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Joel Cousson10, Jeremy Bourenne11, Jean‑Michel Constantin12, Jacques Albanese13, Jason A. Roberts2,5,6,14 and 
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Abstract 

Background:  While aminoglycosides (AG) have been used for decades, debate remains on their optimal dosing 
strategy. We investigated the international practices of AG usage specifically regarding dosing and therapeutic drug 
monitoring (TDM) in critically ill patients. We conducted a prospective, multicentre, observational, cohort study in 59 
intensive-care units (ICUs) in 5 countries enrolling all ICU patients receiving AG therapy for septic shock.

Results:  We enrolled 931 septic ICU patients [mean ± standard deviation, age 63 ± 15 years, female 364 (39%), 
median (IQR) SAPS II 51 (38–65)] receiving AG as part of empirical (761, 84%) or directed (147, 16%) therapy. The AG 
used was amikacin in 614 (66%), gentamicin in 303 (33%), and tobramycin in 14 (1%) patients. The median (IQR) dura‑
tion of therapy was 2 (1–3) days, the number of doses was 2 (1–2), the median dose was 25 ± 6, 6 ± 2, and 6 ± 2 mg/
kg for amikacin, gentamicin, and tobramycin respectively, and the median dosing interval was 26 (23.5–43.5) h. TDM 
of Cmax and Cmin was performed in 437 (47%) and 501 (57%) patients, respectively, after the first dose with 295 (68%) 
patients achieving a Cmax/MIC > 8 and 353 (71%) having concentrations above Cmin recommended thresholds. The ICU 
mortality rate was 27% with multivariable analysis showing no correlation between AG dosing or pharmacokinetic/
pharmacodynamic target attainment and clinical outcomes.

Conclusion:  Short courses of high AG doses are mainly used in ICU patients with septic shock, although wide vari‑
ability in AG usage is reported. We could show no correlation between PK/PD target attainment and clinical outcome. 
Efforts to optimize the first AG dose remain necessary.

Trial registration Clinical Trials, NCT02850029, registered on 29th July 2016, retrospectively registered, https://​www.​clini​
caltr​ials.​gov
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Background
Early administration of adequate doses of antibiotics 
is a key issue for the optimal management of sepsis in 
critically ill patients [1, 2]. Optimized dosing is likely to 
reduce mortality in patients with severe sepsis and sep-
tic shock [3]. Therefore, broad-spectrum antimicrobial 
therapy that combines more than one antimicrobial agent 
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can be used to ensure appropriate therapy in the initial 
phase of severe sepsis [4]. Even though the benefit of 
combination therapy remains unclear, aminoglycosides 
(AG) are often given as part of empirical therapy for 
sepsis, especially when Gram-negative bacteria are sus-
pected [5–7]. To achieve maximal efficacy, the optimal 
AG dosing regimen should reach a peak concentration to 
minimum inhibitory concentration (peak/MIC) ratio of 
at least 8–10, as this pharmacokinetic/pharmacodynam-
ics (PK/PD) target has been associated with clinical cure 
[8–11]. On the other hand, the optimal AG dosing regi-
men should expose patients to the lowest risk of toxicity 
[12]. Therapeutic drug monitoring (TDM), trough con-
centration monitoring in particular, is encouraged in crit-
ically ill patients to guide re-dosing and to limit toxicity. 
Many factors influence the PK and PD of antimicrobials 
in critically ill patients. An increased volume of distri-
bution, the occurrence of hypo-albuminemia, and renal 
and/or hepatic dysfunctions are frequently observed in 
those patients leading to altered PK [13]. Previous stud-
ies have reported that, for up to 30–40% of critically ill 
patients, AG plasma concentrations were lower than the 
targeted peak concentrations using standard dosing regi-
mens [14–17]. Positive fluid balance during the previous 
day and low body mass index (BMI) have been reported 
as risk factors of insufficient peak plasma concentra-
tions [17]. The use of higher amikacin dosing regimens 
(≥ 25 mg/kg) has been suggested by several authors and 
recommended by national guidelines [12, 14, 18]. How-
ever, practices of antimicrobial therapy and TDM may 
widely vary based on available resources and local guide-
lines. Moreover, as local ecology and MICs’ distribution 
may also differ among countries, this could lead to dif-
ferent practices of AG use among countries. The main 
objective of the study was to provide a detailed descrip-
tion of agents, dosing, and monitoring practices of AG 
in in a large cohort of critically ill patients from different 
countries receiving AG for a sepsis or a septic shock.

The secondary objectives were to report renal adverse 
events and clinical outcomes, and to assess the correla-
tion between PK/PD target attainment and these out-
comes (clinical success and ICU mortality).

Methods
This study is reported in accordance with the STrength-
ening the Reporting of OBservational studies in Epidemi-
ology (STROBE) guidelines [19].

A prospective, international, observational cohort 
design was used. All participating ICUs obtained local 
ethics committees’ approval [ethics approval for France 
(Institutional Review Board of Nîmes University Hospi-
tal, France 15/04.08) [20]] and the study was registered in 

Clinical Trials (NCT02850029). Written informed con-
sent was waived due to the non-interventional design of 
the study.

Study population
All adult patients (≥ 18  years) requiring ICU care and 
receiving AG (amikacin, gentamicin, and tobramycin) 
therapy for a sepsis according to the Third International 
Consensus Definitions for Sepsis and Septic Shock (Sep-
sis-3) were included in the study [21].

Settings
Overall, 85 ICUs accepted to participate to the study, and 
59 ICUs enrolled patients from May 2016 to August 2017 
in five different countries: Australia (5), Greece (5), Chile 
(4), UK (9), and France (62).

Data collection and management
Participating site data
For each participating ICU, the following information 
were recorded: type of hospital, type of ICU, number of 
beds, number of physicians, number of admissions per 
year (on the last year), annual ICU mortality, national or 
local AG guidelines availability, and TDM availability.

Patient data
Data recorded for each patient included were: demo-
graphic data (age, gender, height, total body weight), clini-
cal data [admission diagnosis, co-morbidities, APACHE II 
or SAPS II (Simplified Acute Physiology Score) at admis-
sion, SOFA (Sequential Organ Failure Assessment) score 
at inclusion], and biological data [serum creatinine con-
centration, albumin concentration, and 24-h urine output 
every day during AG therapy (where possible)]. Addition-
ally, dosing and TDM data when available (dose and fre-
quency, time of dosing and sampling, therapy duration, 
maximal and minimal AG plasma concentrations, and 
co-administered antibiotics) and toxicity data [co-admin-
istered nephrotoxic drugs, renal function assessment using 
the Acute Kidney Injury Network (AKIN) criteria [22]] at 
the end of AG therapy were collected. Finally, infection 
data (known or presumed pathogen, known or likely MIC) 
and the following outcome data: clinical success, ICU and 
hospital length of stays (LOS), and ICU mortality were 
recorded. Clinical success was defined as the resolution of 
initial symptoms for which AG were prescribed, relapse 
was defined as the occurrence of a new infectious episode 
with the same identified pathogen, and superinfection was 
defined as the occurrence of a new infectious episode with 
a different pathogen).

The definition used to assess PK/PD outcome was as 
follows. PK/PD target attainment was defined as AG con-
centration after the first dose ≥ 8 times the MIC where 
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AG plasma concentrations were available. Breakpoints 
from the EUCAST database were considered [23]. Where 
infections were polymicrobial, the MIC of the least sus-
ceptible pathogen was used in the analysis. Actual values 
of MIC were considered where available to assess “a pos-
teriori” Cmax/MIC ratio.

Data management
Data collection was performed by trained staff at each 
participating center. Data were entered into a structured 
electronic password-protected and secured web-based 
case report form (eCRF). The eCRF was developed using 
the open-source REDCap Data Management Platform 
hosted at the Nîmes University Hospital [24].

Data monitoring was handled by the coordinating 
center (Nîmes University Hospital, France). Outstanding 
queries regarding the completion of the CRF were under-
taken with each participating center where necessary to 
ensure accuracy of data.

Statistical analysis
Descriptive statistics of the primary outcome were 
reported using mean, standard deviation, median, and 
interquartile range (25th–75th percentile) for continu-
ous variables. For categorical variables, frequencies and 
proportions were given. Two secondary outcomes were 
explored separately: ICU mortality and clinical success. 
We used multivariate regression models involving eight 
covariates: admission type (medical or surgery), age, gen-
der, body mass index (BMI, kg m−2), SOFA score on the 
day of AG initiation, creatinine plasma concentration 
(µmol L−1) on the day of AG initiation, bacteremia, and 
directed or empirical antibiotic treatment. A 9th variable 
related to AG treatment was considered. We constructed 
a model for each way we considered AG: the mg/kg dose 
using either the total body weight (TBW), the ideal body 
weight (IBW, thanks to the Lorentz’s formula), or the 
adjusted body weight [ABW: given by the TBW when 
the BMI was below 30  kg m−2 and when the BMI was 
over 30  kg m−2 calculated according to the following 
formula: IBW + 0.4 x (TBW-IBW)], the peak concentra-
tion (mg L−1), the attainment of a peak concentration 
between 60 and 80 mg L−1 for amikacin, and between 20 
and 30  mg L−1 for gentamicin. Because practices could 
differ between hospitals, we needed a model accounting 
for correlation within centers. For this purpose, we chose 
a GEE (generalized estimating equations) model with an 
exchangeable correlation structure. This method allows 
parameters of generalized linear model to be estimated 
in clustered data and returns a marginal model that fits 
in with our purpose (i.e., estimating average response in 
overall population) [25, 26]. 95% Confidence intervals 
(CI) for odds ratio (OR) were given in the univariate and 

the multivariate analysis based on the robust standard 
error provided by the Huber–White standard error and 
assuming the normal distribution of the regression coef-
ficients [27]. To test the significance of OR, we performed 
Wald tests. All models were built in the whole popula-
tion. A P value of 0.05 was considered to indicate statis-
tical significance. All statistical analyses were performed 
using R software (version 3.6.0) [28].

Results
From May 2016 to August 2017, 971 patients were 
enrolled from 59 ICUs worldwide (Additional file 1: Fig-
ure S1). Of the 971 patients initially included in the study, 
40 were excluded because of missing data leading to 931 
studied patients.

Participating site data
Most of the ICUs were from university hospitals (38, 
64%), 3 were medical ICUs, 14 were surgical, and 42 were 
mixed-ICUs. Description of the participating sites and 
their local protocols regarding AG therapy are described 
in Additional file 2: Table S1.

Demographic data
Patient demographic data at inclusion are presented in 
Table 1. The source of sepsis was pulmonary (405, 44%), 
abdominal (233, 25%), urinary (126, 14%) infection, or 
bacteremia (158, 17.0%). The most common microor-
ganisms for which AG were prescribed are presented in 
Table  2. Among patients with microbiological samples 
drawn (n = 826, 89%), 511 patients had positive cul-
tures. MICs for all administered antibiotics were avail-
able in 135 patients with 127 (94%) receiving adequate 

Table 1  Patients’ characteristics at baseline

For continuous variables mean ± standard deviation or median [interquartile 
range] are given. For categorical variables, numbers (%) are given

TBW: total body weight; BMI: body mass index; ICU: intensive-care medicine

Variables n Value

Age (years) 929 63 ± 15

Female 928 364 (39%)

Weight (TBW, kg) 922 77 ± 20

Height (cm) 898 169 ± 9.5

BMI (kg m−2) 897 27 ± 6.8

Medical/surgical admission 929 512 (55%)/417 (44.8%)

SAPS II 792 51 [38;65]

APACHE 109 22 [15;28]

SOFA 921 8 [6;11]

Creatinine level (µmol L−1) 930 133 ± 120

Albumin (g L−1) 407 27 ± 7

Protein (g L−1) 773 55.6 ± 12.3
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antimicrobial therapy. In 22 (17%) patients, AG enabled 
to broaden spectrum activity.

Primary outcome
Among the 931 included patients, 14 (1%) received 
tobramycin, 303 (33%) received gentamicin, and 614 
(66%) received amikacin. Practices of AG administration 
are described in Table 3. AG were prescribed empirically 
in 761 (82%) patients and as a combination therapy in 
914 (98%) patients, mostly in association with ß-lactam 
antibiotics (890, 96%). The median duration of therapy 
was 2 ((IQR 1–3) days, the median number of AG doses 
per course was 2 ((IQR 1–2), and the median dosing 
interval was 26 (IQR 23.5–43.5) h. 483 patients (52%) 
received a second dose. TDM of Cmax and Cmin con-
centrations was performed in 437 (47%) and 501 (57%) 
patients for the first dose (Figs.  1 and 2). After the first 
AG dose, 295 (68%) patients achieved the PK/PD target 
of Cmax/MIC > 8 considering an MIC of 8 mg L−1 for ami-
kacin ((241/341, 71%), and 2 for gentamicin (53/90, 59%) 
and tobramycin (1/6, 17%), whereas 353 (71%) patients 
had concentrations above Cmin recommended thresholds. 
For 128 patients, an MIC was available for at least one 
pathogen, with a median of 2 [1; 4] mg L−1. Among these 
128 patients, 76 had both MIC and Cmax available, with 
a median Cmax/MIC ratio of 25.7 [16.7; 40.3] and for 65 
patients Cmax/MIC ratio was above 8.

Table 2  Microbiological data

Results are given as numbers and percentages

AG: aminoglycoside; MIC: minimal inhibitory concentration; R: resistant; I: 
intermediate; S: susceptible

Variables n

Microbiological sample (n = 930) 826 (89%)

Number of pathogens identified (n = 511)

 1 317 (62%)

 2 121 (24%)

 3 and more 73 (14%)

Pathogens (n = 798)

 Gram-positive bacteria 255 (32%)

  Staphylococcus/S. aureus 120 (15%)/84 (10.5%)

  Streptococci 64 (8%)

  Enterococci 67 (8.4%)

 Gram-negative bacteria 453 (58%)

  Escherichia coli 166 (21%)

  Klebsiella spp. 70 (8.8%)

  Pseudomonas aeruginosa 73 (9%)

  Enterobacter spp. 41 (5%)

  Acinetobacter baumannii 9 (1%)

  Stenotrophomonas maltophila 5 (0.6%)

 Anaerobes bacteria 24 (3%)

 Fungi/Candida 33 (4%)/31 (3.9%)

Susceptibility testing (n = 322)

 AG susceptibility categories (S/I/R) 254 (79%)/14 (4%)/54 (17%)

Table 3  Aminoglycoside therapy characteristics

For continuous variables, mean ± standard deviation or median [interquartile range] are given. For categorical variables, numbers (%) are given. The ABW was 
calculated as follow: IBW + 0.4 x (TBW-IBW). The Cmax attainment is defined as a Cmax above 20 mg L−1 for gentamicin and tobramycin or above 60 mg L−1 for amikacin. 
The Cmin thresholds considered are 0.5 mg L−1 for gentamicin and tobramycin and 2.5 mg L−1 for amikacin

Cmax: maximal concentration; Cmin: minimal concentration; ABW: adjusted body weight, TBW: total body weight; IBW: ideal body weight

All (n = 931) Amikacin (n = 614) Gentamicin (n = 303) Tobramycin (n = 14)

Duration of therapy (days) 2 [1; 3] 2 [1; 3] 2 [1; 3] 2 [2; 4.75]

Number of injections 2 [1; 2] 2 [1; 2] 2 [1; 2] 2 [1; 4]

Second dose administered 483 (52%) 326 (53%) 164 (53%) 13 (93%)

First dose in mg – 2000 [1500; 2250] 440 [320; 560] 500 [381; 555]

First dose in mg per kg of TBW – 26 [21.9; 29.4] 5.6 [4.3; 7.5] 6 [5.1; 7.1]

First dose in mg per kg of ABW – 267.8 [23.8; 29.4] 6.2 [4.8; 7.8] 6.1[5.4; 7.1]

Infusion duration (min) 30 [30; 30] 30 [30; 30] 30 [30; 30] 30 [30; 30]

Cmax after first dose 437/931 (47%) 341/614 (56%) 90/303 (30%) 6/14 (43%)

Cmax value (mg L−1) – 73 [57; 90] 21 [17; 25] 19 [14; 26]

Delay end of infusion and Cmax sampling (min) 30 [30; 50] 30 [30; 50] 30 [30; 44] 30 [26; 37]

Targeted Cmax attainment after first dose 295/437 (68%) 241/341 (71%) 53/90 (59%) 1/6 (17%)

Cmin after first dose 501/880 (57%) 347/577 (60%) 145/289 (50%) 6/14 (43%)

Cmin above threshold 353/498 (71%) 230/347 (66%) 118/145 (81%) 5/6 (83%)

Time from first dose to Cmin (h) 22.9 [20.4; 24] 22.6 [20.5; 24] 23.4 [21.5; 24.1] 24.4 [23.6; 26.1]

Interval after first dose (h) 26 [23; 43] 26.7 [23; 45] 24.8 [23; 34] 24.5 [23; 29]
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Secondary outcomes
Clinical response
Antimicrobial therapy was considered successful in 
621/843 (74%) patients. Relapse and superinfection 
were observed in 42/843 (5%) and 71/843 (8%) patients, 
respectively, whereas in 17 patients, emergence of multi-
drug resistant (MDR) pathogens was noted.

Renal function on AG therapy
Concomitantly to AG, 361 (39%) patients received at least 
one nephrotoxic agent among non-steroid anti-inflam-
matory drug, iodine, angiotensin-converting enzyme, 
and vancomycin. On the last day of therapy, AKIN score 
was ≥ 1 in 108/481 (22%) analysable patients.

Patient outcome
The ICU mortality rates were 27%, respectively. The 
median ICU and hospital LOS were 11 (IQR 5–25) and 
24 (IQR 11–43) days, respectively.

Independent factors associated with ICU mortal-
ity and clinical success are presented in Tables  4 and 5. 
SOFA score was independently associated with the risk 
of clinical failure and death. Additionally, patient age was 
an independent risk factor associated with ICU mor-
tality, whereas Cmax attainment was not independently 
associated with clinical success and ICU mortality. The 

Fig. 1  Distribution of amikacin and gentamicin Cmax (maximal concentration) plasma concentrations
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Fig. 2  Observed amikacin and gentamicin Cmax (maximal 
concentration) plasma concentrations according to clinical success or 
failure. The lower and upper hinges correspond to the first and third 
quartiles (the 25th and 75th percentiles). The upper whisker extends 
from the hinge to the largest value no further than 1.5 times the 
IQR from the hinge (where IQR is the interquartile range, or distance 
between the first and third quartiles). The lower whisker extends from 
the hinge to the smallest value at most 1.5 times the IQR of the hinge. 
Data beyond the end of the whiskers are plotted individually
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different other models tested did not find a significant 
difference in the association between clinical outcomes 
and the variables of interest related to AG.

Discussion
Main findings
Short course of high doses of AG is the dosing regimen 
extensively used at an international level with amikacin 
being the most commonly AG prescribed in this large 

cohort of septic patients. AG TDM is current practice 
for most of participating ICUs, although ICU patients 
for whom this monitoring is recommended vary between 
local guidelines. Finally, in the subgroup of patients for 
whom TDM was performed, we could find no correla-
tion between Cmax target attainment and ICU mortality 
or clinical success (Fig. 2).

Relationship to previous papers
Although AG have been prescribed for decades, admin-
istering optimal dosing regimens in critically ill patients 
with sepsis or septic shock remain challenging due to 
several pathophysiological changes affecting drug PK 
and due to the emergence of resistance. Additionally, 
nephrotoxicity has been one of the reasons limiting AG 
use in critically ill patients with frequent compromised 
renal function. Aminoglycoside dose optimization can 
be defined as the dose having the highest likelihood of a 
good outcome and the lowest likelihood of toxicity. Con-
sequently, doses have to be given once daily and should 
be stopped as early as possible [29]. Extended interval of 
high doses of AG has been suggested by several authors 
to maximize efficacy while limiting the probability of 
nephrotoxicity [17, 18]. The findings of the present study 
confirm that, in critically ill patients receiving AG ther-
apy, this dosing regimen is widely used. Still, this higher 
dosing regimen is considered as an “off-label” dosing 
regimen in most countries. Rybak et  al. have previously 
reported low prevalence of nephrotoxicity (1.2%) when 
short courses (3 days) of AG were administered [30]. In 
the present study, more than 20% of patients had persis-
tent AKI at the end of treatment. Similar findings have 
been reported by Duszynska et  al. in septic patients 
reporting that 24% of patients developed AKI during 
amikacin therapy [31]. Finally, the rate of nephrotoxicity 
attributable to AG therapy is difficult to evaluate as sev-
eral confounders may influence the persistence of AKI 
in septic patients. Sepsis-related AKI ranges from 20 to 
50%, independently of AG use [32].

Amikacin is the AG most being prescribed in this large 
cohort of critically ill patients. However, clinical prac-
tices widely vary among countries and local epidemiol-
ogy. Indeed, given that the vast majority of ICUs were 
located in France, it may explain the use of amikacin in 
two thirds of patients in this cohort as amikacin is com-
monly prescribed in this country. Even though the num-
ber of patients receiving gentamicin was smaller in our 
cohort, it is interesting to note that the target attainment 
rate is lower (59%) than for amikacin (71%). The median 
dose of 6 mg kg−1 appears insufficient to achieve PK/PD 
target. Indeed, an increased volume of distribution (0.41 
L kg−1) of gentamicin has been observed in sepsis lead-
ing to gentamicin underexposure and increasing risk of 

Table 4  Multivariate analysis of clinical success for all AG 
considering targeted Cmax (maximal concentration) attainment

Italic values indicates P values <0.05

OR were calculated with a GEE model assuming an exchangeable correlation 
structure. P values result of a Wald test. The regression was based on 360 
patients. The targeted Cmax was defined as a serum level above 60 mg L−1 for 
amikacin and 20 mg L−1 for gentamicin and tobramycin

OR: odds ratio; CI: confidence interval, BMI: body mass index, GEE: generalized 
estimating equations

Clinical success

OR (95% CI) P value

Medical admission 1.08 [0.67; 1.74] 0.74

Male 0.60 [0.32; 1.12] 0.11

Age (years) 1.00 [0.99; 1.02] 0.67

BMI (kg m−2) 1.01 [0.97; 1.04] 0.91

SOFA score 0.85 [0.79; 0.91]  < 0.0001

Serum creatinine (µmoL L−1) 1.00 [0.99; 1.0] 0.52

Empirical treatment 0.71 [0.33; 1.53] 0.39

Bacteremia 0.87 [0.49; 1.55] 0.64

Cmax attainment 1.24 [0.79; 1.94] 0.35

Table 5  Multivariate analysis of ICU mortality for all AG 
considering targeted Cmax (maximal concentration) attainment

Italic values indicates P values <0.05

OR were calculated with a GEE model assuming an exchangeable correlation 
structure. P values result of a Wald test. The regression was based on 393 
patients. The targeted Cmax was defined as a serum level above 60 mg L−1 for 
amikacin and 20 mg L−1 for gentamicin and tobramycin

OR: odds ratio, CI: confidence interval, BMI: body mass index, GEE: generalized 
estimating equations

ICU mortality

OR (95% CI) P value

Medical admission 1.28 [0.75; 2.17] 0.36

Male 1.08 [0.73; 1.60] 0.69

Age (years) 1.03 [1.01; 1.04] 0.001

BMI (kg m−2) 1.00 [0.97; 1.04] 0.8

SOFA score 1.18 [1.10; 1.26]  < 0.0001

Serum creatinine (µmoL L−1) 0.99 [0.99; 1.01] 0.32

Empirical treatment 0.81 [0.45; 1.48] 0.5

Bacteremia 0.62 [0.31; 1.25] 0.18

Cmax attainment 0.78 [0.46; 1.31] 0.34
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therapeutic failure [33]. Higher gentamicin loading doses 
should be given to critically ill patients as reported pre-
viously [34]. Similarly, in a previous single centre study, 
we showed that a gentamicin dosing regimen of 8  mg 
kg−1 of total body weight failed to reach the PK/PD tar-
get of at least 8 times the MIC in a significant proportion 
of critically ill patients considering an MIC of 2 mg L−1.
[18] Considering actual MIC, the proportion of patients 
experiencing underdosing could be lower as most of the 
identified pathogens in this study had an MIC < 2 mg L−1. 
Nevertheless, when AG are used as empirical therapy at 
the early phase of septic shock where bacterial inoculum 
is supposed to be high and antibiotic appropriateness is 
essential, the worst-case scenario (i.e., covering the least 
susceptible pathogen) should be considered to choose 
optimal dosing regimen to ensure therapeutic efficacy.

AG TDM has been advocated to optimize AG drug 
dosing in the setting of ICU patients targeting a Cmax/
MIC ratio of at least 8 to maximize the effect of treat-
ment [35, 36]. In a previous study, Duszynska et  al. 
showed that among septic patients, 83% required dose 
and/or interval adjustment during amikacin therapy [31]. 
Conversely to this study and others showing good clini-
cal outcomes correlated to this PK/PD target, we failed to 
demonstrate any correlation between Cmax target attain-
ment and clinical outcome in the present study (Fig.  2) 
[37]. One potential explanation could be the wide use of 
combination therapy with beta lactams to treat severe 
infections. The impact of non-target attainment for AG 
could be minimized by the administration of appropriate 
combined antibiotic questioning the need for adding AG 
in this setting. However, it is noteworthy that AG were 
the only antibiotics effective against the causative agent 
for 22 patients. Also, recent guidelines on the treatment 
of sepsis have recommended using combination therapy, 
especially in patients with septic shock [38, 39]. Con-
sequently, it is important to optimize AG dosing as if 
they were the only effective agent being used. Unfortu-
nately, the small size of this cohort of patients for whom 
AG enabled to broaden spectrum activity precluded to 
identify any correlation between target attainment and 
clinical outcome. Another important finding is the sig-
nificant proportion (67%) of patients that still did not 
achieve PK/PD targets in our cohort, even though high 
doses of AG were mostly used. Previously, some authors 
aimed to identify the main determinants of the first ami-
kacin peak in critically ill patients [40]. Based on their 
findings, Boidin et al. supported the use of an amikacin 
dose ≥ 37.8 mg kg−1 of lean body weight (LBW) to opti-
mize the attainment of Cmax  ≥ 80 mg L−1 after the first 
dose in critically ill patients [40]. As interindividual Cmax 
variability has been observed in several previous studies, 
it is unlikely that the “one dose fits all” strategy would be 

the optimal strategy in this population. Conversely, TDM 
should be considered even when short courses of AG are 
administered. TDM has been shown to decrease hospital 
stay, and the incidence of nephrotoxicity, mortality, and 
costs [41]. However, TDM alone may not be sufficient to 
determine the appropriate dosing to be given. Individu-
alized approaches using Bayesian forecasting and TDM 
algorithm should be implemented in daily practice to 
take into account the different factors affecting AG PK 
in septic patients [41, 42]. These approaches also offer 
the advantage to estimate area under the curve (AUC) in 
clinical practice with limited PK sampling. Estimates of 
Cmax can vary substantially based on the duration of the 
infusion and the timing of Cmax sampling, whereas AUC 
appears more reliable and stable measure. Additionally, 
AUC better reflects cumulative exposure over the entire 
dosing period and may be less sensitive to differences in 
concentration sampling times. Thus, AUC-guided TDM 
has been advocated as a more reliable indicator of bacte-
rial killing and clinical efficacy for AG [43].

Study limitations
Several limitations of the AMINO III study needs to be 
acknowledged.

First, the distribution of the participating ICUs may not 
reflect the daily practice of all ICUs for each country as in 
some countries a small number of patients were included. 
Second, PK/PD outcome assessment was possible in 
less than half of the included patients. As a result, cor-
relations with patient and site characteristics factors may 
have been underestimated. However, these findings high-
light that, despite national or local recommendations, 
aminoglycoside TDM is not systematically performed 
in septic patients. Third, we only considered AG use in 
septic patients in the present study precluding to extrap-
olate these findings to other indications of AG therapy. 
Fourth, assessment of clinical success was not assessed 
by an independent committee; however, it was clearly 
predefined and standardized for improving data quality. 
Finally, ototoxicity was not assessed due to the observa-
tional design of the present study.

Conclusion
Short courses of high AG doses are mainly used in ICU 
patients with septic shock, although wide variability 
in AG usage is reported. In this cohort, we could show 
no correlation between Cmax target attainment and ICU 
mortality or clinical success. Efforts to optimize the first 
AG dose and to perform TDM are still needed.
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