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case
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Campus Pierre et Marie Curie, 75005 Paris, France

(Dated: August 4, 2021)

Considering a minimal number of assumptions and in the context of the timeless formalism, we
derive conditional probabilities for subsequent measurements in the non-relativistic regime. Only
unitary transformations are considered with detection processes described by generalized measure-
ments (POVM). One-time conditional probabilities are univocally and unambiguous derived via the
Gleason-Bush theorem, also in puzzling cases like the Wigner’s friend scenario where their form
underlines the relativity aspect of measurements. No paradoxical situations emerge and the roles
of Wigner and the friend are completely interchangeable. In particular, Wigner can be seen as a
superimposed of states from his/her friend.

I. INTRODUCTION

The measurement problem is one of the most funda-
mental issues in Quantum Mechanics on which the nu-
merous interpretations and foundations differ. Von Neu-
mann was the first to try to formalize the problem of mea-
surement assuming that there are basically two types of
evolution in quantum mechanics [1]. The first is the uni-
tary evolution, while the other is the collapse of the wave-
function during the measurement with the passage from
a superposition of states to one only of the studied sys-
tems. Contrary to the unitary evolution, the second mea-
surement process, formalized by the projection postulate,
is irreversible, non-causal and, of course, non-unitary; it
is generally viewed as passage between the quantum to
the classical realm. When such a process is not postu-
lated, different mechanisms can be evoked to justify it,
like the coupling to the environment (decoherence) [2],
the addition of non-linearities in the evolution equation
[3] and specific coupling to the gravitational fields [4],
among many other approaches.

If an ideal Ockham’s razor would be applied to the dif-
ferent interpretations of Quantum Mechanics, only the
ones with a minimal number of hypotheses should be
considered (and that agree with experimental measure-
ments of course). Instead of postulating two type of na-
tures, classical and quantum, the simplest approach is
to consider only the second one; quantum phenomena
cannot be explained by classical physics, when in oppo-
site, classical behavior can emerge from quantum sys-
tems. With the same minimalist approach, only one evo-
lutionary process–the unitary processes–should be taken
into account. If only unitary transformations are con-
sidered, the measurement process has to be interpreted
then as a unitary interaction between the detector sys-
tem and the studied system. For this task, the standard
approach is to describe the detection process by a posi-
tive valued operator (effect) in the context of the Positive
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Valued Operator Measure (POVM) framework [5, 6]. In
this context, non-ideal measurement can also be treated
including destructive detections.

By considering the measuring apparatus as a quantum
system, as well as the entire chain up to the observer’s
neurons, the measurement theory becomes part of the
quantum theory of interacting compound systems. In
this framework, the correlations created by interactions
between systems play a central role, like in Relational
Quantum Mechanics [7, 8], in the original Everett for-
mulation [9] and its many-worlds theory derivation [10],
in the Consistent Histories [11, 12] , in the History Pro-
jection Operator formalism [13] and in the QBism [14].
This simplicity has however a price. The entanglement
between observer and observable leads to different mea-
surement results of independent, i.e. non-interacting, ob-
servers. The relativity of what is normally considered
universal rests however a big conceptual leap for beings
living in a world where quantum behaviors are barely vis-
ible. This discomfort manifests itself in paradoxes like in
the case of the Wigner’s friend scenario [15], where two
observers can have a contradictory description for a same
system at the same moment.

Another thorny problem of the standard formulation
of quantum mechanics is the special role occupied by the
time coordinate t. In the unitary evolution, t is the evo-
lutionary parameter; in the Schrödinger equation, time
explicitly appears in the derivation with respect to it.
In both cases, time plays a special role in the descrip-
tion of a system’s evolution. Moreover, the formal de-
scription of a system before and after a measurement
(via a short interaction) requires considering two distinct
Hilbert spaces Hin ⊗ Hout [13, 16–18]. This complexifi-
cation and the central role of the time coordinate can be
eliminated at once by including the measurement of time
itself in a more general description of the studied inter-
action together with a clock system. Originally designed
to be compatible with general relativity, this formalism
allows for considering dynamic processes without time as
parameter. This leads to a simpler formulation of the
measurement process acting in a unique Hilbert space,
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where time is an observable among others resulting in a
timeless description of dynamics.

Starting from a minimalistic approach with the de-
scription of nature using only quantum systems and uni-
tary interactions, in this article we focus our interest on
the formulation and properties of the conditional proba-
bility function in the quantum time formalism. Several
works discussed on the conditional probability since the
early formulations from Page and Wootters in 1983 [19].
Here we take the advantage of the best both worlds of
timeless and POVM formalisms to provide a coherent
description on different measurement.

Differently from previous works [20–25], we derive
the conditional probability for subsequent measurements
starting from very first principles. More precisely, we
build the most general measurement operator for the to-
tal Hilbert space that includes the clock system itself. By
applying the Gleason-Bush theorem, the associate prob-
ability is derived. As we will see, in this way the proba-
bility expression is univocally defined. In particular for
Wigner’s friend measurement scenarios, the associated
probability expressions can be simply and unambiguously
formulated.

In the following section, we introduce the basic notion
of the quantum time/timeless formalism including detec-
tor systems. In section III, we derive the corresponding
probability expressions and in Sec. IV we apply the de-
veloped tools to study the case of the Wigner’s friend.
Section V will be our conclusions.

II. NON-RELATIVISTIC QUANTUM TIME
(TIMELESS EVOLUTION) FORMALISM

Similarly to Refs. [20, 22, 23], as starting point we
consider the Wheeler-DeWitt equation for describing the
dynamics of the global state |Ψ〉 in the time-space con-
tinuum [26]:

Ĥ |Ψ〉〉 = 0. (1)

Ĥ is the total Hamiltonian acting in the kinematic
Hilbert space K where space-time coordinates are mea-
sured. The notation with the double ket |·〉〉 indicates the
inclusion of a clock system in |Ψ〉〉 from which the time
coordinate is measured. In the following paragraphs, we
implicitly assume c = ~ = 1. Solution of the above equa-
tion are also solution of

|Ψ〉〉 =

∫
dαe−iαĤ |Ψ〉〉 = P |Ψ〉〉. (2)

The operator P can be considered as “projector” from K
to the dynamical Hilbert space H, the Hilbert space of
the dynamical solutions [26].

In the non-relativistic approximation where the a per-
fect clock system C is considered non-interacting with the
system of interest S, the kinematic Hilbert space can be
decomposed in K = HT ⊗HS where HT and HS are the

Hilbert sub-spaces of the clock and the studied system,
respectively. The corresponding Hamiltonian is

Ĥ = p̂T ⊗ 1S + 1T ⊗ ĤS (3)

where ĤT = p̂T consists of the conjugate operator of
the time operator T̂ , with [T̂ , p̂T ] = i. {|t〉T } are the
corresponding time states that form the base of HT , with
T̂ |t〉T = t |t〉T and T 〈t|t′〉T = δ(t − t′). A more general
case where the clock can interact with the studied system
or with another clock is treated in Refs. [27, 28]. The
case of relative or non-ideal clocks is discussed in Refs.
[29, 30].

The total wave-function can be then decomposed in
|Ψ〉〉 = |t〉T⊗|ψ(t)〉S where |ψ(t)〉S =T 〈t|Ψ〉〉 is the wave-
function obtained by the condition of measuring the time
t in the clock. Consequently, we can also write

|Ψ〉〉 =

∫
dt |t〉T ⊗ |ψ(t)〉S . (4)

With this notation, considering the term T 〈t|Ĥ|Ψ〉〉 with
Eqs. (1) and (3), we obtain the the standard form of the

Schrödinger equation i ∂∂t |ψ(t)〉S = ĤS |ψ(t)〉S . If ĤS

does not depends on the time operator T̂ , a solution of
the equation is the unitary operator

ÛS(t, t0) = e−iĤS(t−t0). (5)

III. QUANTUM MEASUREMENT AND
PROBABILITIES

Similarly to the procedure described in Refs. [20, 22],
we consider here a measurement at a time tM consisting
of a unitary interaction of a negligible duration between
the system S and a measuring system M . The total
Hamiltonian describing the system is

Ĥ = p̂T ⊗ 1S ⊗ 1M + 1T ⊗ ĤS ⊗ 1M

+ V̂SMδ(T̂ − tM ) + 1T ⊗ 1S ⊗ ĤM . (6)

VSM represents the interaction between HS and HM at
the time tM and where ĤM is the Hamiltonian of the
detector itself. With the detector space HM we can asso-
ciate the entire sub-system chain from the detector to the
observer’s brain. The changes in HS of a measurement
with outcome m is given by positive-valued operator Π̂m

linked to the detector ancillary state |m〉M ∈ HM . The
interaction between the detector and the system at time
tM results in the unitary mapping

|ψ(tM )〉S ⊗ |r〉M →
∑
m

Km
M |ψ(tM )〉S ⊗ |m〉M , (7)

where |r〉M is the “ready” detector state before the mea-

surement, K̂m
M are the different Kraus operators corre-

sponding to the outcomes m with Π̂m = (K̂m
M )†K̂m

M .
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From Eq. (4), the total state |Ψ〉〉 can be written as

|Ψ〉〉 =

∫ tM

−∞
dt |t〉T ⊗ |ψ(t)〉S ⊗ |r〉M

+

∫ ∞
tM

dt |t〉T ⊗
∑
i

ÛS(t, tM )K̂i
M |ψ(tM )〉S ⊗ |i〉M , (8)

where ÛS is defined in Eq. (5).
We consider now the case of two subsequent measure-

ments: one measurement M on S with output m oper-
ated at a time tM and another N with output n done at
the time tN > tM with no other interaction between the
different sub-systems. The corresponding Hamiltonian is

Ĥ = p̂T ⊗ 1S ⊗ 1M ⊗ 1N + 1T ⊗ ĤS ⊗ 1M ⊗ 1N

+ V̂SMδ(T̂ − tM )⊗ 1N + V̂SNδ(T̂ − tN )⊗ 1M

+ 1T ⊗ 1S ⊗ ĤM ⊗ 1N + 1T ⊗ 1S ⊗ 1M ⊗ ĤN (9)

and the associated wave-function is [22, 25],

|Ψ〉〉 =

∫ tM

−∞
dt |t〉T ⊗ |ψ(t)〉S ⊗ |r〉M ⊗ |r〉N

+

∫ tN

tM

dt |t〉T ⊗
∑
i

ÛS(t, tM )K̂i
M |ψ(tM )〉S ⊗|i〉M ⊗|r〉N

+

∫ ∞
tM

dt |t〉T ⊗
∑
i,j

ÛS(t, tN )K̂j
N ÛS(tN , tM )K̂i

M |ψ(tM )〉S

⊗ |i〉M ⊗ |j〉N .
(10)

Note that this timeless representation of the total
wave-function by a series of superimpositions of sys-
tem/detector entangled states is de facto equivalent to
the branched wave-functions in Everett’s original paper
[9], where the central concepts turn around the relativity
of states of measured and measuring systems.

How can we now associate a probability to the mea-
surement outputs? Different approaches have been devel-
oped in the past in the discussed context, as the definition
via transition amplitudes in Quantum Gravity [20, 26]
or postulating the validity of the Bohr rule [22]. Our
approach consists in considering the general features of
Hilbert spaces and requiring only basic properties of the
probability function ℘. For a Hilbert space with finite di-
mension H, the Gleason-Busch theorem [31, 32] demon-
strates that the probability function is in fact univocally
defined by the trace rule

℘(a) = tr(ρ̂ Π̂a), (11)

where Π̂a is a positive-valued operator in H and ρ̂ is the
density matrix of a given state. This is actually the same
approach used by Pages and Wootters [19], where how-
ever only projector operators are considered. It is natu-
ral to extend this definition of probability to the infinite

dimensional space K. Such an extension is in fact equiv-
alent to the standard definition in Quantum Gravity. In
our case, a generic measurement with output a must be
represented by an operator Π̂a in the kinematic Hilbert
space K = HT ⊗HS ⊗HM ⊗HN . Because there is only
one clock subspaceHT , within the minimal approach pre-
sented here, it is impossible to construct a two-time prob-
ability for the event “m at the time t1 and n at the time
t2”. On the contrary, it is possible to consider the mea-
surement “m∧n∧t” ≡ “m AND n AND t” corresponding
to the “m and n results obtained at the time t”, when
the two measurements occur at the times tM and tN , re-
spectively. Like in Refs. [20, 22], the formulation of such
a probability implies that the two detector states |m〉M
and |n〉N are stored in an internal memory that is read
at the time t > tM , tN . It is important to note that, in
contrast to a previous work on subsequent measurements
without timeless notation [33], here the operator “∧” ≡
“AND” is symmetric (a ∧ b = b ∧ a). The measurement
order is in fact defined by the Hamiltonian itself. We are
not simply discussing about ℘(m∧n∧ t), but are implic-
itly considering the probability ℘(m∧ n∧ t|MtM ∧NtN ),
where we explicit the prior information on the Hamil-
tonian structure with the measurements M at the time
tM and N at tN . More complex scenarios with an unde-
fined measurement order in the Hamiltonian can be also
considered [25, 34] but they are not discussed here.

On two-times probabilities, a naive form, based in
wave-function two-time collapse, does not reproduce ac-
tually the correct propagator [35]. An alternative solu-
tion to this problem has been provided by Dolby [36].
However, it has been demonstrated [20] that this so-
lution is in conflict with predictions of standard quan-
tum mechanics. Recently, a new proposition of two-time
probability that solve past criticisms has been presented
by Höhn and collaborators [24]. The operators corre-
sponding to the two measurements at the two times are
built without violating Eqs. (1) and (2), i.e. keeping the
system in the physical Hilbert space H. In the present
work, we keep a simpler approach considering measure-
ment memories the time coordinate read only once. In
this way, we can easily define probability outputs from
a generic one-time operator Π̂a = Π̂m,n,t

MN ∈ K instead of
H Even if the total wave-function is not part of H after
the measurement (|Ψ〉〉 → K̂a |Ψ〉〉 /∈ H, where K̂a is the

Krauss operator associated to Π̂a = K̂aK̂
†
a), the proba-

bility ℘(a) is well defined by the Gleason-Bush theorem
(Eq. (11)).

We emphasize that there is no direct measurement on
S but only via the ancillary detector states. The operator
associated with this measurement is Π̂m,n,t

MN = |t〉T T 〈t| ⊗
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1S ⊗ |m〉M M 〈m| ⊗ |n〉N N 〈n| that leads to

℘(m∧n∧t) = tr(ρ̂ Π̂m,n,t
MN ) = ||(T 〈t|⊗M〈m|⊗N〈n|) |Ψ〉 ||2

=


||M 〈m|r〉M N 〈n|r〉N |ψ(tM )〉S ||2 if t < tM ,

||N 〈n|r〉N Km
M |ψ(tM )〉S ||2 if tM ≤ t < tN ,

||Kn
N ÛS(tN , tM )Km

M |ψ(tM )〉S ||2 if t ≥ tN .
(12)

With two separate detections, we can now discuss the
conditional probabilities of the different outcomes. The
conditional probabilities and ℘(n|m ∧ t) can be calcu-
lated with the standard procedure from the Bayes’ rule
and the probabilities ℘(n ∧ t) and ℘(m ∧ t) by applying
Eq. (11) with the corresponding operators. We obtain in
particular

℘(n|m∧t) =
℘(m ∧ n ∧ t)
℘(m ∧ t)

=
tr(ρ̂ Π̂m,n,t

MN )

tr(ρ̂ Π̂m,t
M )

= ℘(n∧t|m∧t),

(13)

where Πm,t
M = |t〉T T 〈t| ⊗ 1S ⊗ |m〉M M 〈m| ⊗ 1N . For

℘(m|n ∧ t) a similar equation can be derived. The va-
lidity of the last equivalence in the above formula is
justified by the presence of the time measurement op-
erator in both numerator and denominator. To note,
℘(n ∧ t|m), ℘(m ∧ t|n) probabilities could be also con-
sidered to build conditional forms. In this case, their
evaluation is more complex due to the appearence of
℘(n) and ℘(m) in the denominators. It requires in fact
the marginalization with respect the time operator ba-
sis {|t〉T } and consequently its normalization. Such a
normalization is discussed Ref. [22] but is not considered
here. When only ℘(m ∧ n ∧ t)and℘(n ∧ t) are used to
derive ℘(m|n ∧ t), in fact no problems of normalization
are encountered.

IV. WIGNER’S FRIEND SCENARIO AND
CONDITIONAL PROBABILITY

With the notation and formulas presented above, we
can now consider the case of Wigner’s friend. This
measurement scenario, introduced for the first time by
Wigner [15], is constituted by an observer W (Wigner)
that observes another observer F (his/her friend) who
performs a quantum measurement on a physical system
S. The friend makes a measurement of the system and
records a well-defined result. During this measurement
and just after, the system/friend ensemble is isolated
from Wigner. For W , the measurement of F on S be-
comes entangled and both are described by a superposi-
tion of the different possible final states. Paradoxically,
W and F have at the same time a different description
of S. The Wigner’s friend scenario with the timeless for-
malism has been extensively discussed in a recent work of
Baumann, Brukner and collaborators [23], where several
forms of probabilities are considered. The notation pre-
sented here leads in contrast to a unique form of proba-

TABLE I. ℘(f ∧ w ∧ t) values for t > tN .

@
@@f
w

yes no

↑ |a|2|α|2 |a|2|β|2
↓ |b|2|β|2 |b|2|α|2

bility. Its derivation is presented in detail in the following
paragraphs applying the results presented above.

As in Ref. [23], without losing in generality and to
keep simple expressions, we consider no-free dynamics for
three systems: the studied system S, Wigner’s friend F ,
and Wigner W . The corresponding Hamiltonian, relative
to a measurement M at the time tM between the system
and the friend, and a measurement N at the time tN
between Wigner and the ensemble friend-system, is

H = p̂T ⊗ 1S ⊗ 1F ⊗ 1W + 1T ⊗ ĤS ⊗ 1F ⊗ 1W

+ V̂SF δ(T̂ − tM )⊗ 1W + V̂SFW δ(T̂ − tM )

+ 1T ⊗ 1S ⊗ ĤF ⊗ 1W + 1T ⊗ 1S ⊗ 1F ⊗ ĤW . (14)

We consider a system initial condition described by
|ψ〉S = a |↑〉S + b |↓〉S with |a|2 + |b|2 = 1. For Wigner,
after the friend’s measurement, S and F are described
by

|ψ〉S ⊗ |ϕ〉F = a |↑〉S |↑〉F + b |↓〉S |↓〉F . (15)

We consider also that Wigner’s measurement on F and
S consists in the detection of the ancillary state |yes〉W ,
which corresponds to the operator on the system-friend
space Π̂yes

N = |yes〉SF SF 〈yes| ∈ HS ⊗HF with

|yes〉SF = α |↑〉S |↑〉F + β |↓〉S |↓〉F , (16)

with |α|2 + |β|2 = 1, and its complementary operator

Π̂no
N = 1S ⊗ 1F − Π̂yes

N
The global wave-function with these two measurements

is similar to that one in Eq. (10):

|Ψ〉〉 =

∫ tM

−∞
dt |t〉T ⊗ |ψ〉S ⊗ |r〉F ⊗ |r〉W

+

∫ tN

tM

dt |t〉T ⊗
∑
f

K̂f
M |ψ〉S ⊗ |f〉F ⊗ |r〉W

+

∫ ∞
tN

dt |t〉T ⊗
∑
f,w

K̂w
NK̂

f
M |ψ〉S ⊗ |f〉F ⊗ |w〉W . (17)

The probability of having the measurement results w and

f at the time t is associated to the operators Π̂f,w,t
MN =

|t〉T T 〈t| ⊗ 1S ⊗ |f〉F F 〈f | ⊗ |w〉W W 〈w|. Its values are

℘(f∧w∧t) = tr(ρ̂ Π̂f,w,t
MN ) = ||(T 〈t|⊗F〈f |⊗W〈w|) |Ψ〉 ||2 =

||F 〈f |r〉F W 〈w|r〉W |ψ〉S ||2 if t < tM ,

||W 〈w|r〉W Kf
M |ψ〉S ||2 if tM ≤ t < tN ,

||Kw
NK

f
M |ψ〉S ||2 if t ≥ tN ,

(18)
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TABLE II. Values of ℘(w ∧ t) (left) and ℘(f ∧ t) (right) for
t > tN .

w ℘(w ∧ t)
yes |a|2|α|2 + |b|2|β|2
no |b|2|α|2 + |a|2|β|2

f ℘(f ∧ t)
↑ |a|2
↓ |b|2

TABLE III. Values of ℘(w|f ∧ t) (left) and ℘(f |w ∧ t) (right)
for t > tN .

@
@@f
w

yes no

↑ |α|2 |β|2
↓ |β|2 |α|2

@
@@f
w

yes no

↑
|a|2|α|2

|a|2|α|2 + |b|2|β|2
|a|2|β|2

|b|2|α|2 + |a|2|β|2

↓
|b|2|β|2

|a|2|α|2 + |b|2|β|2
|b|2|α|2

|b|2|α|2 + |a|2|β|2

where |r〉F and |r〉F are the “ready” state of the
friend and of Wigner. The associated Kraus opera-

tors are K̂↑M = |↑〉S S〈↑| , K̂
↓
M = |↓〉S S〈↓| , K̂

yes
N =

|yes〉S S〈yes| = (α |↑〉S+β |↓〉S)(α∗S〈↑|+β∗ S〈↓|), K̂no
N =

|no〉S S〈no| = (−β∗ |↑〉S +α∗ |↓〉S)(−βS〈↑|+αS〈↓|). The
different possible values of ℘(f ∧ w ∧ t) are summarized
in Tab. I.

Similarly to Eq. (13), the conditional probabilities
℘(w|f ∧ t) and ℘(f |w ∧ t) can be calculated from

℘(w|f ∧ t) =
℘(f ∧ w ∧ t)
℘(f ∧ t)

=
tr(ρ̂ Π̂f,w,t

MN )

tr(ρ̂ Π̂f,t
M )

(19)

and

℘(f |w ∧ t) =
℘(f ∧ w ∧ t)
℘(w ∧ t)

=
tr(ρ̂ Π̂f,w,t

MN )

tr(ρ̂ Π̂w,t
N )

(20)

where Π̂f,t
M = |t〉T T 〈t| ⊗1S ⊗ |f〉F F 〈f | ⊗1W and Π̂w,t

N =
|t〉T T 〈t|⊗1S ⊗1F ⊗|w〉W W 〈w|. To deduce their values,
℘(w ∧ t) and ℘(f ∧ t) have to be evaluated first. For
℘(w ∧ t) we have

℘(w ∧ t) = tr(ρ̂ Π̂w,t
N ) = ||(T 〈t| ⊗W 〈w|) |Ψ〉 ||2 =

||W 〈w|r〉W |ψ〉S ⊗ |r〉F ||2 if t < tM ,

||W 〈w|r〉W
∑
f K

f
M |ψ〉S ⊗ |f〉F ||2 if tM ≤ t < tN ,

||Kw
N

∑
f K

f
M |ψ〉S ⊗ |f〉F ||2 if t ≥ tN ,

(21)

Similarly, for ℘(f ∧ t) we have

℘(f ∧ t) = tr(ρ̂ Π̂w,t
M ) = ||(T 〈t| ⊗F 〈f |) |Ψ〉 ||2 =

||F 〈f |r〉F |ψ〉S ||2 ⊗ |r〉W if t < tM ,

||Kf
M |ψ〉S ⊗ |r〉W ||2 if tM ≤ t < tN ,

||
∑
wK

w
NK

f
M |ψ〉S ⊗ |w〉W ||2 if t ≥ tN ,

(22)

The different values of ℘(w∧t) and ℘(f∧t) are summa-
rized in Tab. II. The conditional probabilities ℘(w|f ∧ t)

and ℘(f |w ∧ t) can be deduced and are presented in
Tab. III. As we can see, the probability function is de-
fined without ambiguities and is automatically normal-
ized with

∑
w ℘(w|f ∧ t) = 1 and

∑
f ℘(f |w ∧ t) = 1.

The relativity of the states is visible in particular in the
last equations corresponding to ℘(w ∧ t) and ℘(f ∧ t).
From the Wigner point of view, the superimposition of
the friend and the system is indeed present and repre-

sented by the sum of terms K̂f
M |ψ〉S ⊗ |f〉F in Eq. (21).

Similarly, the friend sees the state of Wigner as a super-

position represented the sum of the terms K̂f
M |ψ〉S⊗|f〉F

in Eq. (22). Such a superimposition of states is due to
the non-compatiblity of basis between Wigner and the
friend, essential for the calculation of ℘(w|f ∧ t) via the
term ℘(f ∧ t). Neither Wigner nor the friend have a
privileged observation position and the two associated
probabilities lead to the same type of expression but dif-
ferent forms and, more importantly, with no universal
description of the system S. The probabilities depend
only on the relations S −W , S − F and F −W . In the
last years, no-go theorems evoking situations similar to
the Wigner’s friend have been formulated and experimen-
tally tested [37–40]. They demonstrated that one of the
following assumptions has to be violated: i) the univer-
sal validity of quantum mechanics, ii) the locality, iii) the
freedom of choice on the measurement settings and iv)
the observer-independent experimental outcomes. The
above probability expressions indicate a clear violation
of the measurement output universality. If we assume
that the experimental outputs are relative to each pair of
observer and observed, and we can have a different de-
scription of a same system from different observers, there
is no real paradox in the Wigner’s friend scenario.

The key feature of the Wigner’s friend scenario is the
isolation of W from F and S. The experimental realiza-
tions of scenarios similar to the Wigner’s friend case are
based on photons for both the system S and the friend
F [39, 40], where the coupling and decoupling between
different subsystems can be easily controlled. If we con-
sider a real human friend that operates a measurement in
a real laboratory, the situation would be much different
because it requires screening any mechanical and electro-
magnetic interaction between macroscopic systems. The
coupling between the subsystems F and S with the lab-
oratory environment EFS can also have an influence [41].
Because of the high number of degrees of freedom of EFS ,
decoherence processes can bring to a destruction of state
superimposition for F and S [2, 42] producing a univer-
sal measurement output, a stable fact in the language of
Ref. [41].

V. CONCLUSIONS

We presented here a derivation of the conditional prob-
ability ℘ for subsequent measurements in the context of
the quantum time approach. This is obtained with a min-
imal number of assumptions, considering only systems
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subject to the rules of Quantum Mechanics, without clas-
sical systems, and interacting with each other by unitary
operators with the implementation of POVM. Applying
the Gleason-Busch theorem to the global kinetic Hilbert
space, ℘ is simply built from first principles. In partic-
ular for the non-relativistic case presented here with a
one clock system, it emerges that a two-time probability
function cannot be defined. The causal order of the sub-
sequent measurements are encoded in the Hamiltonian,
whose structure should be considered as prior knowledge
in the probability function.

When the Wigner’s friend scenario is considered, the
relativity of measurements naturally emerges, without
contradictions or ambiguities. The roles of Wigner and
the friend are completely interchangeable, and Wigner
can be seen as a superimposed state from the friend.
This is particularly evident in the marginal probabilities

℘(w∧t) and ℘(f∧t) and, as consequence, the conditional
probabilities ℘(w|f ∧ t) and ℘(f |w ∧ t).

Future developments will be focused on the extension
of the formalism presented here for other Wigner’s friend-
type scenarios, like these considered for the no-go theo-
rems in Refs [37, 38, 40]. More generally, systems with
increasing complexity to study from a new perspective
the role of decoherence will be studied.
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Phys. Rev. X 8, 011047 (2018).

[19] D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885
(1983).

[20] F. Hellmann, M. Mondragon, A. Perez, and C. Rovelli,
Phys. Rev. D 75, 084033 (2007).

[21] R. Gambini, R. A. Porto, J. Pullin, and S. Torterolo,
Phys. Rev. D 79, 041501 (2009).

[22] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev.
D 92, 045033 (2015).

[23] V. Baumann, F. D. Santo, A. R. Smith, F. Giaco-
mini, E. Castro-Ruiz, and C. Brukner, arXiv:1911.09696
[quant-ph] (2019).
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