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Conditional probability, quantum time and friends

M. Trassinelli® *

Institut des NanoSciences de Paris, CNRS, Sorbonne Université,
Campus Pierre et Marie Curie, 75005 Paris, France
(Dated: March 24, 2021)

Considering a minimal number of assumptions and in the context of the timeless formalism, we
derive conditional probabilities for subsequent measurements in the non-relativistic regime. The
probability expressions are found unambiguously, also in puzzling cases like the Wigner’s friend
scenario, and they underline the relativity aspect of measurements. No paradoxical situations emerge
and the roles of Wigner and the friend are completely interchangeable. In particular, Wigner can
be seen as a superimposed of states from his/her friend. When only one clock system is considered,
we demonstrate in addition that two-times probabilities cannot be defined.

The measurement problem is one of the most funda-
mental issues in Quantum Mechanics on which the nu-
merous interpretations and foundations differ. Von Neu-
mann was the first to try to formalize the problem of mea-
surement assuming that there are basically two types of
evolution in quantum mechanics [1]. The first is the uni-
tary evolution, while the other is the collapse of the wave-
function during the measurement describing the passage
from a superposition of states to one of the studied sys-
tems. Contrary to the unitary evolution, the second mea-
surement process, formalized by the projection postulate,
is irreversible, non-causal and, of course, non-unitary; it
can be viewed as passage between the quantum to the
classical realm. When such a process is not postulated,
different mechanisms can be evoked to justify it, like the
coupling to the environment (decoherence) [2], the addi-
tion of non-linearities in the evolution equation [3] and
specific coupling to the gravitational fields [4], among
many other approaches.

If an ideal Ockham’s razor would be applied to the dif-
ferent interpretations of Quantum Mechanics, only the
ones with a minimal number of hypotheses should be
considered (and that agree with experimental measure-
ments of course). Instead of postulating two type of na-
tures, classical and quantum, the simplest approach is
to consider only the second one; quantum phenomena
cannot be explained by classical physics, when in oppo-
site, classical behavior can emerge from quantum sys-
tems. With the same minimalist approach, only one evo-
lutionary process—the unitary processes—should be taken
into account. If only unitary transformations are consid-
ered, the measurement process has to be interpreted then
as a unitary interaction between the detector system and
the studied system. From such an interaction, positive-
valued operators, or effects, can be built in the context
of the Positive Valued Operator Measure (POVM) [5, 6],
where imperfect detections can also be treated.

By treating the measuring apparatus as a quantum
system, as well as the entire chain up to the observer’s
neurons, the measurement theory becomes part of the
quantum theory of interacting compound systems. In
this framework, the correlations created by interactions

between systems play a central role, like in Relational
Quantum Mechanics [7, 8], in the original Everett for-
mulation [9] and its many-worlds theory derivation [10],
in the Consistent Histories [11, 12] , in the History Pro-
jection Operator formalism [13] and in the QBism [14].
This simplicity has however a price. The entanglement
between observer and observable leads to different mea-
surement results of independent, i.e. non-interacting, ob-
servers. The relativity of what is normally considered
universal rests however a big conceptual leap for beings
living in a world where quantum behaviors are barely vis-
ible. This discomfort manifests itself in paradoxes like in
the case of the Wigner’s friend scenario [15].

Another thorny problem of the standard formulation
of quantum mechanics is the special role occupied by the
time coordinate ¢. In the unitary evolution, ¢ is the evo-
lutionary parameter; in the Schrodinger equation, time
explicitly appears in the derivation with respect to it.
In both cases, time plays a special role in the descrip-
tion of a system’s evolution. Moreover, the formal de-
scription of a system before and after a measurement
(via a short interaction) requires considering two distinct
Hilbert spaces H;, ® Hpyr [13, 16-18]. This complexifi-
cation and the central role of the time coordinate can be
eliminated at once by including the measurement of time
itself in a more general description of the studied inter-
action together with a clock system. Originally designed
to be compatible with general relativity, this formalism
allows for considering dynamic processes without time as
parameter. This leads to a simpler formulation of the
measurement process acting in a unique Hilbert space,
where time is an observable among others resulting in a
timeless description of dynamics [19-23].

Starting from a minimalistic approach with the de-
scription of nature using only quantum systems and uni-
tary interactions, in this letter we focus our interest on
the formulation and properties of the conditional proba-
bility function in the quantum time formalism. Several
works discussed on the conditional probability since the
early formulations [19]. Here we take the advantage of
the best both worlds of timeless and POVM formalisms
to provide a coherent description on different measure-



ment. More precisely, we present a derivation of condi-
tional probability for subsequent measurements starting
from first principles and we compare it with the previ-
ous works. In particular, we consider the Wigner’s friend
measurement scenario and we show that the associated
probability expressions can be simply and unambiguously
formulated.

As starting point, we consider the Wheeler-DeWitt
equation for describing the dynamics of the global state
|¥) in the time-space continuum [24]:

H|W)) = 0. (1)

H is the total Hamiltonian acting in the kinematic
Hilbert space K where space-time coordinates are mea-
sured. The notation with the double ket |-)) indicates the
inclusion of a clock system in |¥)) from which the time
coordinate is measured. In the following paragraphs, we
implicitly assume ¢ = i = 1.

In the non-relativistic approximation where the clock
system C' is considered non-interacting with the system
of interest S, the kinematic Hilbert space can be decom-
posed in K = Hr ® Hg where Hr and Hg are the Hilbert
sub-spaces of the clock and the studied system, respec-
tively. The corresponding Hamiltonian is

H=pr®1s+1r® Hg (2)

where Hp = pr consists of the conjugate operator of the
time operator T', with [T, py] = i. {lt)r} are the cor-
responding time states that form the base of Hp, with
T|t), = t|t), and 7(¢|t'), = 6(t —t'). The more general
case where the clock can interact with the studied sys-
tem or with another clock is treated in Refs. [25, 26].
The total wave-function can be then decomposed in
W) = [t)7 @ [16(8)) g where [i2(t)) g =1 (£]D)) is the wave-
function obtained by the condition of measuring the time
t in the clock. Consequently, we can also write

7)) = / 0t ) ® () g 3)

With this notation, considering the term (t|H|¥)) with
Egs. (1) and (2), we obtain the the standard form of the
Schrédinger equation i% W(t)g = Hsp(t))g. If Hg
does not depends on the time operator T, a solution of
the equation is the unitary operator

Us(t,tg) = e~ Hs(t=t0), (4)

Similarly to the procedure described in Refs. [20, 21],
we consider here a measurement at a time ¢, consisting
of a unitary interaction of a negligible duration between
the system S and a measuring system M. The total
Hamiltonian describing the system is

ﬂ:ﬁT®ﬂS®ﬂM+]].T®I’:’5®:ﬂ.M
+ Vord(T —ta) +1r @1g ® Har.  (5)

Vsar represents the interaction between Hg and Hps at
the time tp; and where H M 1s the Hamiltonian of the
detector itself. With the detector space Hjs we can asso-
ciate the entire sub-system chain from the detector to the
observer’s brain. The changes in Hg of a measurement
with outcome m is given by positive-valued operator I
linked to the detector ancillary state |m),, € Has. The
interaction between the detector and the system at time
tps results in the unitary mapping

[W(ta)g @ 1)y = > Kii [(tar)) g @ [m)y, . (6)

where |r),, is the “ready” detector state before the mea-
surement, KA“}[ are the different Kraus operators corre-
sponding to the outcomes m with T = (Ky)TK7.
From Eq. (3), the total state |¥)) can be written as

0)) = / Tt |ty © (D)5 © 1) ar

+ [ T dtitye © 3 Uslt, ta) Ky [0 s © [i)yr s ()

tar i

where Ug is defined in Eq. (4).

We consider now the case of two subsequent measure-
ments: one measurement M on S with output m oper-
ated at a time t;; and another N with output n done at
the time £ > tp; with no other interaction between the
different sub-systems. The corresponding Hamiltonian is

H=pr®1s®1y @1y +17 ® Hs @1y ® 1y
+VSM5(T—tM)®]lN+V5N5(T—tN)®]lM
+1lrR1s @ Hy @1y + 17 ®1s © 1y © Hy  (8)

and the associated wave-function is [21, 23],

0)) = / Dt Ity © [0 g ® )y © )y

— 00

tN . .
[ ey o 3 st tan) K 10t} © iy @ 1)y

+ [ty 3 Os(ts ) KR Do tan) Ky W)
tar i,j
©)

Note that this timeless representation of the total
wave-function by a series of superimpositions of sys-
tem/detector entangled states is de facto equivalent to
the branched wave-functions in Everett’s original paper
[9], where the central concepts turn around the relativity
of states of measured and measuring systems.

How can we now associate a probability to the mea-
surement outputs? Different approaches have been devel-
oped in the past in the discussed context, as the definition



via transition amplitudes in Quantum Gravity [20, 24] or
postulating the validity of the Bohr rule [21]. Our ap-
proach consists in considering the general properties of
Hilbert spaces and requiring only basic properties of the
probability function p. For a Hilbert space with finite di-
mension H, the Gleason-Busch theorem [27, 28] demon-
strates that the probability function is in fact univocally
defined by the trace rule

p(a)

where II% is a positive-valued operator in H and p is
the density matrix of a given state. This is actually the
same approach used by Pages and Wootters [19], where
however only projector operators are considered. It is
natural to extend this definition of probability to the in-
finite dimensional space K. Such an extension is in fact
equivalent to the standard definition in Quantum Grav-
ity [29]. In our case, a generic measurement with output
a must be represented by an operator II, in the kine-
matic Hilbert space K = Hr @ Hs @ Har ® Hy. Because
there is only one clock subspace Hrp, it is impossible to
construct a two-time probability for the event “m at the
time ¢; and n at the time t3”, as discussed in Ref. [22].
On the contrary, it is possible to consider the measure-
ment “m AnAt’ = “m AND n AND t” corresponding
to the “m and n results obtained at the time t”, when
the two measurements occur at the times t); and ¢y, re-
spectively. Like in Refs. [20, 21], the formulation of such
a probability implies that the two detector states |m),,
and |n), are stored in an internal memory that is read
at the time t > tp/,ty. It is important to note that, in
contrast to a previous work on subsequent measurements
without timeless notation [30], here the operator “A” =
“AND” is symmetric (a Ab = b A a). The measurement
order is in fact defined by the Hamiltonian itself. We are
not simply discussing about p(m An At), but are implic-
itly considering the probability p(m An At|M,, A Niy ),
where we explicit the prior information on the Hamil-
tonian structure with the measurements M at the time
tar and N at ty. More complex scenarios with an unde-
fined measurement order in the Hamiltonian can be also
considered [23, 31] but they are not discussed here.

We emphasize once again that there is no direct
measurement on S but only via the ancillary detector
states. The operator associated with this measurement
is T = |67 (8] © 15 @ [m) (] © [}y v (n] that
leads to

— tr(pT1%), (10)

p(mAnnt) = tr(pIpR") = ||(r{tl@adm|@n(n]) [©) [

ae(mlr) e w(nlr)y () s | i ¢ < tar,
=\ v () K7 [ (tw)) s [ if tar <t <tn,
KN Us(tn, tan) Kip [ (ta)) s |17 if € >ty

(11)
With two separate detections, we can now discuss the
conditional probabilities of the different outcomes. The

conditional probabilities and p(n|m A t) can be calcu-
lated with the standard procedure from the Bayes’ rule
and the probabilities p(n A t) and p(m A t) by applying
Eq. (10) with the corresponding operators. We obtain in
particular

t Aﬁmnt

p(n|mat) = plmAnAL) _ T(pA AL ) = p(nAtlmAt),
p(mAt) tr(pTIyet)

(12)

where 17" = [t), p(t| @ 1s ® |m),, 3 (m| ® 1y. For
p(m|nAt) a similar equation can be derived. The validity
of the last equivalence in the above formula is justified by
the presence of the time measurement operator in both
numerator and denominator [32].

With the notation and formulas presented above, we
can now consider the case of Wigner’s friend. This
measurement scenario, introduced for the first time by
Wigner [15], is constituted by an observer W (Wigner)
that observes another observer F (his/her friend) who
performs a quantum measurement on a physical system
S. The friend makes a measurement of the system and
records a well-defined result. During this measurement
and just after, the system/friend ensemble is isolated
from Wigner. For W, the measurement of F' on S be-
comes entangled and both are described by a superposi-
tion of the different possible final states. Paradoxically,
W and F have at the same time a different description
of S. The Wigner’s friend scenario with the timeless for-
malism has been extensively discussed in a recent work of
Baumann, Brukner and collaborators [22], where several
forms of probabilities are considered. The notation pre-
sented here leads in contrast to a unique form of proba-
bility. Its derivation is presented in detail in the following
paragraphs applying the results presented above.

Without losing in generality and to keep simple expres-
sions, we consider no-free dynamics for three systems:
the studied system S, Wigner’s friend F, and Wigner
W. The corresponding Hamiltonian, relative to a mea-
surement M at the time £, between the system and the
friend, and a measurement N at the time ¢ty between
Wigner and the ensemble friend-system, is

H=pr®1ls®1lp @1y + 17 ® Hs ® 15 @ 1y
+VSF5(T—tM)®]1W+VSFW5(T—tM)

+1r®1s @ Hr @1y + 17 ® 15 @ 1p @ Hyy.  (13)

We consider a system initial condition described by
[W)g = alt)g + b|l)g with |a]? + |b|?> = 1. For Wigner,
after the friend’s measurement, S and F are described
by

s @ lo)p = alths M p +5 Mg Wp.  (14)
We consider also that Wigner’s measurement on F' and
S consists in the detection of the ancillary state |yes)y,,



TABLE I. p(f Aw A't) values for ¢ > tn.

w
£ yes no

N ICREERER

o e e L

TABLE II. Values of p(w A t) (left) and o(f At) (right) for
t>1tnN.

W] p(wAD) T A8
yes|[al’lol” T BPTB7 T fal
no |[b°[af” + |a[2|]2 B

which corresponds to the operator on the system-friend
space II® = |yes) o g (ves| € Hg @ Hp with

|y‘35>SF = O‘|T>s |T>F+ﬁ|¢>s|¢>}?a (15)

with |a|? + || = 1, and its complementary operator
M =15 @ 1p — I1§°

The global wave-function with these two measurements
has a similar form as Eq. (9) [33] and the probability of
having the measurement results w and f at the time ¢
is associated to the operators ﬁ{\fj\,t =) p{t] ®1s @

|f)p (] ® W)y ww|. Its values are

o(fAWNE) = tr(pTIN") = [[(r (@ R fl@w(w]) [B) [|* =

||F<f|T>F W<w|T>W|w>S||2 1ft<t]w7
v (wlr )y Kip 195 117 if ta <t <tn, (16)
IKRE L 1) |12 it >ty

where |r), and |r), are the “ready” state of the
friend and of Wigner. The associated Kraus opera-
tors are IA{X{ = |T>SS<T|aKJ¢\4 = |¢>SS<¢|aK}“§/ES =
lyes) s s(yes| = (a ) g+B ) s)(a”s(T[+8" s{L), Ky =
[no)g g(nol = (=" 1) g + o [1) g)(=Bs(t| + ag(l]). The

different possible values of p(f A w A t) are summarized
in Tab. I.

Similarly to Eq. (12), the conditional probabilities
p(w|f At) and p(f|lw At) can be calculated from

p(f AwAt) _ tr(pTIRR)

A= T epny 07
and
Cp(fAwAL) (PTG
p(f|w /\t) - @(w A t) - tr(Aﬂ%)t (18)

where T} = )7 7t ©1s ®|f) p p(f| @ Tw and Ty =
[ty 7 (t| @ 1s ®1F @ |w)y, w(w]. To deduce their values,
p(w At) and p(f At) have to be evaluated first. For

TABLE III. Values of p(w|f At) (left) and p(f|lw At) (right)
for t > tyn.

e — w es no
< f Y
N S N 7T [aP T3P
T |04|22 Iﬁlz2 lal?led? -+ [BI2[B12 [b]2]cd]? +|a|?|6]7
L IBI" e . |oI° |8 |6
la[*[of® + [b2|B> [bI|af? + |al?|8]?

p(w At) we have

p(w At) = tr(pIIy") = ||(z{t] ©w (w]) [0) || =

||W<w|T>W|1/)>S®|T>F||2 if t <ty
||W<w|7°>wsz'1{{|1/’>s®|f>F||2 ifty <t <tn,
153 S K ) s ® 1f) e |12 if t > ty,

(19)
Similarly, for p(f At) we have
o(f At) = tr(pIIy;") = |[(z(t| @F (f]) | 0) || =
e (f1r) e [ s |12 @)y if t < ta,
KL 1) ® |r)y |12 if th <t <ty
1, KN [)g ® )y |2 if t > ty,
(20)

The different values of p(wAt) and p(fAt) are summa-
rized in Tab. II. The conditional probabilities p(w|f At)
and (f|lw A t) can be deduced and are presented in
Tab. III. As we can see, the probability function is de-
fined without ambiguities and is automatically normal-
ized. The relativity of the states is visible in particular in
the last equations corresponding to p(w At) and p(f At).
From the Wigner point of view, the superimposition of
the friend and the system is indeed present and repre-
sented by the sum of terms K7, [1)) ¢ @ |f) » in Eq. (19).
Similarly, the friend sees the state of Wigner as a super-
position represented the sum of the terms IA(]@ V) s®|f)
in Eq. (20). Such a superimposition of states is due to
the non-compatiblity of basis between Wigner and the
friend, essential for the calculation of p(w|f A t) via the
term p(f A t). Neither Wigner nor the friend have a
privileged observation position and the two associated
probabilities lead to the same type of expression but dif-
ferent forms and, more importantly, with no universal
description of the system S. The probabilities depend
only on the relations S — W, S — F and F — W. Re-
cently, no-go theorems evoking situations similar to the
Wigner’s friend have been formulated and experimentally
tested [34-36]. They demonstrated that one of the fol-
lowing assumptions has to be violated: i) the universal
validity of quantum mechanics, ii) the locality, iii) the
freedom of choice on the measurement settings and iv)
the observer-independent experimental outcomes. The



above probability expressions indicate a clear violation
of the measurement output universality. If we assume
that the experimental outputs are relative to each pair of
observer and observed, and we can have a different de-
scription of a same system from different obervers, there
is no real paradox in the Wigner’s friend scenario.

The key feature of the Wigner’s friend scenario is the
isolation of W from F and S. The experimental realiza-
tions of scenarios similar to the Wigner’s friend case are
based on photons for both the system S and the friend F'
[35, 36], where the coupling and decoupling between dif-
ferent subsystems can be easily controlled. If we consider
a real human friend that operates a measurement in a
real laboratory, the situation would be much different be-
cause it requires screeneing any mechanical and electro-
magnetic interaction between macroscopic systems [37].
The coupling between the subsystems F' and S with the
laboratory environment £pg can also have an influence
[38]. Because of the high number of degrees of freedom
of Erg, decoherence processes can bring to a destruction
of state superimposition for F' and S [2, 39] producing a
universal measurement output, a stable fact in the lan-
guage of Ref. [38].

In conclusion, we presented here a derivation of the
conditional probability g for subsequent measurements
in the context of the quantum time approach. This is
obtained with a minimal number of assumptions, consid-
ering only systems subject to the rules of Quantum Me-
chanics, without classical systems, and interacting with
each other by unitary operators with the implementa-
tion of POVM. Applying the Gleason-Busch theorem to
the global kinetic Hilbert space, p is simply built from
first principles. In particular for the non-relativistic case
presented here with a one clock system, it emerges that
a two-time probability function cannot be defined. The
causal order of the subsequent measurements are encoded
in the Hamiltonian, whose structure should be considered
as prior knowledge in the probability function.

When the Wigner’s friend scenario is considered, the
relativity of measurements naturally emerges, without
contradictions or ambiguities. The roles of Wigner and
the friend are completely interchangeable, and Wigner
can be seen as a superimposed state from the friend.
This is particularly evident in the marginal probabilities
p(w A t) and p(f At) and, as consequence, the condi-
tional probabilities p(w|f A t) and p(f|lw A t). In the
future, it would be very interesting to experimentally in-
vestigate on the identification of the important parameter
responsible of the coherences between Wigner W and the
friend F'. Is it the degree of complexity the friend and/or
her/his environment? Or is it related to the mass and/or
energy levels associated with the friend? Or maybe is it
just related to the coupling/interaction between W and
F? If it is the case, could we modulate such an inter-
action, like in interference experiments with a tunable
which-path detection sensitivity [30, 40]?

I would like to thank N. Paul and M. Romanelli for
their support. I also wish to express my gratitude to the
organizers of the QISS group who, by making available
on-line their workshops and seminars presentations, gave
me the initial stimulus for this present work.
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