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Abstract. In this work, we consider networks of so-called geometrically exact beams,
namely, shearable beams that may undergo large motions. The corresponding mathe-
matical model, commonly written in terms of displacements and rotations expressed in
a fixed basis (Geometrically Exact Beam model, or GEB), has a quasilinear governing
system. However, the model may also be written in terms of intrinsic variables expressed
in a moving basis attached to the beam (Intrinsic GEB model, or IGEB) and while the
number of equations is then doubled, the latter model has the advantage of being of
first-order, hyperbolic and only semilinear. First, for any network, we show the existence
and uniqueness of semi-global in time classical solutions to the IGEB model (i.e., for
arbitrarily large time intervals, provided that the data are small enough). Then, for a
specific network containing a cycle, we address the problem of local exact controllability
of nodal profiles for the IGEB model – we steer the solution to satisfy given profiles at
one of the multiple nodes by means of controls applied at the simple nodes – by using the
constructive method of Zhuang, Leugering and Li [Exact boundary controllability of nodal
profile for Saint-Venant system on a network with loops, in J. Math. Pures Appl., 2018].
Afterwards, for any network, we show that the existence of a unique classical solution to
the IGEB network implies the same for the corresponding GEB network, by using that
these two models are related by a nonlinear transformation. In particular, this allows
us to give corresponding existence, uniqueness and controllability results for the GEB
network.
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1. Introduction

Nodal profile controllability. The problem of nodal profile controllability of partial
differential equations on networks refers to the task of steering the solution thereof to
prescribed profiles on specific nodes. Formally speaking, this amounts to saying that said
solution should be controlled to given time-dependent functions (called nodal profiles) over
certain time intervals by means of controls actuating at one or several other nodes. This
is in contrast to the classical question of exact controllability, wherein one seeks to steer
the state, at a certain time, to a given final state on the entire network. The nodes with
prescribed profiles are then called charged nodes [48] (or object-nodes [25]), while the nodes
at which the controls are applied are the controlled nodes [48] (or control nodes [25]).

The notion of exact boundary controllability of nodal profiles was, to our knowledge,
first introduced by Gugat, Herty and Schleper in [12], motivated by applications in the
context of gas transport through pipelines networks. Therein, consumers are located at
the endpoints of the network and the nodal profiles represent the consumer satisfaction,
and the former are sought to be attained by the flow which is controlled by means of a
number of compressors actuating at several nodes.

Motivated by the abundant practical relevance of such control problems, Tatsien Li and
coauthors generalized the aforementioned results to one-dimensional first-order quasilinear
hyperbolic systems with nonlinear boundary conditions [10, 18, 23]. For results on the
wave equation on a tree-shaped network with a general topology or the unsteady flow in
open canals, we refer the reader to [44, 45, 48] and [11], respectively.

Whilst the exact-controllability of the Saint-Venant equations on networks with cycles
is not true in general [16, 22], for certain networks with cycles, the exact nodal profile
controllability can be shown by means of a so-called cut-off method [25, 51]. In this
regard, in line with intuition, the concept of nodal profile controllability is weaker than
that of exact controllability. Hence, when considering a system defined on a network with
cycles, a situation which is encountered in many practical applications, the nodal profile
control problem is a rather meaningful and feasible goal to attain.

The method used by Li et al. to prove nodal profile controllability is constructive in nature,
in the sense that it relies on solving the equation forward in time and sidewise, to build a
specific solution which achieves the desired goal, before evaluating the trace of this solution
to obtain the desired controls. All this is done in the context of regular C1

x,t solutions for
first-order systems, which are semi-global in time – this means that for any time T > 0,
and for small enough initial and boundary data, a unique solution exists at least until time
T > 0 –, a solution concept originating from [19]. In [20, 21], this notion of solution is used
for proving local exact boundary controllability of one-dimensional quasilinear hyperbolic
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systems. In these works, a general framework for a constructive method is proposed, from
which all subsequent constructive methods derive. The cornerstone of Li’s method is thus
the proof of semi-global existence and uniqueness, and, in the case of networks, a thorough
study of the transmission conditions at multiple nodes. As solving a sidewise problem
entails exchanging the role of the spatial and time variables, this method fundamentally
exploits the one-dimensional nature of the system (see also Remark 2.6 4.).

Very recently, in the context of the one-dimensional linear wave equation, the control-
lability of nodal profiles has also been studied in the context of less regular states and
controls spaces, by using the duality between controllability and observability and showing
an observability inequality. For star-shaped networks, one may see [47] where the sidewise
and D’Alembert Formula is used, and for a single string one may see [37] which relies on
sidewise energy estimates.

Geometrically exact beams. Multi-link flexible structures such as large spacecraft
structures, trusses, robot arms, solar panels, antennae [5, 42, 16] have found many appli-
cations in civil, mechanical and aerospace engineering. The behavior of such structures is
generally modeled by networks of interconnected beams.

In this article, we will address the problem of nodal profile controllability for networks of
beams, possibly with cycles, a problem which has not yet been considered in the literature.
The network in question consists of N beams, indexed by i ∈ {1, . . . , N}, evolving in R3,
which are mutually linked via rigid joints. The beams are assumed to be freely vibrating,
meaning that external forces and moments, such as gravity or aerodynamic forces, have
been set to zero.

Nowadays, there is a growing interest in modern highly flexible light-weight structures –
for instance robotic arms [9], flexible aircraft wings [33] or wind turbine blades [30, 46]
– which exhibit motions of large magnitude, not negligible in comparison to the overall
dimensions of the object. To capture such a behavior, one has to consider a beam model
which is geometrically exact, in the sense that the governing system presents nonlinearities
in order to also represent large motions – i.e., large displacements of the centerline and
large rotations of the cross sections.

This beam model, similarly to the more well-known Euler-Bernoulli and Timoshenko
systems, is one dimensional with respect to the spatial variable x and accounts for linear
elastic material laws, meaning that the strains (which are the local changes in the shape of
the material) are assumed to be small. Models for geometrically exact beams account for
shear deformation, similarly to the Timoshenko system. Moreover, the geometrical and
material properties of the beam may vary along the beam (indeed, we will see that the
coefficients of the system depend on x), and the material may be anisotropic. As a matter
of fact, the Euler-Bernoulli and Timoshenko systems can be derived from geometrically
exact beam models under appropriate simplifying assumptions [3, Section IV].

We will see, in Subsection 2.1, that the mathematical model for geometrically exact beams
may be written in terms of the position of the centerline of the beam and the orientation of
its cross sections, with respect to a fixed coordinate system. This is the commonly known
Geometrically Exact Beam model, or GEB, which originates from the work of Reissner [34]
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and Simo [38]. The governing system is quasilinear, consisting of six equations. One may
draw a parallel with the wave equation as the GEB model is of second order both in space
and time.

On the other hand, the mathematical model can also be written in terms of so-called
intrinsic variables – namely, velocities and internal forces/moments, or equivalently veloc-
ities and strains – expressed in a moving coordinate system attached to the beam. This
yields the Intrinsic Geometrically Exact Beam model, or IGEB, which is due to Hodges
[13, 14]. The governing system then counts twelve equations. An interesting feature of the
IGEB model is that it falls into the class of one-dimensional first-order hyperbolic systems
and is moreover only semilinear. Therefore, from a mathematical perspective, one gains
access to the broad literature which has been developed on such system – see notably by
Li and Yu [24], Bastin and Coron [4] – beyond the context of beam models.

Due to its less compound nature, the IGEB formulation is used in aeroelastic modelling
and engineering, notably in the context of very light-weight and slender aircraft aiming to
remain airborne almost perpetually, and that consequently exhibit great flexibility [31, 32,
33]; see also [1, 2, 3] where the authors additionally take into account structural damping.

On another hand, as pointed out in [50, Sec. 2.3.2], one may see the GEB model and
IGEB model as being related by a nonlinear transformation (which we define in (9)). In
this work, we will keep track of this link between both models, studying mathematically
the latter, and then deducing corresponding results for the GEB model.

As commonly done in solid mechanics, both the GEB and IGEB models are Lagrangian
descriptions of the beam (as opposed to the Eulerian description), in the sense that the
independent variable x is attached to matter (x is a label sticking to the particles of the
beam’s centerline throughout the deformation history) rather than being attached to an
initial frame of reference.

The IGEB model can also be seen as the beam dynamics being formulated in the Hamil-
tonian framework in continuum mechanics (see notably [39, Sections 5, 6]), while the GEB
model corresponds to the Lagrangian framework. Then, taking into account the interac-
tions of the beam with its environment, one may study the IGEB model from the perspec-
tive of Port-Hamiltonian Systems (see [29] for the finite dimension setting and [41] and
[15, Chapter 7] for infinite dimensions setting), as in [27, 28] and [7, Section 4.3.2]. See
also the case of the Timoshenko model in [26].

1.1. Our contributions. In this article we consider the problem of nodal profile con-
trollability in the context of a specific network of geometrically exact beams containing
one cycle. Afterwards, the case of other networks, possibly containing several cycles, is
discussed in Section 6: we give a few typical examples, together with a brief algorithm
(Algorithm 1) to realize nodal profile controllability under some requirements.

Our main results will be given on IGEB networks (Theorem 2.5) and GEB networks
(Corollary 2.11) as follows.

1. We first consider a general network of beams whose dynamics are given by the
IGEB model (System (15) below). We show, in Theorem 2.3, that there exists a
unique semi-global in time C1

x,t solution to (15).
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This theorem is also a necessary step to show Theorem 2.5, namely, the local
exact controllability of nodal profiles for System (15), in the special case of an
A-shaped network (see Fig. 2c). More precisely, we drive the solution to satisfy
given profiles at one of the multiple nodes by controlling the internal forces and
moments at the two simple nodes.

2. For a general network, via Theorem 2.7, we make the link between the IGEB
network (System (15)) and the corresponding system (11) in which the beams
dynamics are given by the GEB model. More precisely, we show that the existence
of a unique C1

x,t solution to (15) implies that of a unique C2
x,t solution to (11),

provided that the data of both systems fulfill some compatibility conditions.
In particular, Theorem 2.7, permits to translate Theorems 2.3 and 2.5 to cor-

responding results in terms of the GEB model (11), which are Corollaries 2.9 and
2.11, respectively.

1.2. Notation. Let m,n ∈ N. Here, the identity and null matrices are denoted by In ∈
Rn×n and 0n,m ∈ Rn×m, and we use the abbreviation 0n = 0n,n. The transpose of
M ∈ Rm×n is denoted byMᵀ. The symbol diag( · , . . . , · ) denotes a (block-)diagonal matrix
composed of the arguments. We denote by Sn++ the set of positive definite symmetric
matrices in Rn×n. The cross product between any u, ζ ∈ R3 is denoted u× ζ, and we shall
also write û ζ = u× ζ, meaning that û is the skew-symmetric matrix

û =

[
0 −u3 u2
u3 0 −u1
−u2 u1 0

]
,

and for any skew-symmetric u ∈ R3×3, the vector vec(u) ∈ R3 is such that u = v̂ec(u).
Finally, {eα}3α=1 = {(1, 0, 0)ᵀ, (0, 1, 0)ᵀ, (0, 0, 1)ᵀ} denotes the standard basis of R3.

1.3. Outline. In Section 2, we present in more detail the GEB and IGEB models (Sub-
section 2.1) before introducing the corresponding systems which give the dynamics of the
beam network (Subsection 2.2). Then, in Subsection 2.3 we presents the main results of
this article.

Section 3 is concerned with the well-posedness of the network system (15): in Subsections
3.1 and 3.2 we show that the system (15) is hyperbolic and write it in Riemann invariants,
we then study the transmission conditions for the diagonalized system in Subsection 3.3,
and finally, we prove Theorem 2.3 in Subsection 3.4.

In Sections 4 and 5, we give the proofs of Theorems 2.5 and 2.7, respectively.
Then, in Section 6, we give generalized considerations on more involved networks,

namely, with more than one cycles, or with prescribed profiles on several nodes.

2. The model and main results

As mentioned in the introduction, the beams’ dynamics may be given from different
points of view, that we specify in the following subsection.
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Figure 1. Beam i in a straight reference configuration, before deformation
and at time t. Here, {bαi }3α=1 denote the columns of Ri.

2.1. Dynamics of a geometrically exact beam. Let i be the index of any beam of the
network. First, we consider the mathematical model written in terms of the position pi of
the centerline and of a rotation matrix Ri whose columns {bαi }3α=1 give the orientation of
the cross sections. Both pi and Ri depend on x and t, with x ∈ [0, `i] where `i > 0 is the
length of the beam, and both are expressed in the fixed basis {eα}3α=1. The former has
values in R3, while the latter has values in the special orthogonal group SO(3).1

The columns of Ri may also be seen as a moving basis of R3, attached to the beam,
and with origin pi; we call it body-attached basis as opposed to the fixed basis {eα}3α=1.
We refer to Fig. 1 for visualization.

The corresponding model is called the Geometrically Exact Beam model (GEB) and,
for a freely vibrating beam, is set in (0, `i)× (0, T ) and reads

∂t

([
Ri 03

03 Ri

]
Mi

[
Vi
Wi

])
= ∂x

[
φi
ψi

]
+

[
03,1

(∂xpi)× φi

]
, (1)

where Vi,Wi, φi, ψi are functions of the unknowns pi,Ri. More precisely, we introduce the
linear velocity Vi, angular velocity Wi, internal forces Φi and internal moments Ψi of the
beam i, all having values in R3 and being expressed in the body-attached basis. They are
defined by (see Subsection 1.2)[

Vi
Wi

]
=

[
Rᵀi ∂tpi

vec (Rᵀi ∂tRi)

]
,

[
Φi

Ψi

]
= C−1i

[
Rᵀi ∂xpi − e1

vec
(
Rᵀi ∂xRi −Rᵀi

d
dxRi

)] , (2)

while the variables φi, ψi just correspond to Φi,Ψi when expressed in the fixed basis instead
of the body-attached basis; in other words

φi = RiΦi, ψi = RiΨi. (3)

In the above governing system and definitions,

Mi,Ci ∈ C1([0, `i];S6++), Ri ∈ C2([0, `i]; SO(3)) (4)

1SO(3) is the set of unitary real matrices of size 3 and with a determinant equal to 1, also called rotation
matrices.
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are the so-called mass matrix Mi and flexibility matrix Ci which characterize the material
and geometry of the beam i, while Ri characterizes the initial form of this beam, as it may
be pre-curved and twisted before deformation (at rest). All three are given parameters of
the beam.

Remark 2.1. Consider a beam single i described by (1), with homogeneous Neumann
boundary conditions at each end – i.e., both φi and ψi are identically equal to zero on
{0}× (0, T ) and {`}× (0, T ). With appropriate initial conditions, rigid body motions such
as defined below are solutions to the GEB model:

pi(x, t) = f(t) +

∫ x

0
Ri(s)e1ds, Ri(x, t) = K(t)Ri(x) (5)

for all (x, t) ∈ [0, `i]× [0, T ], where (f,K) ∈ C2([0, T ];R3 × SO(3)) are such that d
dtf ≡ f◦

and vec(Kᵀ d
dtK) ≡ k◦ for some fixed f◦, k◦ ∈ R3.

The mathematical model may also be written in terms of intrinsic variables expressed in
the body-attached basis, namely, linear/angular velocities and internal forces/moments
vi, zi : [0, `i] × [0, T ] → R6, respectively. In this case, one considers the unknown state
yi : [0, `i]× [0, T ]→ R12 of the form

yi =

[
vi
zi

]
, where vi =

[
Vi
Wi

]
, zi =

[
Φi

Ψi

]
. (6)

We call the corresponding model the Intrinsic Geometrically Exact Beam model (IGEB),
and it reads

∂tyi +Ai(x)∂xyi +Bi(x)yi = gi(x, yi), (7)

where the coefficients Ai, Bi and the source gi depend on Mi,Ci and Ri. More precisely,
Ai ∈ C1([0, `i];R12×12) is defined by (see (4))

Ai = −
[

06 M−1
i

C−1i 06

]
, (8)

and we will see, in Subsection 3.1, that the matrix Ai(x) is hyperbolic for all x ∈ [0, `i]
(i.e., it has real eigenvalues only, with twelve associated independent eigenvectors).

The matrix Bi(x) is indefinite and, up to the best of our knowledge, may not be assumed
arbitrarily small implying not only that the linearized system (7) is not homogeneous, but
also that (7) cannot be seen as the perturbation of a system of conservation laws. The
function Bi ∈ C1([0, `i];R12×12) which depends, just as Ai, on the mass and flexibility
matrices, also depends on the curvature Υi

c : [0, `i]→ R3 of the beam before deformation,
and is defined by

Bi =

[
06 −M−1

i Ei

C−1i Eᵀi 06

]
, with Ei =

[
Υ̂i
c 03

ê1 Υ̂i
c

]
, Υi

c = vec
(
Rᵀi

d
dxRi

)
.

The function gi : [0, `i] × R12 → R12 is defined by gi(x, u) = Gi(x, u)u for all x ∈ [0, `i]
and u = (uᵀ1, u

ᵀ
2, u

ᵀ
3, u

ᵀ
4)ᵀ ∈ R12 with each uj ∈ R3, where the map Gi is defined by (see
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Figure 2. Some oriented graphs representing beam networks, and orien-
tation of the edges.

Subsection 1.2)

Gi(x, u) = −
[
Mi(x)−1 06

06 Ci(x)−1

]
û2 03 03 û3
û1 û2 û3 û4
03 03 û2 û1
03 03 03 û2

[Mi(x) 06

06 Ci(x)

]
.

One sees that gi is a quadratic nonlinearity (in the sense that its components are quadratic
forms on R12 with respect to the second argument), and that it has the same regularity
as the mass and flexibility matrices Mi,Ci with respect to its first argument, and is C∞

with respect to its second argument. Moreover, gi(x, ·) is locally Lipschitz in R12 for any
x ∈ [0, `i], and gi is locally Lipschitz in H1(0, `i;R12), but no global Lipschitz property is
available.

Finally, as mentionned in the introduction, one may see (1) and (7) as being related by
the nonlinear transformation T defined by (see (2))

T ((pi,Ri)i∈I) = (Ti(pi,Ri))i∈I , where Ti(pi,Ri) =

 ViWi

Φi

Ψi

 . (9)

2.2. Dynamics of the network of beams. Let us now give the systems describing the
entire beam network.

2.2.1. Network notation. To represent a collection ofN beams attached in a certain manner
to each other at their tips, we use an oriented graph containing N edges. Any edge
i is identified with the interval [0, `i], which is the spatial domain for the beam model
in question (GEB or IGEB). Hence, just as for the beams, the edges are indexed by
i ∈ I = {1, . . . , N}, while the nodes are indexed by n ∈ N = {1, . . . ,#N}, where #
denotes the set cardinality. The set of nodes is partitioned as N = NS ∪NM , where NS is
the set of indexes of simple nodes, while NM is the set of indexes multiple nodes.

The former set is in addition partitioned as NS = ND
S ∪ NN

S , where ND
S contains the

simple nodes with prescribed Dirichlet boundary conditions (i.e., the centerline’s position
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and the cross section’s orientation in the case of the GEB model, or the velocities in the case
of the IGEB model, are prescribed), while NN

S contains the simple nodes with prescribed
Neumann boundary conditions (i.e., the internal forces and moments are prescribed).

For any n ∈ N , we denote by In the set of indexes of edges incident to the node n, by
kn = #In the degree of the node n, and by in the index2

in = min
i∈In

i. (10)

Note that in the case of a simple node, In = {in}.
The orientation of each beam is given by the variables xni and τni defined as follows. For

any i ∈ In, we denote by xni the end of the interval [0, `i] which corresponds to the node
n, while τni is the outward pointing normal at xni :

τni =

{−1 if xni = 0,

+1 if xni = `i.

As described in Fig. 2, each edge i is represented by an arrow and each node n by a circle.
The arrowhead is at the ending point x = `i; see Fig. 2d.

2.2.2. The network model. Let T > 0. If all beams are described by the GEB model (1),
then the overall network is described by System (11) below, which gives the dynamics of
the unknown state (pi,Ri)i∈I :

∂t

([
Ri 03
03 Ri

]
Mi

[
Vi
Wi

])
= ∂x

[
φi
ψi

]
+
[

03,1

(∂xpi)×φi

]
in (0, `i)× (0, T ), i ∈ I (11a)

pi(x
n
i , t) = pin(xnin , t) t ∈ (0, T ), i ∈ In, n ∈ NM (11b)

(RiR
ᵀ
i )(x

n
i , t) = (RinR

ᵀ
in)(xnin , t) t ∈ (0, T ), i ∈ In, n ∈ NM (11c)∑

i∈Inτ
n
i

[
φi
ψi

]
(xni , t) = fn(t) t ∈ (0, T ), n ∈ NM (11d)

τnin
[
φin
ψin

]
(xnin , t) = fn(t) t ∈ (0, T ), n ∈ NN

S (11e)

(pin ,Rin)(xnin , t) = (fpn , f
R
n )(t) t ∈ (0, T ), n ∈ ND

S (11f)

(pi,Ri)(x, 0) = (p0
i ,R

0
i )(x) x ∈ (0, `i), i ∈ I (11g)

(∂tpi,RiWi)(x, 0) = (p1
i , w

0
i )(x) x ∈ (0, `i), i ∈ I, (11h)

where we recall that Vi,Wi, φi, ψi are defined in (2)-(3). In this system, (11g)-(11h) describe
the initial conditions, with data

(p0
i ,R

0
i ) ∈ C2([0, `i];R3 × SO(3)), p1

i , w
0
i ∈ C1([0, `i];R3), i ∈ I. (12)

2Defining in as the smallest element of In, and not the largest for example, is an arbitrary choice and
is of no influence here.
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Then, (11b)-(11c)-(11d) are the so-called transmission (or interface) conditions for multiple
nodes, while the conditions (11e)-(11f) are enforced at simple nodes. The nodal data is

fn ∈ C1([0, T ];R6kn), n ∈ NM ∪NN
S (13)

(fpn , f
R
n ) ∈ C2([0, T ];R3 × SO(3)), n ∈ ND

S . (14)

On the other hand, if all beams are described by the IGEB model (7), then for the overall
network, the unknown state (yi)i∈I is described by System (15), which reads

∂tyi +Ai∂xyi +Biyi = gi(·, yi) in (0, `i)× (0, T ), i ∈ I (15a)

(Rivi)(x
n
i , t) = (Rinvin)(xnin , t) t ∈ (0, T ), i ∈ In, n ∈ NM (15b)∑

i∈In
τni (Rizi)(x

n
i , t) = qn(t) t ∈ (0, T ), n ∈ NM (15c)

τninzin(xnin , t) = qn(t) t ∈ (0, T ), n ∈ NN
S (15d)

vin(xnin , t) = qn(t) t ∈ (0, T ), n ∈ ND
S (15e)

yi(x, 0) = y0i (x) x ∈ (0, `i), i ∈ I, (15f)

vi, zi representing the first and last six components of yi, respectively (see (6)), and where
Ri ∈ C2([0, `i];R6×6) is defined by Ri = diag(Ri, Ri) (see (4)). Here, (15f) gives the initial
conditions, with data

y0i ∈ C1([0, `i];R12), i ∈ I, (16)

the transmission conditions are (15b)-(15c), while the conditions (15d)-(15e) are imposed
at simple nodes, with data

qn ∈ C1([0, T ];R6kn), n ∈ N . (17)

2.2.3. Origin of the nodal conditions. As the form of transmission conditions is an essential
aspect in the proof of nodal profile controllability of hyperbolic systems on networks, let us
now explain the origin of these conditions for System (11) and especially those of System
(15). See also [35] for a more detailed presentation, and for the meaning of the states and
coefficients of (11) and (15).

Let n be the index of some multiple node. In this work, we assume that, at all times,
the beams incident with this node remain attached to each other. In other words, as
imposed by (11b), the position of their centerlines must coincide. Moreover, we work
under the rigid joint assumption, namely, at any node, there is no relative motion between
the incident beams. As the orientation of the cross sections before deformation is specified
by the (given) function Ri, the rigid joint assumption is enforced by the condition (11c)
which states that the change of orientation RiR

ᵀ
i (from the undeformed state of the beam

network to its state at time t) is the same for all incident beams. See also [40, Subsection
2.4].

For the IGEB model, the condition corresponding to the continuity of the centerline’s
position and of the change of the cross section’s orientation, is the continuity of velocities
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(15b). Indeed, one may differentiate (11b) and (11c) with respect to time, and then left-
multiply each of the obtained equations by (RjR

ᵀ
j )(x

n
j , t) for the corresponding beam index

j (thereby using the rigid joint assumption), to obtain

(RiR
ᵀ
i ∂tpi)(x

n
i , t) = (RinRᵀin∂tpin)(xnin , t),

(RiR
ᵀ
i ∂tRiR

ᵀ
i )(x

n
i , t) = (RinRᵀin∂tRinR

ᵀ
in)(xnin , t),

respectively. The above equations turn out to equate to (15b), by the definition of Vi and
Wi (see (2)), and by using that the invariance of the cross product in R3 under rotation

provides the identity RiŴiR
ᵀ
i = R̂iWi.

Furthermore, at this multiple node n, we require the internal forces φi and moments ψi
exerted by incident beams i ∈ In to be balanced with the external load fn applied at this
node, which reads as (11d), and is also called the Kirchhoff condition.

The corresponding Kirchhoff condition (15c) for the IGEB model is then obtained by
left-multiplying each term in the right-hand side of (11d) by (RiR

ᵀ
i )(x

n
i , t) for the cor-

responding index i (once again using the rigid joint assumption), left-multiplying fn by
(RiR

ᵀ
i )(x

n
i , t) for some i ∈ In (for instance as in), and recalling the relationship between

φi, ψi and Φi,Ψi (see (3)).

Similar considerations hold for simple nodes. Here, either n ∈ NN
S and an external load

fn is applied at this node, yielding the condition (11e), or n ∈ ND
S and the centerline’s

position and cross section’s orientation are prescribed as fpn and fRn , respectively, for the
beam in incident with this node, yielding the condition (11f).

For the IGEB model, this translates to (15d) and (15e), respectively, when one left-
multiplies (11e) and (11f) by (RinRᵀin)(xnin , t) and Rᵀin(xnin , t), respectively.

2.2.4. Relationship between the data of both systems. As mentioned earlier, the unknowns
of the GEB and IGEB models are related by the transformation T , defined in (9). Thus,
the initial data of both models are related as follows: for given p0

i ,R
0
i ,p

1
i and w0

i , one has

y0i =

[
v0i
z0i

]
, v0i =

[
(R0

i )
ᵀp1

i
(R0

i )
ᵀw0

i

]
, z0i = C−1i

[
(R0

i )
ᵀ d
dxp0

i − e1
vec
(
(R0

i )
ᵀ d
dxR0

i −R
ᵀ
i

d
dxRi

)] . (18)

Similarly, the nodal conditions of (11) and (15) are connected via T , and with the help
of the above considerations on the nodal conditions, one can observe the following rela-
tionships between the nodal data of both systems. For any n ∈ ND

S , for given (fpn , fRn ) of
regularity (14), one has

qn =

[
(fRn )ᵀ d

dtf
p
n

(fRn )ᵀ d
dtf

R
n

]
, (19)

while for any n ∈ NM ∪NN
S ,

fn =

{
diag ((RinR

ᵀ
in)(xnin , ·), (RinR

ᵀ
in)(xnin , ·)) qn n ∈ NM

diag
(
Rin(xnin , ·),Rin(xnin , ·)

)
qn n ∈ NN

S .
(20)
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2.3. Main results. We may now present our main results, which are divided in two
parts: one is concerned with the well-posedness and controllability of the IGEB network,
and the other with showing that the transformation from the GEB to the IGEB network is
invertible, by means of which one can deduce corresponding results for the former model.

2.3.1. Study of the IGEB model. Let us define compatibility conditions for System (15).
As for the unknown, we write the initial data (y0i )i∈I as

y0i =

[
v0i
z0i

]
, with v0i , z

0
i : [0, `i]→ R6.

Definition 2.2. We say that the initial data y0i ∈ C1([0, `i];R12), for all i ∈ I, and bound-
ary data qn ∈ C0([0, T ];R6), for all n ∈ N , fulfill the first-order compatibility conditions
of (15) if

(Riv
0
i )(x

n
i ) = (Rjv

0
j )(x

n
j ) i, j ∈ In, n ∈ NM∑

i∈Inτ
n
i (Riz

0
i )(xni ) = qn(0) n ∈ NM

τninz
0
in(xnin) = qn(0) n ∈ NN

S

v0in(xnin) = qn(0) n ∈ ND
S ,

(21)

holds and y1i ∈ C0([0, `i];R12), for all i ∈ I, defined by

y1i = −Ai
dy0i
dx
−Biy

0
i + gi(·, y0i ) =

[
v1i
z1i

]
,

also fulfills (21), where v0i , z
0
i are replaced by v1i , z

1
i respectively.

In order to ensure a certain regularity of the eigenvalues and eigenvectors of Ai, we will
later on make the following assumption.

Assumption 1. For all i ∈ I, we suppose that

1. Ci,Mi ∈ C2([0, `i];S6++);

2. the function Θi ∈ C2([0, `i];S6++) defined by Θi = (C
1/2
i MiC

1/2
i )−1, is such that

there exists Ui, Di ∈ C2([0, `i];R6×6) for which

Θi = Uᵀi D
2
iUi, in [0, `i],

where Di(x) is a positive definite diagonal matrix containing the square roots of
the eigenvalues of Θi(x) as diagonal entries, while Ui(x) is unitary.

One may note that, in Assumption 1, if 1. holds, then 2. is readily verified if Mi,Ci

have values in the set of diagonal matrices, or if the eigenvalues of Θi(x) are distinct for
all x ∈ [0, `i] (one may adapt [8, Th. 2, Sec. 11.1]). Clearly, 2. is also satisfied if Mi,Ci

are constant, entailing that the material and geometrical properties of the beam do not
vary along its centerline.

Our first task is to obtain the existence and uniqueness of semi-global in time solutions to
(15) for any network. Henceforth, in the norms’ subscripts, when there is no ambiguity,
we use the abbreviations C1

x = C1([0, `i];Rd), C1
t = C1(I;Rd) and C1

x,t([0, `i] × I;Rd) for
the appropriate time interval I and dimension d ∈ {1, 2, . . .}.
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Theorem 2.3. Consider a general network, suppose that Ri has the regularity (4) and
that Assumption 1 is fulfilled. Then, for any T > 0, there exists ε0 > 0 such that for
all ε ∈ (0, ε0) and for some δ > 0, and all initial and boundary data y0i , qn of regularity
(16)-(17), and satisfying ‖y0i ‖C1

x
+ ‖qn‖C1

t
≤ δ and the first-order compatibility conditions

of (15), there exists a unique solution (yi)i∈I ∈
∏N
i=1C

1([0, `i]× [0, T ];R12) to (15), with
‖yi‖C1

x,t
≤ ε.

The proof of Theorem 2.3, given in Section 3, consists in rewriting (15) as a single
hyperbolic system and applying general well-posedness results [17, 49]. To do so, one has
to write (15) in Riemann invariants, the new unknown state being denoted (ri)i∈I , and
verify that the nodal conditions fulfill the following rule: at any node, the components
of ri corresponding to characteristics entering the domain [0, `i]× [0,+∞) at this node is
expressed explicitly as a function of the components of ri corresponding to characteristics
leaving the domain [0, `i]× [0,+∞) at this node (more detail is given in Subsection 3.3).

Remark 2.4. Assuming that Ri ∈ C2([0, `i]; SO(3)) guaranties that Bi ∈ C1([0, `i];R12×12).
On the other hand, in Assumption 1, the extra regularity for the Mi,Ci (C2, instead of C1

as in (4)) permits us to ensure that the coefficients of the System (15) written in Riemann
invariants, in particular Bi (see Subsection 3.2), are sufficiently regular.

We now consider a problem of local exact boundary controllability of nodal profiles, for
the specific case of the A-shaped network illustrated in Fig. 2c, consisting of five nodes
and five edges and having one cycle. More precisely, we consider the network defined by

NS = NN
S = {4, 5}, NM = {1, 2, 3}, I = {1, . . . , 5}

x1
1 = 0, x1

2 = 0, x2
3 = 0, x2

4 = 0, x3
5 = 0

x2
1 = `1, x3

2 = `2, x3
3 = `3, x4

4 = `4, x5
5 = `5.

(22)

Let us first introduce some notation concerning the eigenvalues {λki (x)}12k=1 of Ai(x) for

i ∈ I and x ∈ [0, `i], which, as we will see in in Subsection 3.1, are such that {λki }12k=1 ⊂
C2([0, `i]) under Assumption 1, and

λki (x) < 0 if k ≤ 6, λki (x) > 0 if k ≥ 7. (23)

Also under Assumption 1, and for any i ∈ I, we define Λi ∈ C0([0, `i]; (0,+∞)) and Ti > 0
by

Λi(x) =

(
min

k∈{1,...,6}

∣∣∣λki (x)
∣∣∣)−1 and Ti =

∫ `i

0
Λi(x)dx; (24)

note that the minimum ranges over the negative eigenvalues of Ai(x). The latter, Ti,
corresponds to the transmission (or travelling) time from one end of the beam i to its
other end (see Section 4).

Theorem 2.5. Consider the A-shaped network defined by (22). Suppose that Ri has the
regularity (4) and that Assumption 1 is fulfilled. Let T > 0 be defined by (see (24))

T = max {T1, T2}+ max {T4, T5} . (25)
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Then, for any T > T ∗ > T , there exists ε0 > 0 such that for all ε ∈ (0, ε0), for some
δ, γ > 0, and

(i) for all initial data (y0i )i∈I and boundary data (qn)n∈{1,2,3} of regularity (16)-(17),

satisfying ‖y0i ‖C1
x

+‖qn‖C1
t
≤ δ and the first-order compatibility conditions of (15),

and
(ii) for all nodal profiles y1, y2 ∈ C1([T ∗, T ];R12), satisfying ‖yi‖C1

t
≤ γ and the trans-

mission conditions (15b)-(15c) at the node n = 1,

there exist controls q4, q5 ∈ C1([0, T ];R6) with ‖qi‖C1
t
≤ ε, such that (15) admits a unique

solution (yi)i∈I ∈
∏N
i=1C

1([0, `i]× [0, T ];R12), which fulfills ‖yi‖C1
x
≤ ε and

yi(0, t) = yi(t) for all i ∈ {1, 2}, t ∈ [T ∗, T ]. (26)

As mentionned in Section 1, the proof of Theorem 2.5, given in Section 4, relies upon the
existence and uniqueness theory of semi-global classical solutions to the network problem
(here, Theorem 2.3), the form of the transmission condition of the network, and on a
constructive method. The idea of the proof is to construct a solution (yi)i∈I to (15), such
that it satisfies the initial condition, the nodal conditions, and the given nodal profiles.
Substituting this solution into the nodal conditions at the nodes n ∈ {4, 5}, one then
obtains the desired controls q4, q5. Our proof follows the lines of [51], where the authors
develop a methodology for proving the nodal profile controllability for A-shaped networks
of canals governed by the Saint-Venant equations.

Remark 2.6. A few remarks are in order.

1. The controllability time T ∗ from which one can prescribe nodal profiles, has to be
large enough, depending on the lengths of the beams and the eigenvalues of (Ai)i∈I
(and thus, it depends on the geometrical and material properties of the beam). As
we will see in Section 4, T is the transmission time from the controlled nodes to
the charged node.

2. One will observe in the proof of Theorem 2.5 that the controls q4, q5 are not unique
due to the use of interpolation and arbitrary nodal conditions throughout the proof.

3. The time Ti is such that Ti ≤ `i
|λ∗i |

, where the constant λ∗i < 0 denotes the maximum

over x of the largest negative eigenvalue of Ai(x).
4. In the proof of Theorem 2.5, to construct the solution (yi)i∈I , one is led to solve

a series of forward and sidewise problems for (15a) for the different beams i ∈ I
of the network. Solving a sidewise problem for (15a) entails changing the role of x
and t, considering a governing system of the form

∂xyi +A−1i ∂tyi +A−1i Biyi = A−1i gi(·, yi)
and providing “boundary conditions” at t = 0 and t = T , and “initial conditions”
at x = 0 (rightward problem) or x = `i (leftward problem). It is consequently
important here that Ai does not have any zero eigenvalue.

2.3.2. Study of the GEB model. In order to translate Theorems 2.3 and 2.5 in terms of
the GEB model, we prove the Theorem 2.7 below, which yields the existence of a unique
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classical solution to (11), provided that a unique classical solution exists for (15) and that
the data of both models fulfill some compatibility conditions.

Let us first introduce the compatibility conditions on the initial and boundary data of
the GEB network (11), that will be of use in the theorem and corollaries that follow

(fpn , f
R
n )(0) = (p0

in ,R
0
in)(xnin), n ∈ ND

S , (27a)

p0
i (x

n
i ) = p0

in(xnin), (R0
iR
ᵀ
i )(x

n
i ) = (R0

inR
ᵀ
in)(xnin), i ∈ In, n ∈ NM , (27b)

and

p1
i (x

n
i ) = p1

in(xnin), w0
i (x

n
i ) = w0

in(xnin), i ∈ In, n ∈ NM (28a)∑
i∈In

τni

(
RiC

−1
i

[
(R0

i )
ᵀ d
dxp0

i − e1
vec
(
(R0

i )
ᵀ d
dxR0

i −R
ᵀ
i

d
dxRi

)]) (xni ) = qn(0), n ∈ NM , (28b)

τnin

(
RinC−1in

[
(R0

in)ᵀ d
dxp0

in − e1
vec
(
(R0

in)ᵀ d
dxR0

in −R
ᵀ
in

d
dxRin

)]) (xnin) = qn(0), n ∈ NN
S , (28c)

p1
in(xnin) =

d

dt
fpn (0), w0

in(xnin) =
d

dt
fRn (0), n ∈ ND

S . (28d)

Theorem 2.7. Consider a general network, and assume that:

(i) the beam parameters (Mi,Ci, Ri) and initial data (p0
i ,R

0
i ,p

1
i , w

0
i ) have the regu-

larity (4) and (12), and y0i is the associated function defined by (18),
(ii) the Neumann data fn = fn(t,Rin) are of the form (20), for given functions qn of

regularity (17),
(iii) the Dirichlet data (fpn , fRn ) are of regularity (14), and qn are the associated func-

tions defined by (19),
(iv) the compatibility conditions (27) hold.

Then, if there exists a unique solution (yi)i∈I ∈
∏N
i=1C

1([0, `i] × [0, T ];R12) to (15)
with initial and nodal data y0i and qn (for some T > 0), there exists a unique solution

(pi,Ri)i∈I ∈
∏N
i=1C

2([0, `i]× [0, T ];R3 × SO(3)) to (11) with initial data (p0
i ,R

0
i ,p

1
i , w

0
i )

and nodal data fn, (fpn , fRn ), and (yi)i∈I = T ((pi,Ri)i∈I).

Remark 2.8. We have the following restriction on the form of the Neumann data fn:
it must be possible to express it as a function qn = qn(t) in the body-attached basis (see
Subsection 2.1).

The proof of Theorem 2.7, given in Section 5, consists in using the last six equations
of (15a) as compatibility conditions to prove that the transformation T , defined in (9),
is bijective on some spaces (see Lemma 5.1); this relies on the use of quaternions [6] to
parametrize the rotations matrices, and existence and uniqueness results for (seemingly
overdetermined) first-order linear PDE systems. Once that this property of the transfor-
mation is established, one recovers notably the governing system (11a) by using the first
six equations of (15a). The transmission conditions are recovered by first showing that the
rigid joint assumption (11c) is fulfilled and then deducing (11b)-(11d) from (15b)-(15c).

Corollary 2.9 below follows from Theorem 2.3 and Theorem 2.7.
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Corollary 2.9. Consider a general network and suppose that the conditions (i)-(ii)-(iii)-
(iv) of Theorem 2.7 are fulfilled, suppose that the beam parameters (Mi,Ci) satisfy As-
sumption 1, and that the compatibility conditions (28) hold. Then, for any T > 0, there
exists ε0 > 0 such that for all ε ∈ (0, ε0), and for some δ > 0, if moreover ‖y0i ‖C1

x
+‖qn‖C1

t
≤

δ, then there exists a unique solution (pi,Ri)i∈I ∈
∏N
i=1C

2([0, `i]× [0, T ];R3 × SO(3)) to

(11) with initial data (p0
i ,R

0
i ,p

1
i , w

0
i ) and nodal data fn, (fpn , fRn ).

Remark 2.10. Under (27), the conditions (28) are just an equivalent way of imposing
that y0i fulfills the first-order compatibility conditions of (15), but expressed in terms of the
data of the GEB model.

Finally, from Theorems 2.5 and 2.7, one obtains Corollary 2.11 below.

Corollary 2.11. Consider the A-shaped network defined by (22), and assume that

(i) the beam parameters (Mi,Ci, Ri) and initial data (p0
i ,R

0
i ,p

1
i , w

0
i ) have the regu-

larity (4) and (12), the former satisfy Assumption 1 and the latter fulfill (27b),
and y0i is the associated function defined by (18),

(ii) the Neumann data fn = fn(t,Rin), for n ∈ {1, 2, 3} are of the form (20), for given
functions qn of regularity (17),

(iii) the compatibility conditions (28a)-(28b) for all n ∈ {1, 2, 3} hold.

Let T > 0 be defined by (25). Then, for any T > T ∗ > T , there exists ε0 > 0 such that
for all ε ∈ (0, ε0), for some δ, γ > 0, and for any nodal profiles y1, y2 ∈ C1([T ∗, T ];R12)
satisfying ‖yi‖C1

t
≤ γ and the transmission conditions (15b)-(15c) at the node n = 1, if

additionally ‖y0i ‖C1
x

+ ‖fn‖C1
t
≤ δ (i ∈ I, n ∈ {1, 2, 3}), then there exist controls f4, f5 ∈

C1([0, T ];R6) with ‖fn‖C1
t
≤ ε such that System (11) with initial data (p0

i ,R
0
i ,p

1
i , w

0
i )

and boundary data (fn)n∈{1,2,3}, admits a unique solution (pi,Ri)i∈I ∈
∏N
i=1C

2([0, `i] ×
[0, T ];R3×SO(3)), and (yi)i∈I := T ((pi,Ri)i∈I) fulfills ‖yi‖C1

x,t
≤ ε and the nodal profiles

(26).

Remark 2.12. In Corollary 2.11,

1. the profiles given at the node n = 1 affect the intrinsic variables Ti(pi,Ri), for
i ∈ {1, 2}, and not directly the displacements and rotations (pi,Ri);

2. for i ∈ {4, 5} the control fi is given by (20) where qi is the control provided by
Theorem 2.5 for System (15). The smallness of the C1 norm of fi comes from
a combination of the fact that qi and yi (and thus, as can be seen in (6), also
the angular velocity Wi) have small C1 norms, and that the expression of fi and
d
dtfi involves only the functions qi,Wi and the unitary matrices Ri, Ri. Indeed,

fi = diag
(
Ri(`i, ·),Ri(`i, ·)

)
qi and one may compute that

d

dt
fi = diag

(
Ri(`i, ·),Ri(`i, ·)

) d

dt
qi + diag

(
(RiŴi)(`i, ·), (RiŴi)(`i, ·)

)
qi.

3. Existence and uniqueness for the IGEB network

We now turn to the proof of Theorem 2.3.
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3.1. Hyperbolicity of the system. Let T > 0, i ∈ I and x ∈ [0, `i]. One may quickly
verify that the matrix Ai(x), defined in (8), has only real eigenvalues: six positive ones
which are the square roots of the eigenvalues of Θi(x) (defined in Assumption 1), and six
negative ones which are equal to the former but with a minus sign. Furthermore, some
computations yield the following lemma whose proof is given in [35, Section 4].

Lemma 3.1. Suppose that Assumption 1 is fulfilled and, for any i ∈ I, let Ui, Di ∈
C2([0, `i];R6×6) be the functions introduced in Assumption 1. Then, Ai ∈ C2([0, `i];R12×12)
may be diagonalized as follows. One has Ai = L−1i DiLi in [0, `i], where Di, Li ∈
C2([0, `i];R12×12) are defined by

Di = diag(−Di, Di), Li =

[
UiC

−1/2
i DiUiC

1/2
i

UiC
−1/2
i −DiUiC

1/2
i

]
, (29)

and the inverse L−1i ∈ C2([0, `i];R12×12) is given by

L−1i =
1

2

[
C

1/2
i Uᵀi C

1/2
i Uᵀi

C
−1/2
i Uᵀi D

−1
i −C

−1/2
i Uᵀi D

−1
i

]
. (30)

3.2. Change of variable to Riemann invariants. Now, we can write (15) in diagonal
form by applying the change of variable

ri(x, t) = Li(x)yi(x, t), for all x ∈ [0, `i], t ∈ [0, T ], i ∈ I. (31)

The first (resp. last) six components of ri correspond to the negative (resp. positive)
eigenvalues of Ai, thus, for all i ∈ I, we denote

ri =

[
r−i
r+i

]
, r−i , r

+
i : [0, `i]× [0, T ]→ R6.

In addition, in order to write the transmission conditions concisely, we introduce the in-
vertible matrix γni and positive definite symmetric matrix σni

γni = (RiC
1/2
i Uᵀi )(xni ), σni = (RiC

−1/2
i Uᵀi D

−1
i UiC

−1/2
i R

ᵀ
i )(x

n
i )

0 `i

x

t

λ >
0

λ < 0

•entering

• leaving

• entering

•leaving

(a) Characteristic curves (x(t), t) with dx
dt (t) = λ(x(t)),

where either λ(s) > 0 or λ(s) < 0 for all s ∈ [0, `i].

n

isn+1

isn+2

...
ikn

i1

i2

...
isn

(b) Form of In at a node n.

Figure 3. Outgoing and incoming information.
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for all n ∈ N and i ∈ In. Notice that σni γ
n
i = Ri(x

n
i )C

−1/2
i Uᵀi D

−1
i .

Then, taking (29)-(30) into account, the system obtained by applying the change of variable
(31) to System (15) reads

∂tri + Di∂xri +Biri = gi(·, ri), in (0, `i)× (0, T ), i ∈ I (32a)

γni (r−i + r+i )(xni , t)
= γnin(r−in + r+in)(xnin , t), t ∈ (0, T ), i ∈ In, n ∈ NM (32b)∑

i∈In

τni
2
σni γ

n
i (r−i − r

+
i )(xni , t) = qn(t), t ∈ (0, T ), n ∈ NM (32c)

(r−in − r
+
in)(xnin , t)

= 2τnin(DinUinC
1/2
in )(xnin)qn(t), t ∈ (0, T ), n ∈ NN

S (32d)

(r−in + r+in)(xnin , t)
= 2(UinC

−1/2
in )(xnin)qn(t), t ∈ (0, T ), n ∈ ND

S (32e)

ri(x, 0) = r0i (x), x ∈ (0, `i), i ∈ I. (32f)

In the governing system (32a), the coefficient Bi ∈ C1([0, `i];R12×12) is defined by Bi(x) =
Li(x)Bi(x)Li(x)−1+Li(x)Ai(x) d

dxL
−1
i (x), while the source is defined by gi(x, u) = Li(x)gi(x, Li(x)−1u)

for all i ∈ I, x ∈ [0, `i] and u ∈ R12. The corresponding initial data in (32f) for this system
is r0i = Liy

0
i .

3.3. Outgoing and incoming information. For any n ∈ N , let us denote by sn ∈
{0, . . . , kn} (resp. by kn − sn) the number of beams ending (resp. starting) at the node n;
see Fig. 3b. More precisely, we suppose that

In = {i1, . . . , ikn} with i1 < i2 < . . . < isn and isn+1 < isn+2 < . . . < ikn ,

and that τniα = −1 for all α ∈ {1, . . . , sn}, while τniα = +1 for all α ∈ {sn + 1, . . . , kn}. This
is not to be confused with the notation in introduced in (10).

For any node n and any incident edge i ∈ In, we call outgoing (resp. incoming) informa-
tion, the components of ri which correspond to characteristics entering (resp. leaving) the
domain [0, `i]× [0,+∞) at this node (see Fig. (3a)).

Namely, here, the outgoing (resp. incoming) information at the node n is r−iα(`iα , t) (resp.

r+iα(`iα , t)) for all α ∈ {1, . . . , sn}, and r+ik(0, t) (resp. r−ik(0, t)) for all k ∈ {sn + 1, . . . , kn}.
We then define the functions routn , rinn : [0, T ]→ R6kn by

routn (t) =



r−i1(`i1 , t)
...

r−isn (`isn , t)

r+isn+1
(0, t)

...
r+ikn

(0, t)


, rinn (t) =



r+i1(`i1 , t)
...

r+isn (`isn , t)

r−isn+1
(0, t)

...
r−ikn

(0, t)


.
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We also denote routn = ((routn,1 )ᵀ, . . . , (routn,kn
)ᵀ), where routn,α(t) ∈ R6 for all α ∈ {1, . . . , kn}; a

similar notation is used for rinn .

Taking into account this notation, and the sign of τni , we observe that the Kirchhoff
condition (32c) is equivalent to

−
sn∑
α=1

σniαγ
n
iα(r−iα − r

+
iα

)(0, t) +

kn∑
k=sn+1

σnikγ
n
ik

(r−ik − r
+
ik

)(`ik , t) = qn(t),

which can also be written in the form

kn∑
α=1

σniαγ
n
iαr

out
n,α(t) =

kn∑
α=1

σniαγ
n
iαr

in
n,α(t) + qn(t).

The continuity condition (32b) is equivalent to

γni1(r−i1 + r+i1)(xni1 , t) = γniα(r−iα + r+iα)(xniα , t) for all α ∈ {2, . . . , kn}

which can be seen to also write as

γni1r
out
n,1 (t)− γniαr

out
n,α(t) = −γni1r

in
n,1(t) + γniαr

in
n,α(t) for all α ∈ {2, . . . , kn}.

Hence, at any multiple node n, the transmission conditions (32c)-(32b) are equivalent to
the following system:

AnGnr
out
n (t) = BnGnr

in
n (t) +

[
qn(t)

06kn−6,1

]
,

where An,Bn,Gn ∈ R6kn×6kn are defined by

An =

[
an bn
cn I6(kn−1)

]
, Bn =

[
an bn
−cn −I6(kn−1)

]
, Gn = diag(γni1 , . . . , γ

n
ikn

),

the sub-matrices an ∈ R6×6, bn ∈ R6×6(kn−1) and cn ∈ R6(kn−1)×6 being defined by
an = σni1 , bn =

[
σni2 σ

n
i3
. . . σnikn

]
and cn = −

[
I6 I6 . . . I6

]ᵀ
.

The matrix Gn is clearly invertible and one can check that An is also invertible (using
the same reasoning as [35, Lemma 4.4]). For any n ∈ N , let us define Bn ∈ R6kn×6kn by

Bn =


G−1n A−1n BnGn n ∈ NM
I6 n ∈ NN

S

− I6 n ∈ ND
S ,

as well as Qn ∈ R6kn×6kn and qn ∈ C1([0, T ];R6kn) by

Qn =


2G−1n A−1n n ∈ NM
2τnin(DinUinC

1/2
in )(xnin) n ∈ NN

S

2(UinC
−1/2
in )(xnin) n ∈ ND

S ,

qn(t) =


[
qn(t)

06kn−6,1

]
n ∈ NM

qn(t) n ∈ NS .



20 GÜNTER LEUGERING, CHARLOTTE RODRIGUEZ, AND YUE WANG

Then, System (32) also reads
∂tri + Di(x)∂xri +Bi(x)ri = gi(x, ri) in (0, `i)× (0, T ), i ∈ I
routn (t) = Bnrinn (t) +Qnqn(t) t ∈ (0, T ), n ∈ N
ri(x, 0) = r0i (x) x ∈ (0, `i), i ∈ I.

3.4. Proof of Theorem 2.3. Relying upon Subsections 3.1, 3.2 and 3.3, and [17, 49], we
now prove Theorem 2.3.

Proof of Theorem 2.3. The local and semi-global existence and uniqueness of C1
x,t solutions

to general one-dimensional quasilinear hyperbolic systems have been addressed in [49, Lem.
2.3, Th. 2.1], which is an extension of [17, Lem. 2.3, Th. 2.5] to nonautonomous systems.

Such results may be applied to the network system (15), since it can be written as a
single larger hyperbolic system. One needs only to apply the change of variable r̃i(ξ, t) =
ri(`i`

−1ξ, t) for all i ∈ I, ξ ∈ [0, `] and t ∈ [0, T ] for some ` > 0, in order to make
the spatial domain identical for all beams, and consider the larger R12N -valued unknown
r̃ = (r̃ ᵀ1 , . . . , r̃

ᵀ
N )ᵀ. Then, r̃ is governed by

∂tr̃ + D̃(ξ)∂ξ r̃ + B̃(ξ)r̃ = g̃(r̃) in (0, `)× (0, T )

r̃ out(t) = B̃ r̃ in(t) + Q̃q̃(t) t ∈ (0, T )

r̃(ξ, 0) = r̃0(ξ) ξ ∈ (0, `),

(33)

where D̃, B̃, B̃, Q̃, q̃, r̃out, r̃in, r̃0 and g̃ are defined by

D̃(·) = `diag
(
`−11 D1(`1`

−1·), . . . , `−1N DN (`N`
−1·)

)
,

B̃(·) = diag
(
B1(`1`

−1·), . . . , BN (`N`
−1·)

)
,

B̃ = diag (B1, . . . ,B#N ) , Q̃ = diag (Q1, . . . ,Q#N ) , q̃ = (qᵀ1, . . . ,q
ᵀ
#N )ᵀ,

r̃out =
(
(rout1 )ᵀ, . . . , (rout#N )ᵀ

)ᵀ
, r̃in =

(
(rin1 )ᵀ, . . . , (rin#N )ᵀ

)ᵀ
,

r̃0(·) =
(
r0(`1`

−1·)ᵀ, . . . , r0(`N , `−1·)ᵀ
)ᵀ

g̃(·,u) =
(
g̃1(`1`

−1·,u1)
ᵀ, . . . , g̃N (`N`

−1·,uN )ᵀ
)ᵀ
,

where we denoted u = (uᵀ1, . . . ,u
ᵀ
N )ᵀ with ui ∈ R12 for all i ∈ I.

Due to Subsection 3.3, the boundary conditions of (33) are directly written in such a way
that the outgoing information for System (33) is a function of the incoming information,
a sufficient criteria in [17, 49] to deduce well-posedness of the system. �

4. Controllability of nodal profiles for the IGEB network

We now consider the A-shaped network defined by (22) and our aim is to prove Theorem
2.5. As pointed out in Section 2, we will solve several forward and sidewise problems for
(15a) (see Steps 1.3, 1.4, 1.5). The existence and uniqueness of semi-global in time solutions
to these problems is provided by [17, 49], as in Section 3 for the overall network.
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Proof of Theorem 2.5. The proof is divided in three steps. We start by constructing a
solution satisfying all transmission conditions and the nodal profiles. The choice of T (see
(25)), and thus T ∗, is explained in Step 2.

Step 1.1 (see Fig. 4 top-left). Consider the forward problem for the entire network until
time T , where at the simple nodes n ∈ {4, 5}, the controls q4, q5 are replaced by any
functions q4, q5 ∈ C1([0;T ];R6) satisfying the first-order compatibility conditions of (15).
By Theorem 2.3, for any γ > 0 small enough, there exists δ > 0 such that (15) admits

a unique solution (yfi )i∈I ∈
∏N
i=1C

1([0, `i] × [0, T ];R12) with ‖yfi ‖C1
x,t
≤ γ, provided that

‖y0i ‖C1
x

+ ‖qn‖C1
t

+ ‖qk‖C1
t
≤ δ for all i ∈ I, n ∈ {1, 2, 3} and k ∈ {4, 5}.

Similarly to the state yi (see (6)), we denote yfi = ((vfi )ᵀ, (zfi )ᵀ)ᵀ, and later on, we will
also use such a notation for yi, yi, ỹi and yi.

Step 1.2. At the node n = 1, to obtain “data” y1, y2 ∈ C1([0, T ]) for the entire time
interval with small C1 norm and fulfilling the transmission conditions at this node, we

connect yfi (from Step 1.1), which is defined on [0, T ], to the nodal profiles yi defined on
[T ∗, T ] (see (26)).

We first find functions v1, z1 ∈ C1([0, T ];R6) with ‖v1‖C1
t

+ ‖z1‖C1
t
≤ γ and such that

v1(t) =

{
vf1 (0, t) t ∈ [0, T ]

v1(t) t ∈ [T ∗, T ]
, z1(t) =

{
zf1 (0, t) t ∈ [0, T ]

z1(t) t ∈ [T ∗, T ]
, (34)

completing the gap between via, for example, cubic Hermite splines fulfilling the values and
first derivatives prescribed by (34) at t = T and t = T ∗. The C1 norm of such functions is

bounded by that of vfi , vi and zfi , zi, respectively.

Then, we define v2, z2 ∈ C1([0, T ];R6) by v2(t) = (R
ᵀ
2R1)(0)v1(t) and z2(t) = −(R

ᵀ
2R1)(0)z1(t),

so that both the continuity and Kirchhoff conditions (15b)-(15c) are fulfilled. Since Ri
(i ∈ I) is unitary and independent of time, one has |v1| = |v2| and |z1| = |z2|, as well as
| ddtv1| = |

d
dtv2| and | ddtz1| = |

d
dtz2|, implying that ‖v2‖C1

t
+ ‖z2‖C1

t
≤ γ.

Step 1.3 (see Fig. 4 top-right). Now that we have yi, we consider the sidewise (rightward)
problem on [0, `i] × [0, T ] for the edges i ∈ {1, 2} (see Remark 2.6 4.), where at x = 0
the “initial data” is yi, at t = 0 the “boundary condition” prescribes the velocities as
vi(x, 0) = v0i (x) (thus using a part of the initial conditions of System (15)), and at t = T we
set the artificial “boundary condition” zi(x, T ) = qi(x) for any function qi ∈ C1([0, `i];R6).
Then, for any ε1 > 0 small enough, there exists δ1 > 0 such that the rightward problem
admits a unique solution yi ∈ C1([0, `i] × [0, T ];R12) with ‖yi‖C1

x,t
≤ ε1, provided that

‖yi‖C1
t

+ ‖v0i ‖C1
x

+ ‖qi‖C1
x
≤ δ1 for all i ∈ {1, 2}.

Step 1.4 (see Fig. 4 bottom-left). Using y1(`1, ·), y2(`2, ·) (from Step 1.3) as data, consider
the forward problem on [0, `3]× [0, T ] for the edge i = 3, with the initial conditions of (15),
and, as boundary conditions at x = 0 and x = `3, the velocities prescribed as

v3(0, t) = R3(0)ᵀR1(`1)v1(`1, t), v3(`3, t) = R3(`3)
ᵀR2(`2)v2(`2, t), (35)
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T

T ∗

T

t = 0

t

A.C.

A.C.

4 2 1

5

3

T

T ∗

T

t = 0

tA.C.

A.C.

4 2 1

5

3

T

T ∗

T

t = 0

t

4 2 1

5

3

T

T ∗

T

t = 0

tA.C.

A.C.

4 2 1

5

3

Figure 4. Steps 1.1, 1.3, 1.4, 1.5 of the construction of the solution (top
to bottom, left to right), where “A.C.” stands for “artificial conditions”.

so that the obtained solution y3 together with y1, y2 (provided by Step 1.3) fulfill the
continuity conditions (15b) at the nodes n ∈ {2, 3}. Then, for any ε2 > 0 small enough,
there exists δ2 > 0 such that this problem admits a unique solution y3 ∈ C1([0, `3] ×
[0, T ];R12) with ‖y3‖C1

x,t
≤ ε2, provided that ‖y03‖c1x + ‖vi(`i, ·)‖C1

t
+ ‖qn‖C1

t
≤ δ2 for all

i ∈ {1, 2} and n ∈ {2, 3}.
Step 1.5 (see Fig. 4 bottom-right). Finally, using y1(`1, ·), y2(`2, ·) (from Step 1.1) and
y3(0, ·), y3(`3, ·) (from Step 1.3) as data, consider the rightward problem on [0, `i]× [0, T ]
for the edges i ∈ {4, 5} similar to that of Step 1.3 except for the choice of the “initial data”
at x = 0, denoted by ỹi, that we define by

ỹ4 =

[
R4(0)ᵀ(R1v1)(`1, ·)

R4(0)ᵀ((R1z1)(`1, ·)− (R3z3)(0, ·)− q2)

]
(36)

ỹ5 =

[
R5(0)ᵀ(R2v2)(`2, ·)

R5(0)ᵀ((R2z2)(`2, ·) + (R3z3)(`3, ·)− q3)

]
. (37)

Then, for any ε3 > 0 small enough, there exists δ3 > 0 such that this problem admits a
unique solution yi ∈ C1([0, `i] × [0, T ];R12) with ‖yi‖C1

x,t
≤ ε3, provided that ‖v0i ‖C1

x
+

‖qi‖C1
x

+ ‖qn‖C1
t
≤ δ3 for all i ∈ {4, 5} and n ∈ {2, 3}, and ‖yk(`k, ·)‖C1

t
+ ‖y3(0, ·)‖C1

t
≤ δ3

for all k ∈ {1, 2, 3}.
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x (time)0

t (space)

`i

max{T4, T5}

Ti +max{T4, T5}

t
i (x)

i = 1, 2

x (space)0

t (time)

`3

max{T4, T5}

i = 3

x (time)0

t (space)

`i

Ti ti (x)

i = 4, 5

Figure 5. Recovering the initial conditions: meaning of the controllability time.

Note that the ỹi for i ∈ {4, 5} have been chosen in such a way that the solutions
y4, y5 together with y1, y2, y3 (provided by Step 1.1 and Step 1.3), necessarily fulfill the
transmission conditions (15b)-(15c) at the nodes n ∈ {2, 3}.

It remains to prove that the solution (yi)i∈I constructed in Step 1 in fact also fulfills the

initial conditions (15f) of the overall network, by showing that yi coincides with yfi on some
domain including [0, `i]× {0} for all i ∈ I.

Step 2.1 (see Fig. 5 leftmost). First, consider the edges i ∈ {1, 2}. We will see that not
only yi fulfills (15f), but one also has (see (24))

yi(`i, t) = yfi (`i, t), t ∈ [0,max{T4, T5}], i ∈ {1, 2}. (38)

Let i ∈ {1, 2}, and let ti ∈ C1([0, `i]) be the function with derivative d
dxti(x) = min1≤k≤12

1
λki (x)

in [0, `i], which is also equal to −Λi(x) (see (23)-(24)), and such that ti(0) = Ti +
max{T4, T5}. Then, ti describes a curve in [0, `i] × [0, T ] that passes through (0, Ti +
max{T4, T5}) and we may also write

ti(x) = Ti + max{T4, T5} −
∫ x

0
Λi(s)ds.

The definition of Ti in (24) ensures that [0, `i]× [0,max{T4, T5}] is a subset of the domain
R(i, ti) defined by

R(i, ti) := {(x, t) : 0 ≤ x ≤ `i, 0 ≤ t ≤ ti(x)}. (39)

Both yi and yfi are by definition solutions to the one-sided sidewise (rightward) problem
with “initial data” yi at x = 0 and boundary data v0i at t = 0. The definition of ti ensures
that any characteristic curve3 of this problem passing by (x, t) ∈ R(i, ti) is necessarily
entering the domain R(i, ti) at {0} × [0, Ti + max{T4, T5}] or at [0, `i] × {0}. Thus, by
[23, Section 1.7] the solution in C1(R(i, ti);R12) to this sidewise problem is unique, and

yi ≡ yfi in R(i, ti).

3By characteristic curves passing by (x◦, t◦), we mean the curves specified by the functions tki with
derivative d

ds
tki (s) = λki (s)−1 and such that tki (x◦) = t◦, for k ∈ {1, . . . , 12}.
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Step 2.2 (see Fig. 5 center). Consider the edge i = 3. We will show that not only y3
fulfills (15f), but also

y3(0, t) = yf3 (0, t), y3(`3, t) = yf3 (`3, t), t ∈ [0,max{T4, T5}] (40)

holds. Indeed, y3 and yf3 both solve the forward problem
∂ty3 +Ai∂xy3 +Biy3 = gi(·,y3) in (0, `3)× (0,max{T4, T5}) (41a)

v3(0, t) = R3(0)ᵀ(R1v1)(`1, t)(t) t ∈ (0,max{T4, T5}) (41b)

v3(`3, t) = R3(`3)
ᵀ(R2v2)(`2, t)(t) t ∈ (0,max{T4, T5}) (41c)

y3(x, 0) = y03(x) x ∈ (0, `i), (41d)

which admits a unique solution in C1([0, `3]× [0,max{T4, T5}];R12). In fact, y3 fulfills (41)

by definition (see Step 3); concerning yf3 , it fulfills (41a) and (41d) by definition, while (38)

and (35) imply that yf3 fulfills (41b) and (41c).

Step 2.3 (see Fig. 5 rightmost). Finally, consider the edges i ∈ {4, 5}. Let ti be the
function defined just as in Step 2.1 except that ti(0) = Ti. In other words,

ti(x) = Ti −
∫ x

0
Λi(s)ds

Here, the definition of Ti in (24) ensures that ti(`i) = 0, and therefore the corresponding

domain R(i, ti) defined by (39), contains [0, `i]× {0}. Both yi and yfi fulfill the following
one-sided rightward problem with unknown yi:

∂xyi +A−1i ∂tyi +A−1i Biyi = (A−1i gi)(·, yi) in R(i, ti) (42a)

vi(x, 0) = v0i (x) x ∈ (0, `i) (42b)

yi(0, t) = ỹi(t) t ∈ (0, Ti), (42c)

where ỹi is defined by (36)-(37). Indeed, while it is clear that yi fulfills (42) and yfi fulfills

(42a)-(42b) by definition, one also obtains, using (38), (40) and the fact that yfi satisfies

the transmission conditions (15b)-(15c), that yfi also fulfills (42c). The definition of ti
ensures that any characteristic curve of (42) passing through (x, t) ∈ R(i, ti) is necessarily
entering this domain at {0}× [0, Ti] or at [0, `i]×{0}. Hence, similarly to Step 2.1, one can
apply [23, Section 1.7] to obtain that the solution in C1(R(i, ti);R12) to (42) is unique.

Step 3. Finally, we choose qi defined by qi(t) = zi(`i, t) for all t ∈ [0, T ], i ∈ {4, 5}. In
view of the uniqueness of the solution to (15), q4, q5 are controls satisfying the desired
conditions of Theorem 2.5. �

5. Relationship between the GEB and IGEB networks

As in Section 3, we now consider a general network, and seek to prove Theorem 2.7. To
do so, in Lemma 5.1 below, we start by inverting, on some specific spaces, the transforma-
tion T defined in (9) that relates the states of (11) and (15). Henceforth, for any functions
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(ui)i∈I such that ui : [0, `i]× [0, T ]→ R12, we use the notation ui = (uᵀi,1, . . . , u
ᵀ
i,4)
ᵀ, where

ui,k : [0, `i]× [0, T ]→ R3 for all k ∈ {1, . . . , 4}. Let us define the spaces

E1 =
{

(pi,Ri)i∈I ∈
∏N
i=1C

2
(
[0, `i]× [0, T ];R3 × SO(3)

)
: (11f), (11g) hold

}
E2 =

{
(yi)i∈I ∈

∏N
i=1C

1
(
[0, `i]× [0, T ];R12

)
: ui := diag(I3,Ci)yi satisfies

(43)-(44)-(45)
}
,

where (43)-(44)-(45) are the following conditions:

for all i ∈ I, in (0, `i)× (0, T )

∂t

[
ui,3
ui,4

]
− ∂x

[
ui,1
ui,2

]
−
[
Υ̂i
c ê1

03 Υ̂i
c

] [
ui,1
ui,2

]
=

[
ûi,2 ûi,1
03 ûi,2

] [
ui,3
ui,4

]
,

(43)

for all i ∈ I, in (0, `i),
d
dxp0

i (·) = R0
i (·)(ui,3(·, 0) + e1),

d
dxR0

i (·) = R0
i (·)(ûi,4(·, 0) + Υ̂i

c(·)),
(44)

for all n ∈ ND
S , in (0, T ), d

dtf
p
n (·) = fRn (·)ûin,1(xnin , ·),

d
dtf

R
n (·) = fRn (·)ûin,2(xnin , ·).

(45)

The following result then holds.

Lemma 5.1. Assume that (p0
i ,R

0
i , f

p
n , fRn ) are of regularity (12) and (14), and fulfill

(27a). Then, the transformation T : E1 → E2, defined in (9), is bijective.

Proof of Lemma 5.1. One can easily verify that (Ti(pi,Ri))i∈I belongs to E2 for any given
(pi,Ri)i∈I ∈ E1, and T is thus well defined.

Let (yi)i∈I ∈ E2. We will now show that, there exists a unique (pi,Ri)i∈I such that
T ((pi,Ri)i∈I) = (yi)i∈I . Consider (ui)i∈I defined by ui := diag(I3,Ci)yi. Let i ∈ I, and
let n be the index of any node such that i ∈ In.

There exists a unique solution Ri ∈ C2([0, `i]× [0, T ]; SO(3)) to
∂tRi = Riûi,2 in (0, `i)× (0, T ) (46a)

∂xRi = Ri(ûi,4 + Υ̂i
c) in (0, `i)× (0, T ) (46b)

Ri(x
n
i , 0) = R0

i (x
n
i ). (46c)

To prove this, a possible way is to first rewrite (46), whose state has values in SO(3), as
a system with a R4-valued state (using [36, Lem. 4.1]) via a parametrization of rotation
matrices by quaternions [6], and then use (43) (last three equations) as compatibility
conditions in order to deduce that the obtained system is well-posed (using [36, Lem.
4.3]); this procedure is detailed in [36, Section 4].

Having found Ri, consider the following system
∂tpi = Riui,1 in (0, `i)× (0, T ) (47a)

∂xpi = Ri(ui,3 + e1) in (0, `i)× (0, T ) (47b)

pi(x
n
i , 0) = p0

i (x
n
i ). (47c)
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Note that (47a) is equivalent to pi(x, t) = pi(x, 0) +
∫ t
0 (Riui,1)(x, τ)dτ . Without loss

of generality, assume that xni = 0 (in the alternative case, the end of the proof is the

same with each integral +
∫ x
0 below replaced by −

∫ `n
x ). By (44) (first equation) and

(47c), in the above expression for pi(x, t), one may express the first term as pi(x, 0) =
p0
i (x

n
i )+

∫ x
xni

(R0
i (u

0
i,3+e1))(s)ds. Also, for any x ∈ [0, `i] and any τ ∈ [0, t] the integrand in

the second term may be expressed as (Riui,1)(x, τ) = (Riui,1)(x
n
i , τ)+

∫ x
xni

(Riui,1)(s, τ)ds.

Hence, (47a) and (47c) are equivalent to

pi(x, t) = p0
i (x

n
i ) +

∫ t

0
(Riui,1)(x

n
i , τ)dτ

+

∫ x

xni

(R0
i (u

0
i,3 + e1))(s)ds+

∫ t

0

∫ x

xni

∂x(Riui,1)(s, τ)dτds.

(48)

On the other hand, we know that (48) fulfills ∂tpi(x
n
i , ·) = (Riui,1)(x

n
i , ·), while by

(43) (first three equations), one has ∂x(Riui,1) = ∂t(Ri(ui,3 + e1)). The latter two
facts, together with (44) (second equation), permit us to deduce that (48) also writes
as pi(x, t) = p(xni , t) +

∫ x
xni

(Ri(ui,3 + e1))(t, s)ds. Thus, (48) is the unique solution to (47).

Finally, note that, because of (44), requiring (46c) and (47c) is equivalent to imposing the
initial conditions (11g). Moreover, in the case of n ∈ ND

S , due to (27a) and (45), requiring
(46c) and (47c) is equivalent to imposing the nodal conditions (11f). This concludes the
proof of Lemma 5.1. �

We now have the tools to prove Theorem 2.7.

Proof of Theorem 2.7. We divide the proof in seven steps. Let (yi)i∈I be as in Theorem
2.7, and let (ui)i∈I be defined by ui = diag(I3,Ci)yi.

Step 1: inverting the transformation. Since the last six equations in (15a) hold for (yi)i∈I ,
we know that (43) is fulfilled. On the other hand, the last six equations of the initial
conditions (15f) with initial data (18) yield (44). Finally, the definition of the bound-
ary data (19), together with the nodal conditions (15e) on velocities, yield (45). Hence,
(yi)i∈I ∈ E2, and by Lemma 5.1 there exists a unique (pi,Ri)i∈I ∈ E1 such that

yi = Ti(pi,Ri), for all i ∈ I. (49)

Now, we want to check that this “candidate” (pi,Ri)i∈I , satisfies the rest of system
(11).

Step 2: governing equations. Using (49) and the first six governing equations in (15a), one
can deduce that (pi,Ri)i∈I satisfies the governing system (11a) after some computations.

Step 3: conditions at simple nodes. For n ∈ NN
S , from (49) together with the nodal

conditions (15d) on forces and moments and the definition of fn (see (20)), one can directly
deduce that the nodal conditions (11e) hold.
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For n ∈ ND
S , from (49) together with the nodal conditions (15e) on velocities and initial

conditions (11g), we deduce that (pin(xnin , ·),Rin(xnin , ·)) satisfies
dβ

dt
(t) = β(t)q̂Wn (t),

dα

dt
(t) = β(t)qVn (t) in (0, T )

(α, β)(0) = (p0
in ,R

0
in)(xnin),

(50)

of unknown state (α, β), where we denote qn = ((qVn )ᵀ, (qWn )ᵀ)ᵀ with qVn , q
W
n ∈ C1([0, T ];R3).

Due to (19) and (27a), (fpn , fRn ) also satisfies (50). One may see that (50) admits a unique
solution in C2([0, T ];R3 × SO(3)). Indeed, as in the proof of Lemma 5.1, one may replace
(50) (first equation) by an equivalent equation whose unknown state is the quaternion [6]
parametrizing the rotation matrix β = β(t) (see [36, Section 4] for more detail). Hav-
ing then only vector valued unknowns, one can use the classical ODE theory. Thus,
(pin ,Rin)(xnin , ·) ≡ (fpn , fRn ), and the nodal conditions (11f) hold.

Step 4: remaining initial conditions. One recovers the initial conditions (11h) directly
from the first six equations in (15f) and the definition of y0i (18), together with (49).

Step 5: rigid joint condition. In order to show that (pi,Ri)i∈I fulfills the transmission
conditions of (11), we start with the rigid joint condition. Let n ∈ NM . For all i ∈ In,
let us define Λi ∈ C1([0, T ];R3×3) by Λi(t) = (RiR

ᵀ
i )(x

n
i , t). By the continuity condition

(15b) (last three equations),(
d
dtΛi

)
Λᵀi =

(
d
dtΛin

)
Λᵀin , in (0, T ), for all i ∈ In. (51)

Let Fn :=
(
d
dtΛin

)
Λᵀin and an := (RinR0

in
ᵀ
)(xnin). By (51), (27b) (second equation) and

the fact that (11g) holds (by Step 1), for all i ∈ In, Λi fulfills
d

dt
Λi(t) = Fn(t)Λi(t) for all t ∈ (0, T )

Λi(0) = an,

which admits a unique C1([0, T ];R3×3) solution (see [43, Sec. 2.1 and Th. 4.1.1 or Coro.
2.4.4], for instance). Hence, Λi ≡ Λj for all i, j ∈ In, and the rigid joint condition (11c)
holds.

As (11c) holds, we can now deduce the transmission conditions of (11) that remain.

Step 6: continuity of the displacement. Let n ∈ NM . By (49) together with the rigid joint
condition (11c) and the continuity condition (15b) (first three equations), one deduces that

∂tpi(x
n
i , t) = ∂tpin(xnin , t), in (0, T ), for all i ∈ In.

Using additionally (11g) with (27b) (first equation), we deduce that for all i ∈ In, the
function pi(x

n
i , ·) fulfills the problem{

∂tpi(x
n
i , t) = hn(t) for all t ∈ (0, T )

pi(x
n
i , 0) = αn,

(52)

where we denote hn := ∂tpin(xnin , ·) and αn := p0
in(xnin). Since the C1([0, T ];R3) solution

to (52) is unique, we conclude that (11b) holds.
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Figure 6. Other networks for which local exact controllability of nodal
profiles is achievable by following Algorithm 1 (the numbers refer to the
variable step).

Step 7: Kirchhoff condition. One recovers the Kirchhoff condition (11d) from the rigid
joint assumption (11c) together with (15c) and (49).

To finish, the uniqueness of the solution to (11) is a consequence of the uniqueness of
the solution to (15) (Theorem 2.3) and of the bijectivity of the transformation T (Lemma
5.1). This concludes the proof. �

6. Concluding remarks and outlook

In this article, we have studied networks, possibly with cycles, of geometrically ex-
act beams. Notably, we considered the representations of such beams in terms of either
displacements and rotations expressed in a fixed coordinate system (GEB model), or ve-
locities and internal forces/moments expressed in a moving coordinate system attached to
the beam (IGEB model), reflecting on the advantages and drawbacks of these two points
of view, and the relationship between them. For these beam networks, we addressed the
problem of local exact controllability of nodal profiles in the special case of a network
containing one cycle: the A-shaped network depicted in Fig. 2c.

The fact that one has the possibility of expressing the beam model as a first-order
semilinear hyperbolic system – the IGEB model – while keeping track of the link with
the GEB model, permits us to give a proof of nodal profile controllability in line with
works done on other one-dimensional hyperbolic systems – e.g., wave equation, Saint-
Venant equations, Euler equations [10, 11, 12, 18, 23, 44, 45, 48, 51]. Namely, we used the
existence and uniqueness theory of semi-global classical solutions to the network system,
combined with a constructive method as in [51] to obtain adequate controls.

More general networks. This A-shaped network is an illustrative example where the
controllability of nodal profiles is achievable for a network with a cycle, but let us stress
that similar arguments to those used in Section 4 apply for various other networks, and
with controls at different locations.
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Algorithm 1: Steps of controllability proof for other networks

Input: I, N , NS , kn // edges, nodes, simple nodes, degrees

In for all n ∈ N // edges incident to the node n

N i for all i ∈ I // nodes at the tips of the edge i

P, C // charged nodes, controlled nodes

S // edges on control paths

1 J ← [ 0, for n = 1 . . .#N ]; for all n ∈ P do (J(n) ← kn − 1);

// amount J(n) of data available at n to solve sidewise

2 F ← ∅; // solved edges

3 step ← 1; moved ← false; // to count the steps

4 M ← P ∪ {n ∈ N : n not incident with any edge in S};
5 while F 6= I do // while entire network not solved

6 for m = #M, . . . , 3, 2, 1 do // Principle 1

7 for all N † ⊆M such that #N † = m do
8 if there exists a connected subgraph with nodes N † and edges I†, such

that I† ∩ (S ∪ F) = ∅ then
9 solve forward problem for the network (I†,N †);

10 for all n ∈ N † do (J(n) ← J(n) + 1);

11 M ←M∪N †; F ← F ∪ I†; moved ← true;

12 if moved = true then (step ← step +1; moved ← false);

13 for all n ∈M do // Principle 2

14 if J(n) = kn − 1 then // if enough data at n
15 for all i ∈ In ∩ (S \ F) do
16 solve sidewise problem for the edge i with “initial

conditions” at the node n;

18 M ←M∪N i; F ← F ∪ {i};
19 for all m ∈ N i do (J(m) ← J(m) + 1);

20 moved ← true;

21 if moved = true then (step ← step +1; moved ← false);

22 Compute controls qn by evaluating the trace at nodes n ∈ C;

Let us introduce some more notation. For any given network, we denote by P and C
the set of indexes of the charged nodes and controlled nodes (see Section 1), respectively.
Given a charged node n ∈ P and a controlled node m ∈ C, a control path between n and
m [48], is any connected subgraph (of the current graph representing the beam network)
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forming a path graph4 whose nodes of degree 1 are n and m. In Fig. 6, examples of control
paths are highlighted by blue arrows.

On a tree-shaped network – hence without loop –, some conditions were proved to be
sufficient for the exact controllability of nodal profiles to be achieved [10, 11, 23, 44, 45, 48].
In [48] the authors are concerned with the wave equation and provide a controllability result
for any given tree-shaped network with possibly several charged nodes. Moreover, in [48],
at a charged node n ∈ P, profiles may be prescribed for only some (rather than all) of
the edges incident with n, and profiles may be prescribed for only part of the state (which
would translate in the case of (15) to prescribing the velocities only, or the internal forces
and moments only, for example). This type of problem, which is then called partial nodal
profile controllability, is not considered here.

The nodal profile controllability has also been established for the Saint-Venant system
[25, 51] for numerous networks with cycles, of various shapes and with several charged
nodes.

It arises, from these works, a series of conditions on the number and location of the charged
nodes, which are sufficient to achieve the respective controllability goals. We refer notably
to [48, Theorem 5.1], and to [25, Sections 7 and 8].

In the case of the beam networks considered in this article, these conditions become
(recall that kn is defined as the degree of the node n)

1. The total number of controlled nodes #C is equal to
∑

n∈P kn.
2. For any n ∈ P, there are kn controlled nodes connecting with it through control

paths. These control paths have the charged node n for sole common node.
3. The control paths corresponding to different charged nodes do not have any com-

mon node.

Let us stress again that we are restricting ourselves to the type of systems presented in
Subsection 2.2. Namely, if a multiple node is controlled, then the control is applied at
the Kirchhoff condition, while if a simple node is controlled, then the control is applied
at either the first six (velocities) or last six (internal forces and moments) components of
the state yi, and at any charged node n ∈ P profiles are prescribed for all incident beams
i ∈ In and for the entire state yi.

Then, one may use the constructive method as in Section 4, by following the steps in-
structed by Algorithm 1, for different networks; see Fig. 6. We can assert that this
algorithm yields a proof of controllability for the networks defined in Fig. 6, but not that
it constitutes a proof for any given network.

In Algorithm 1, edges belonging to control paths are solved according to the Principle
2 – solving a sidewise problem as in the Steps 1.3 and 1.5 of the proof of Theorem 2.5 –
while the other edges are solved according to the Principle 1 – solving a forward problem
similar to the Step 1.4 of the proof of Theorem 2.5.

4A path graph is an oriented graph without cycle such that two of its nodes are of degree 1, and all
other nodes have a degree equal to 2.
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As noted here and in the above cited works, the conditions given to obtain controllability
of nodal profiles are only sufficient to ensure the controllability result and the search for
necessary and sufficient conditions is open.
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