center of the droplet, while t = /N/2(M/c1)Y/*V/6
is proportional to ¢; — ¢ > 0, measuring the deviation
from the critical line. If we interpret s and t as space
and time, the density profile in Eq. has an inter-
esting interpretation: the two edges of this profile move
ballistically away from the droplet center with a constant
speed v1. At large t, the widths of these “solitonic” fronts
remain of O(1) while the height of the density behind the
fronts approaches a constant value 1/7 (see Fig. [3]). This

picture can be easily generalized to other critical lines in
the (M, c) plane (see Appendix [F| for details).

where Fy(z) = 1 {erfc(z) -2 efzﬂ with erfc(z) be-

VI. CONCLUSIONS

To conclude, we have shown analytically that the av-
erage density profile in the ground-state of N noninter-
acting fermions in a rotating trap exhibits a rich multi-
layered “wedding cake” structure, as more and more Lan-
dau levels participate in the ground state by increasing
N, leading to a highly interesting phase diagram in the
parameter space. This non-trivial density profile owes

its origin entirely to quantum effects, and can not be ob-
tained from a simple Local Density/Thomas-Fermi ap-
proximation. It would be interesting to study the effect
of the inclusion of more and more Landau levels on other
observables, going beyond the one-point function studied
in this paper, such as the number variance and the en-
tanglement entropy (see for e.g., [34, BOH52]). We note
that strongly interacting bosons and fermions have been
studied experimentally in rotating traps leading in par-
ticular to the formation of vortex lattices [53] [B4]. In
our case, there is a hole in the density at the center of
the trap, but this is due to the repulsive inverse square
interaction v/(2r?) and it is not related to a vortex. It
will be challenging to see how interactions can change the
above scenario, in particular leading to the generation of
vortices.
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Appendix A: Model and basic properties

As mentioned in the main text, our starting Hamilto-
nian is,

2
S AN SR
H="+4= - QL. Al
y T T om (A1)
where L. = xp, — yp. = —i(x0y — y0,) is the z-

component of the angular momentum, - characterises
the repulsive-like potential at the centre (inverse-square
type), w is the trap frequency and (2 is frequency at which
the trap rotates around the vertical axis. For conve-
nience, we have set the mass m = 1 and also A = 1.
Throughout the work, we will consider the case in which
the inverse square central potential is very large, i.e.,

v =¢N, ¢~ O(1), regime of interest (A2)



In polar coordinates (r,8), the Hamiltonian reads,

N 1 1 p2 1 ol
H=—- 2 ~Ur 0 Zw?p? — QLZ
5 <8r+f3)+27ﬁ2+2wr +2f2
(A3)
where
L, =py = —i0y (A4)

The first goal is to find eigenstates and eigenvalues of
Eq. Let us substitute,

"/}(Ta 0) = ¢(T)eil9

where | = 0,£1,+2,... are integers because the wave
function needs to respect 27 periodicity in the angular
direction. Then, we get,

(A5)

Hi(r) = o(r)

(A6)
Hence, the equation we need to solve is, ﬂ'i/}(r) = Ey(r)
which gives us,

1 1 1 2
) (@2 + r&-) T L

2 2r2

1 1 1 2
—2(33+6r>+w27’2+7+ —1Q
r

2 222

lﬂl P(r) = E¢(r)

(A7)
To reduce the above eigenvalue equation (Eq. to a
standard form, we make the following transformation

P(r) = e 2y THEG(wr?) . (A8)

It is then easy to see that G(z) satisfies the differential
equation

2G"(2) + (b—2)G'(2) —aG(z) =0, (A9)
a=4 [ vaTE - B
where (A10)

b=1++/v+12.

This is a standard confluent hypergeometric differen-
tial equation whose general solution is given by the linear
combination of two independent solutions as follows [55]

G(z2)=A1 2" M(a—b+1,2—b,2) + Ay M(a,b, 2)
(A11)

where A; and As are two arbitrary constants and

ala+1) 22
b(b+1) 2!

p
(a)pz _1_’_22_"_

R _—
(0)p P! b

M (a,b, z) :Z

p=0
(A12)

is the Kummer’s confluent hypergeometric function.
Here, (a)p, (b), are Pochhammer symbols, i.e., (a), =

F;a(j)p ) where T'(z) is a Gamma function. Note that the

arguments of the two functions in (A1ll) are different.
The function M (a, b, z) has the following asymptotic be-
haviors

1—1—%2—1—0(22), z—=0

M(a,b, z) ~ (A13)

e? Zafb

I(a) ’

zZ — 0.

Hence the most general solution for the eigenfunction

¥(r) in Eq. reads

P(r) = e 2pVHE
(4 (wr) P M(a —b+1,2 - b,wr?)

+ Ay M(a,b,wr?)], (A14)

where a and b are given in Eq.

To fix these unknown constants A; and Ay, we first
consider the behavior of ¥ (r) as r — 0. Using Eq.
we see that, as 7 — 0, (r) ~ Ajw V1=Vt
However, the eigenfunction must be square-integrable,
ie., 2w fooo Y2(r)r dr should be finite. Substituting the
small r behavior, we see that the integral behaves as

r20=vV7+2) in the lower limit r — 0. Hence, since
Il = 0,4£1,---, the integral is divergent for all v > 1.
And this is indeed the case in our problem where v is
scaled as v = ¢N where ¢ = O(1) and N — oo (see Eq.
. Hence we must have A; = 0. Therefore the solution
now reads

P(r) = Ay oWt 2Vt M(a,b,wr?). (A15)

We now consider the other limit r — oco. Substituting

the asymptotic behaviour given in Eq. in Eq.
we find that

As 2
abeQafbflewr /2 )

Vi)~ f (A16)

Clearly, the integral 2 fooo 2 (r)r dr diverges at the up-
per limit r — oo, provided I'(a) is finite. Hence, to cure
this divergence, we must choose |I'(a)] = 400, which
means that a = —k where £ = 0,1,2,--- is a non-
negative integer. In fact, this is the quantisation condi-
tion. In fact, when a = —k the function M (a = —k, b, 2)
is a polynomial of degree k and the wave function is
square integrable. The quantisation condition a = —k,

using Eq. reads

2V 2 1Q E 1

2 2w 2w (A17)

The normalization condition fixes the constant A = ¢y,
which depends on both quantum numbers £ and /. Hence,



summarising, the complete set of eigenfunctions are given
by

Pra(r,0) = cprre " 2 M(—k, 1+ A, wr?)e®, (A18)

where A = /v + [2 with the associated eigenvalues from
Eq.

Ek,l:w[2k+1+v’y+l2]—ﬂl.

Without loss of generality, we will set w = 1 (i.e.,
the energies are expressed in units of w) and introduce
v = QJ/w < 1. Note also that Kummer’s confluent hy-
pergeometric function are related to generalized Laguerre
polynomials as,

(A19)

o D(k+1)0(1+ )
MR I+AT) = =50y

Ly(r?) . (A20)
Therefore, expressing Eq. [AT8] in terms of generalized
Laguerre polynomials is preferable since these functions
have an orthonormality condition that turns out to be
useful

Fk+A+1) 5
C(k+1) ™

(A21)
The normalisation requirement 27 fooo rdrik(r))?> =1

finally gives,

/ dr x e L (x) Ly (x)dx =
0

Yr(r,0) = ap WL (r? A e /210 A22
, R
with

T(k+1)
= e A2
Ul T Ik 1+ ) (A23)

The associated eigenvalues are now expressed as,

B =2k +1+\/y+12-ul

Eq. and Eq. form the complete solution of our
system. In what follows, we will analyse the energy levels

(Eq. |A24)) of the system.

(A24)

Appendix B: Analysis of energy levels and the
ground state

In this section, we will analyse the energy levels
(Eq. and discuss the ground state for a system
which has N fermions. To start with, let us recap the
v = 0 case.

1. ~+=0 case

For v = 0, Eq. [AT] reduces to the Hamiltonian con-
sidered in Refs. [29, [30, 34]. The corresponding eigen-
functions were computed not in the polar coordinates,

rather in the coordinates (z,z) where z = x + iy.
In this representation, the eigenfunctions read (see e.g.
Refs. [29] 30} 34, [50])

Vnyns (2, 2) = Anl-,nzezzﬂa?lagze_zz ) (B1)
with the associated eigenvalues (in units such that w = 1)
EBon,=1+Q—-v)n1+Q+v)ne. (B2)

where nqy = 0,1,2,--- and similarly ny = 0,1,2,---
where 0 < v = Q/w < 1. This last condition follows
from the fact that for v > 1, the system is “unstable”
in the sense that the fermions can “fly away”. Another
important point one can observe is that if w = ), then it
becomes the Landau problem (free electrons in perpen-
dicular magnetic field) with energy levels given by,
E;‘fﬁi}a“ =1+ 2Qngy, Landau problem (B3)
The lowest Landau level (LLL) is given by ny = 0. For
a given ng, there is a N —fold degeneracy. We do not want
degeneracy and therefore it can be lifted by choosing Q2 <
w. This problem can also be alternatively solved in the
polar coordinates discussed in the previous section. To
see the connection between these two representations, we

put v =0 in Eq. and get

Epi=Q2k+1+|l])—vi (B4)
where, £k = 0,1,2... and [ = 0,£1,4£2.... Comparing
Eq. B4 and Eq. [B2] we get,

ny —ng =1, ny + ng = 2k + || (B5)
which implies,
n1:k+l+T|l|, n2:k+|l|T_l. (B6)

Therefore the LLL ny = 0 and n; = 0,1, 2... corresponds
to k =0,1=0,1,2... Note that, when k£ = 0, we have
two branches (positive and negative 1),

Ek:O,l = (1 + |ZD — vl (B7)

thus the LLL (ny = 0 and n; = 0,1,2,---) corresponds
to the right branch (I > 0) and k£ = 0 in the polar repre-
sentation of the eigenfunctions. The left panel of Fig. [f]
shows the energy levels for the case of v = 0.

2. v #0 case assuming v = ¢N where ¢~ O(1)

Now, we discuss the case with v # 0. This case turns
out to be quite non-trivial. We recap that the energy

levels are given by (Eq. ,

Ek,l:2]€+1+\/’7+12—yl (BS)



FIG. 4. (Left) The external potential V(r) = tw’r® + 5% from Eq. is plotted for visualization purposes. We took ¢ = 100
and N = 400. We see the highly repulsive central potential that eventually causes a hole/empty region. (Right) Here, we show
a schematic figure (top view) showing the fermions in 2D. The formation of the central hole and multiple layers and multiple
edges is the key finding and property of the underlying Hamiltonian (Eq. . This is certainly missed via a traditional Local

Density Approximation (see also Fig. E[)

Ey Ey,
- 20- 20 -
Jl. _ 0 ....
e " v#0
5] i 18 i
o o® 00® o
«® y "“‘.o ....-. ....u o . wu’ '..... ..,.0'
wse .-""'.‘. .,,..-"'““ 0o - eene®®™’ onee®”” .....O“'".. oot
10 ...d""”#" e’ oore®® 10 3 e0e®*™” (o000® wnu""'”
ves® oo as00”” 000® et »* =3 jeee® 0s90®®” seoe®® ess
woses™ I e FormideVel [ et e
et e Formide w8l et RO = T
5""&.:.2 .n"""" --"’"“'" 5 =1 .-"“”.. .-o-"".”..
- o P AN e
o ""%:3. .,.a.n'“ .. ?.Q...'”OQO"
....‘ eeeee®
e =0
0 20 40 60 80 l 0 20 40 60 80 l

FIG. 5. (Left) Energy levels for the case v = 0, v = 0.9 and p = 6.2 (Eq. |[A24). (Right) Energy levels for the case v = 5,

v =0.9 and p = 7.5 (Eq. [A24). For both figures, the purple (dashed) line shows the Fermi level upto which we are allowed
to fill fermions. The black, red, green and blue curves represent k = 0, 1,2, 3 bands respectively. The figures shows that if one
fixes the Fermi level appropriately, then only three energy bands (k = 0, 1,2) play a role. Instead of fixing the Fermi level, one
can alternatively fix the number of Fermions N. These figures demonstrate the dramatic difference between v = 0 and v # 0

case.

For a given k, Ej,; (Eq. with energy shifted by 1 for
convinience) has a minimum at [ = {* where,

N

Note that [* is independent of k£ and the energy of the
k'™ band at this minimum is given by,

Epp- =2k 4+ /(1 —1v2)y.

We fix the Fermi level at p. By varying u, we can inter-
sect the energy spectrum Ej, ; at different points. As p in-
creases, more and more k-bands of the spectrum become
lower than the Fermi level and hence should be included
in the construction of the many-body ground-state. The

I* = (B9)

(B10)

right panel of Fig. [b| shows the energy levels for the case
of 4 # 0. Tt intersects the k*® band at two points I (k)
along the [-axis which can be easily computed by setting
Ey1 = p and we get,

() = 220 I

(B11)

Note that if the Fermi surface has to intersect at least
one band, we must have Fy;« < p which indicates that,

>/ (1=v2)y.

For a fixed p, the number of bands k* + 1 below p can

(B12)



be obtained by setting,

Ek*,l* = 2k* + (1 — 1/2)’)/ < u
Ek*+17l* = Qk* + 2 + vV (1 — VQ)'}/ > 1% (BIS)
Hence k* is given by,
— /=2
R lw] ()

where Int(x) denotes the integer part of z. Finally, the
relation between the Fermi energy p and N can be ob-
tained by counting the total number of single particle
levels with energy below p. This gives,

-
SOl (k) 1 (k)] = N .

k=0

Using Eq. [BIT] this gives,

(B15)

.
%Z\/(u—%)z—v(l—u?):N. (B16)
k=0

It is important to note that all the above results until
now are valid for arbitrary N, arbitrary parameters v €
[0,1] and v > 0.

We will now work in the large N limit, and set,

y=¢N, (1-v*)N = M, Large-N limit (B17)
Note that we are taking the limit v — 1, N — o0, keep-
ing (1 —v?)N = M fixed. Therefore we have just two
parameters ¢ and M left and we want to calculate the
average density in the ground state in the limit of large
N, for fixed ¢ and M. We will see that in the (M, c)
plane, there is a series of critical lines separating phases
with different density profiles. In terms of ¢ and M we
thus have

Li(k) = A (k)N , (B13)
where
A (k) = (n—2k) £ ](\;;—2k)2—cM 7
k* = Int [“_;/CW] . (B19)

Similarly the relation between p and N in Eq. [BI6]
becomes

kb

2 Z\/(M—Qk)Q—cle.

= (B20)
k=0

For fixed ¢ and M, we have u ~ O(1). Note that if we

need A4 (k) in Eq.[BI§|to be O(1), then we had to choose

the scaling v = ¢N. This justifies a posteriori the scaling

v = ¢N for large N used in Eq.[BI7 Next, we will discuss

this (M, ¢) plane and critical lines in this plane.

CQ(M)

0.8

0.6

0.2

k* =2

0 5 10 15 20 25 30
FIG. 6. Phase diagram in the (M,c) plane. It is divided
into regions labeled by k* = 0,1, 2... denoting the number of
bands (n) that are below the Fermi level. The lines ¢, (M)
separates the regions between k* = n — 1 and k¥ = n. In
each of the regions, a typical (representative) density profile
is shown (blue). We see that every new band creates a new
layer in the density.

Appendix C: (M, c) plane and critical lines

The (M, ¢) plane gets divided in different regions, each
labeled by k* = 0,1,2,---. For example, if k* = 0 (only
the first band k = 0 is included in the ground state), we
must have

veM <p<2+vVeM .

The upper inequality gets violated when u =2 + vcM.
Substituting this value of p in Eq. [B20] with £* = 0, we
get the first critical line ¢ = ¢1(M) in the (M, c) plane

[see Fig. [d],
1 [ M? 2
— | — — >
<16 1) M >4

(C1)

C1 (M) = (02)

0 M<4.

Hence if ¢ > ¢1(M), the ground state contains only the
k =0 band (i.e. k* =0).

Next, let us consider the case k* = 1, i.e. two
bands £k = 0 and £k = 1 are below the Fermi level
p. From the equation for k* in Eq. [BI§ we see that
k* = Int(@) =1 implies

24+ VeM < p<4+vVeM .

The lower limit corresponds to the critical line ¢ = ¢; (M)
discussed before. The upper limit gives a new critical
line ¢ = cp(M) obtained by substituting u = 4 ++/cM in
Eq. [B20| with £* =1, i.e.,

% [\/(4+\/cﬂ)2—cM+\/(2+\/cﬂ)2—cM =1
(C4)

(C3)

Solving for ¢ = ¢3(M) we get,
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17TMP — 416 M3 — 12y/2¢/M 10 — 48 M8 + 768 M6 — 4096 M* + 2304 M

This second critical line (Eq. is also plotted in Fig. @
For higher values of k£*, one can obtain a similar formula

M > 12

2 )

256 M (C5)
0, 4< M<12
[
with
I'k+1
a; :(7Hand A=y +12. (D2)

for the critical line. For general k*, the condition k* =

Int(4=%M) indicates that,

2k +vVeM < p < 2(k* 4+ 1)+ VeM . (C6)

Setting p = 2(k*+1)++vcM in Eq. and simplifying,
one gets,

(C7)

k* 41
% Z Valg+VeM)=1.
qg=1

Solving this equation for ¢ as a function of M gives the
critical line cgxy1(M). For k* = 0 and k* = 1 the explicit
solutions are given respectively in Egs. [C2]and [C5} How-
ever, one can easily work out the asymptotics. For exam-
ple the line ¢+ 41 (M) starts from M* = 2(k*+1)(k*+2).
For k* = 0 and k* = 1, this gives M* =4 and M* = 12
respectively. For large M, it is easy to show from Eq.[C7]
that,

MS

o (M)~ — M
k*+1
2 |2t vl

(C8)

Thus in the (M,c) plane, we get different regions la-
beled by k* = 0,1,---. The region between ¢, (M) and
¢nt+1(M) corresponds to the region with £* = n, i.e., the
Fermi level has exactly n + 1 bands below it. In Fig. [6]
we show the (M, ¢) plane and some critical lines that de-
marcates various regions. In each region, we have also
sketched a typical /representative density profile. Next,
we will discuss the density in the ground state.

Appendix D: Density as a function of space (exact
expression for finite N)

We recap (Eq.|A22)) that the single particle wave func-
tions can be written as

Yr(r,0) = akJLi(rz)r)‘e*Tz/Qem , (D1)

U aD(k+ 14 ))

L¢(x) are the gencralized Laguerre polynomials. The
average density in the ground state is given by the general
formula,

p(rvng) = Z |wk,l(rv 9)‘2
kil

o k* o ly(k)
—> >

k=01=1_(k)

D(k+ 1) L2
TA+k+1)

.
= px(r,60,N) (D3)
k=0

where [ (k) are given in Eq. with p determined from

Eq. The contribution to the density from the k"
band is given by,

_ I (k)
Tk+1e 'L
pk(r,O,N):i( 7r) g
I=1_ (k)

The above expression for density (Eq. and Eq.
is valid for any N (see Fig. @ In what follows, we will
take the large-N limit and provide further analytical in-
sight into the form of the density.

LA

Tk Y

Appendix E: Density as a function of space in the
large N limit

In the large N limit, noting that both Iy (k) scale as
N, we set | = Ny and replace the discrete sum over [
by an integral over y. Furthermore, we scale r = zv/N.
With this change of variable, we want to first express the
integrand as a function of y for fixed z in the limit of
large N. Let us start with the quantity A = /v + 2.
Recollecting that v = ¢N and setting [ = Ny, we get for
large N,

A~ Ny + —

= (E1)

Approximating the Gamma function in Eq. [D4] by the

Stirling formula I'(z 4+ 1) ~ 27re(z+%) 108(=)=% for Jarge
z and setting r = zv/N, we find to leading order for large
N

9



pr(r,0,N) ~
2

where At (k) has been defined in Eq. In the large N
limit, the integral over y is dominated by a saddle point
at y = 22, Therefore it is natural to make the change of

variable,
=2 + 3 Xz
Yy = \/ N .

Therefore Nz2 ~ Ny — x1/2Ny. We can now use the
following remarkable limiting formula for the generalized
Laguerre polynomials,

(E3)

2—k:/2

lim AF2LY (A — V2Xz) = NCESY

A—00

o Hel(z), (E4)

where Hy(z) is the Hermite polynomial of index k. Sub-
stituting A ~ Ny and using N22 ~ Ny —x+/2Ny we find,
using Eq. that,

Jim (Ny) "ML (Ny = 2/2Ny))? = s Hii(x)

Thus the integral in Eq. [E2] reads

—k ay (k) )
PHEON > Sty ), 2 T
. (E6)
where
as(h) = LB 2N (67)

2V/2

Therefore, the density in the k™ band is supported on
the interval \/A_(k) < z < y/A4(k). It turns out that
this expression for the density has very interesting bulk
and edge properties. In the subsequent subsections we
analyse these properties.

1. Bulk

If z is in the bulk, ie. far away from these
two edges, then in the large N limit, the two lim-
its ax(k) — z+oo. Hence the integral becomes simply
[2° due [Hy(u)]> = 2¥T(k + 1)y/7. This gives the
bulk density,

1
bulk ~ _
o (r 0, N) = WI ) <e<yar® 0 (E8)

where 7 ) <2</ is an indicator function that
takes value 1 if the inequality in the subscript is satisfied
and 0 otherwise.

VNI (k +1) /Mk) dy |
Ay VY

yln(zz/y)+y_z2] (Ny)fk[LiVy(ZQN)]Q ,

Let us summarise the results of above Sec [E1l The
total density is obtained by summing over all the bands
below the Fermi energy and is given by its large IV scaling
form,

r
r0,N) ~ — ), E9
ol ~ £ () (E9)
where the scaling function f(z) is given by,
_ 1 7 E1
T kz: VA (K)<z<y/Ag(E) ? (E10)

and Ap(k) is given in Eq. - One can check that
f(2) in Eq. 1s normalized, i.e. 2m [° f(z)zdz =1

upon using the definition of A4 (k) from Eq.[B18|and the
relation in Eq. [B20}

Hence the limiting density has a compact single sup-
port over \/A_(0) < z < 4/A4(0). For k* = 0, it is
just a simple flat density over this support. However, for
k* > 0, the density has a nontrivial layered shape. For
example, for k* = 1, the density is given by (see Fig.[7)),

0, 2z<+y/A_(0)

% VA <Z<\/
f(z) = % VA <z </AL(1) (ELL)

3=
A
N
A
ﬁ
+

2. Edges

In contrast if z is close to one of the two edges, say the
left edge \/A_(k), we can estimate the limiting form of
the edge density when N — oo from the same expression
in Eq.[E6 For this, we set,

22_(k)
Ve,

VN
where v ~ O(1). In this case, the lower limit in the inte-
gral in Eq. becomes a_ (k) ~ —u (with u measuring

the scaled distance from the left edge), while the upper
limit still approaches to 400 as N — oo. Hence we get,

2 =M_(k)+ (E12)

P8 (10, N) — £295° (u) (E13)
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FIG. 7. (Left) Plot showing the comparison between exact expression for density (Eq. red solid) and the bulk density
expression at large-N (Eq. black dashed). We chose, ¢ = 1, M = 10 and N = 8000 and we are in the £ = 1 region of
Fig.[6] We also notice the two kinks (red solid) which stems from the zeros of Hermite Polynomial of degree k = 1 in our case.

We have zoomed the location of the kink for the left edge and shown f]

edge(y,). (Right) A three-dimensional representation of

exact expression for density (Eq. . We can see the non-trivial layered structure (z = y/x2 + y2).

where
edge(u) _ L /00 dx 6712 [H (13)]2
k m™20(k+1) ), k
(E14)
and we recall that,
N r?
= — — A . E1l
=z (5 ) (B15)

Note that when u — oo, ff%%(u) — 1/x, and the edge
density matches smoothly with the bulk density. In Fig.
We have plotted the edge density functions f;jdge(u)
vs u for kK = 1 and k = 2. One sees from these figures
that the scaling functions have kinks. For k& = 1, there
is only one kink at v = 0 while for k = 2 there are two
kinks. In general, for the k** band, the function fy(u)
will have k kinks as a function of u. The kinks occur
when the derivative vanishes, i.e., dff%€(u)/du = 0.
By taking the derivative of Eq. we see that this

J

]zdgC(u _ \/ﬁy) — M Aw dv {efk(yiyf Hk(m(v - y))}

73/2T0(k + 1)

We can now use the Plancherel-Rotach asymptotic for-
mula for Hermite polynomials,

hx? ) 1/4 2k/2
TR0 = (1)

gr(X) (1+O<]1€)> ,—l<X <1
(E17)

kA (kY2 x

happens when Hj(—u) = 0. Thus the locations of the
kinks in the edge density of the k" band coincide with
the zeroes of the k" Hermite polynomial. For instance,
for k = 2, the kinks are located at u; = —1/v/2 and
uy = +1/v/2. Note that the edge scaling function fi(u)
is actually universal, i.e. independent of the system
parameters ¢ and M and depends only on the band
label k. The above non-trivial connection between
,gdgc(u) and Hermite polynomials naturally points to
a possible connection to RMT, which we elucidate below.

3. Edge density in the limit of high Landau levels
(k> 1) and connection to Random Matrix Theory

It turns out that as k — oo, the edge profile f;jdge(u)
given in Eq. [ET3] property shifted and scaled, has a nice
limiting profile. This behaviour comes from the asymp-
totic behavior of the Hermite polynomials Hy(u) in the
limit of large k (known as Plancherel-Rotach asymp-
totics). To obtain this limiting profile, we first set
u = V2ky, with y ~ O(1), and also perform the change

of variable in Eq.[E13} 2 = v/2k(v — ). This leads to,

’ (E16)

(

with

gr(X) = cos (kX 1— X2+ (k+1/2)sin™! X — k:7r/2)
(E18)
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FIG. 8. The edge density scaling functions fzdge(u), i.e., Eq.|E13|is plotted vs u for k = 1 (left panel) and k& = 2 (right panel).

We see that the location of the kinks is at Hy(u) = 0.

F (Vaky)

FIG. 9. Plot of f2%°(v/2ky), with fS%8°(y) given in Eq.
as a function of y for & = 20 (red solid line). The black-
dashed line is the exact limiting form given in Eq. [E2I] It
should be noted that the positions of kinks are at zeros of
Hermite polynomial of degree k = 20.

Inserting this expansion (Eq. and Eq. [E18) with
J

fi (= V2ky) =

lim
k—o0

Close to u = £+/2Fk there is an interesting edge region, of
width O(k~1/6) where the density is described by Airy
functions, very similar to the well known “Tracy-Widom”
regime at the edge of the Wigner semi-circle in RMT be-
longing to the Gaussian Unitary Ensemble (GUE). This
is somehow expected given the square-root singularity
near the edges u = ++/2k of the limiting profile given in

3 =

X = v —y in Eq. [E16] one finds,

{51 (5] / 2 o
fkdg ('LL = Qky) ~ P/ Ifl<vfy<1 X
0

1 2
v —y)dv
—(0—y)p gi(v —y)

(E19)

where the indicator function comes from the fact that
the asymptotic behavior in Eq. [EI7 and Eq. [EI§ holds
only for —1 < X < 1, while it is sub-leading (in k)
for X outside the region. Due to the identity cos?z =
1/2 + cos (2x)/2, one can replace [gr(v — y)]”, given in
Eq. in the integral over v in Eq. by 1/2 (the
remaining cosine being highly oscillating for large k& and
thus subleading). Therefore we get,

1 max(y+1,0) d
o= = L | :
T Jmax(y-1,00 /1 —(v—y)?
(E20)
which finally yields (see also Fig. [J)),
y<—1
+ sin—l(y)) ,l<y<1 (E21)

y>1.

Eq.[E2I] This edge behavior can be derived from Eq. [ET3]
by using the asymptotic behavior of the Hermite polyno-
mial Hy(u) near u = V/2k where the Hermite polynomial
becomes an Airy function. One finds (for large k), setting
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FIG. 10. Plot of the density profile 7 pi(r,0, N) as given in
Eq.[FT7for M = 5, as a function of the scaled distance s — we
recall that r = Z\/> VN (e1/M)M* + s/y/2 — for different
increasing values of t = 1,10, 15 and 25 (from bottom to top).
As t increases, the scaled density m p1(r, 0, N) approaches the
constant value 1 for |s| < vit and decays rapidly to O for
|s| > vit. The front separating the constant density 1/7 and
the zero-density outside “moves with a constant speed v1”
with increasing ¢, reminiscent of a remarkable travelling front
structure.

u=—V2k+ 75 with w = 0(1)
1

( V2k + fkl/ﬁ) ~ kl/g}'(w) (E22)
where
F(w) = %/0 Ai*(v —w)dv = %([Ai’(—w)]2
+ wAiQ(—w))
(E23)

and Ai(z) denotes the standard Airy function. Note that
a similar computation could be carried out for the kernel
which would lead (on the real line at least) to the well
known Airy kernel.

Appendix F: Emergence of new droplet as one
crosses critical lines in (M, ¢) plane

We want to look at the phase diagram in the (M, c)
plane and ask, when k* changes from k* = 0 to k* =
(which means a new band is included below the Fermi
energy), how does the density profile change from one
layered structure to two layered structure. We have al-
ready seen that just when one crosses this critical line
¢ = ¢1(M) = ¢, the second layer appears on top of
the first layer. In this subsection, we describe the den-
sity profile of this emerging blob in the second layer for
c slightly below ¢; for fixed 4 < M < 12 (see Fig. @,
where ¢; is given in Eq. We therefore set

c=c1—A where 0<AK1. (F1)
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For each point in the (M, ¢) plane, p is uniquely deter-
mined from Eq. Therefore as we change the value
of ¢ from ¢; to ¢; — A, the value of p also changes from

w=2++vcM to
nw=2++\eneM—+59,

where § < 1. Inserting this value of y in Eq. [B20] and
expanding for small ¢ gives a relation between A and §

(F2)

(M? —16)%/2
v

Therefore, one just has one single control parameter §
describing the location of the system in the phase dia-
gram, in the vicinity of the critical line ¢ = ¢;(M). We
now want to see how the density changes as we vary 6.

We start with the formula for the density in Eq.
When k* increases from 0 to 1, the additional density in
the second layer is given by,

A= (F3)

-2 1) P2VAHE NETEE ?

p1(r,0,N) = L, (r?)

I(vy+12+2)
(F4)
with
LY =14y 12— 2 (F5)
where
-2+ — 22— M

L(1)="~ (/}Lw FoaM v (e

We can rewrite Eq. using Eq. (to leading order in
0 for small ) as

l(1) AL N, Ay = (ﬁiul\@ (F7)

V2

ye /4
7 (c1M)

In real space, the second layer of the macroscopic density

appears over the scaled region,

%—lefé<z2<,/%+v1\/5,

where z = r/ V'N. Therefore, the center of the second
layer is located at z, = (¢1/M)/* and we want to provide
a scaling description of this density in the second layer
just after its appearance, i.e., in the limit 6 — 0. Hence
we set,

with

v = (FS)

(F9)

C1
22 = — + €,

7 (F10)

where € is proportional to the distance from the center
of the second layer. Thus the density is just a function
of € and 0 in the vicinity of the critical line ¢ = ¢; (M)



and below we work out the dependence of the density on
these two parameters in the large N limit.
To analyse the density Eq. [F4]in the limit of large N,

J

77‘2

At ,],.2\/CN+N2x2
dx
T -/>\, I'(VeN + N2z2 + 2

e
p1(r,0,N) ~

where we kept the leading term in the arguments for large

At
p1(r=2VN,0,N) ~ dz

) [1+\/0N+N2x2—r2]2z €

eQlen(z\/N)—Nwln:v-&-Nx(Nx o NZ2)2 )

e—N,z2
TV 2rN />\ x3/2

We now substitute 22 = /< + ¢ from Eq. and make

the change of variable x = \/¢1/M + v. Since |v| <

J

pi(r=2VN,0,N) ~

In order that this integral is of order O(1), we see that

we need to scale V6 ~ t/v'N, e ~ s/v/N where t > 0 as
well as s are both of order O(1). Making the change of
variable @ = [N /2]"/2(M/c;)*(v — €) in Eq. [F13] we
get,

21

w4 N
P1 ('I" = Z\/N, 0, N) Nm / d'lz) 12}2 €7w2(F14>

D
with

Wy = ol <M>1/4 (£01V5 —€) .

F1
2 \ o (F15)

In order that the integral remains of order O(1) in the
large N limit, we see that both v/0 and e should scale as
O(1/+/N). We therefore set,

]2 fe\ WA ]2 /A
Visym(G) o =5 G e
(F16)
where ¢ and s are both of order O(1). Therefore, the

density in the large N limit, a function of the original
variables € and J, can be re-paramaterized in terms of

3/4 +v1V38
S
m™2rN \ a1 —v1V3
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we set ¥ = ¢; N and we introduce [ = z N so that the
sum over [ can be replaced by an integral over = leading
to,

2Nz

77-‘2

At
d -
T / “T(Nz +2)

(Nx — 7"2)2

(F11)

(

N. We can now approximate the Gamma function by the
Stirling’s formula, leading to,

(F12)

(

v1V/3, we can expand the integrand for small v and retain
only up to O(v?) terms inside the exponential. After
straightforward algebra, one obtains,

(v—e)*

N2(v—€)?. (F13)

(

the scaled variables s and ¢ given in Eq.

1
pl(r = Z\/N,@,N) ~ ; [F1(8+U1t) _Fl(s_vlt)] )

(F17)
where v, = g(clM)l/4 and
2 # 21 2
F = dw?e P = Z |erf(z) — ——ze?
1(2) 7r /0 W we 5 |er (2) ﬁze
(F18)

Note that the scaled variables t and s can be expressed
in terms of A = ¢; — ¢ (which measures the location the
distance in the phase diagram with respect to the critical
line ¢ = ¢;(M)) and the variable z = r/v/N where r
measures the distance from the center of the trap. The
first relation can be obtained by eliminating ¢ between

Eqgs. [F3] and [F16]

o (MY _eave
“\1e, ) 2162

Similarly the second relation is obtained by substituting

€ =22~ /c1/M in Eq. FlGl This gives

(i) - m

VN . (F19)

(F20)



where z = 7/v/N.

Interestingly, the scaled density profile in Eq. has
an interesting traveling front structure. To see this, we
consider the density as a function of s, for a fixed t. The
density decays to 0 very rapidly as |s| > vt (see Fig.
. Therefore the two edges of this profile move “ballis-
tically” with increasing t with a “speed” given by vy. If
we interpret ¢ as a “time”, then at late times, the density
profile develops a traveling front structure with velocity
vy and the width across the front remains of O(1) as ¢
increases. For large ¢, the density has a constant value
~ 1/m for all |s| < vit (see Fig. [L0). Finally, the speed
vy is given by vy = V2/M (c;M)'* can be expressed in
terms of M, by using the expression for ¢; (M) in Eq.

Note that here we analysed the density profile near the
transition from k* = 0 to k* = 1 where the second layer
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just appears over the first layer. One can do a similar
analysis for the transition form £* = n —1to k* = n
across the critical line ¢ = ¢, (M) for any n > 1. We do
not repeat the analysis here but it is easy to show that
the scaled density will again be given by the difference of
two functions, as in the k = 1 case in Eq.

pu(r = 2V N) = % [F (s + vnt) — Fo(s — vnt)] (F21)

where the speed v, can be computed from the critical
curve ¢ = ¢, (M) and the scaling function F,(z) is given,
up to an overall constant by,

~2

Fo(z) /0 " dib [H, ()] e, (F22)

where H,,(w) is the Hermite polynomial of degree n.
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