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Abstract 

 

 This paper is a survey of our recent results concerning frictional unilateral contact 

problems. Mathematical and numerical results obtained over the past few years for both 

static and quasistatic problems are summarized. Undergoing developments concerning 

viscoelastic quasistatic problems are outlined. 

 

 

1. INTRODUCTION 

 As most authors in this field, we focused to begin with on the following static 

formulation of friction expressed in terms of the displacements and not velocities : no 

displacement occurs if the tangential force does not reach the sliding limit, whereas a 

natural velocity formulation of friction would imply in such a case that the velocity is zero 

and therefore that the displacement can be non zero. Such a static formulation does not have 

a real mechanical meaning except for very specific cases such as for example when the 

loading is proportional and monotone (i.e. F(t)=(t)F0 with  monotone). Nevertheless, 

most of the mathematical results and of the first numerical methods have been developped 

in terms of this static formulation. In order to avoid the lack of regularity of the contact 

forces, a regularized problem corresponding to a nonlocal friction law was introduced by 

Duvaut [1]. In section 2 we comment on the existence and uniqueness results obtained for 

this problem under the condition that the friction coefficient is small (Cocu [2]). Some 

regularity results have also been established for this problem (see Cocu-Radoslovescu [3]). 

Rather than regularizing the friction by a nonlocal law, an alternative was to exploit the 
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regularization obtained through the finite element discretization. In Licht et al. [4], 

existence and conditional uniqueness (small friction) of the solution can be found for the 

discretized problem with P1 elements, and the convergence of the algorithm used for the 

numerical computation is proved. Various numerical methods used in the group for 

Mechanics and Modelling of Contact in the LMA are presented. 

 Section 3 concerns recent mathematical and numerical results on evolution quasistatic 

problems in the presence of general loadings. Friction is now formulated in terms of 

velocity. A difficulty arises when writing the variational formulation which has to deal 

simultaneously with a displacement condition (unilateral condition) and a velocity 

relationship (friction). If a displacement or a velocity formulation is chosen, one of the two 

conditions has to be approximated. This difficulty is overcome by maintaining both 

variables, displacement and velocity and thus setting the problem as two coupled variational 

inequalities (see Cocu et al. [5]). One is an implicit variational inequality dealing essentially 

with friction and the other one is a variational inequality characterizing the unilateral 

condition ; they are strongly coupled. An incremental formulation ensues and, if the friction 

is sufficiently small, uniqueness of the solution of the incremental problem is established 

and appropriate estimates are given. Existence of a solution to the quasistatic problem is 

then obtained through the incremental solution. Two numerical methods are derived: one of 

them is written in terms of the velocities (increments of displacement), the other one is 

written in terms of the displacements. In the incremental formulation, a sequence of 

problems, very similar to the static one (but including extra terms), has to be solved : the 

numerical methods previously developed are then very useful. Finally an extension to 

elastoviscoplastic and viscoelastic materials is presented; existence and uniqueness results 

for a quasistatic contact problem with given friction are established. 

 

 

2. ELASTOSTATIC CONTACT PROBLEMS 

 

2.1. Unilateral contact with nonlocal friction 

 We consider an elastic body occupying a C1-smooth domain  of Rd, d = 2, 3, with 

boundary  =  1   2   3  where 1  2  and 3 are open and disjoint parts of  The 

body is fixed along 1 with mes(1) > 0 and a force density  is applied on  2  . The 

solid is in contact with a rigid fixed support on 3, the displacements on this part of the 

boundary being restricted by a unilateral condition of non penetration into the support 

(Signorini's conditions), and submitted to nonlocal friction when contact occurs. On  a 

volume force density 1 is applied. We suppose that we may neglect the inertial terms, that 

 belongs to (L2())d and that  belongs to (L(2))d. We denote by  = (ij) the stress 

tensor, e  = (eij) the strain tensor, u = (ui) the displacement field and E = (aijkl) the elasticity 

tensor of the material with the usual properties of symmetry and ellipticity. On 3 we use 
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the classical notations for the normal and tangential components of the displacement and 

stress vectors. 

 

Problem P1 : Find  u  such that  

 div  = −  in  , (2.1) 

  = E e  in   () 

 e = grads u  in  () 

 u = 0  on , (2.4) 

 n = 2  on 2, (2.5) 

 uN      N  ²  0, uN N = 0  on  () 

 

T   RN     and 
T   RN    uT = 0         

T =  RN       0   uT = −T ,

 
 
     on   () 

 

where    is the friction coefficient and  RN  is a regularization of the normal contact force  

see Duvaut [1] or Demkowicz-Oden [6]. 

 In order to give a variational formulation we shall adopt the following notations: 

 V = { v  (H1())d ; v = 0  a.e. on }, (2.8) 

 || ||  shall denote the norm induced by  ( , ) , the scalar product on V, 

 K = { v  V; vN ² 0  a.e. on  }, (2.9) 

         

a(u, v) = ij(u)eij(v)




, (2.10) 

         

j(u,v) =  RN(u)

3

  vT

, (2.11) 

         

(f, v) = 1v


 + 2v
2


. (2.12) 

 We suppose that  aijkl  L()  1 ² i,j,k,l ² d,   L() with     a.e. on   and 

that  R:
H

-1/2
3( )→ L

2
3( )

 is a compact linear operator, where (see [5])  
H

− 1/2
3( )

  is 

the dual space of 

 H
1/2

(3 )=

w
 3

;w H
1/2

() , w = 0  on  1

 
 
 

 
 
 . 

 The following properties on a(.,.) and j(.,.) hold (see e.g. [7], [2]) : 

 

 m  0  such that    u V   a ( u, u)  m u
2

, (2.13) 

 M  0 such that   u  V  v  V  a(u,v)  M u  v  , (2.14) 

 

C  0      (u1, u2,v1,v2) V4  

              j(u1, v1) − j(u1, v2 ) − j(u2,v1) + j(u2, v2 )  ˆ  C u1 − u2 v1 − v2 ,
 (2.15) 

where  
ˆ  = 

L


(3 ) . 

 We may now present the following weak formulation of problem P1. 
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Problem P2 : Find  u  K such that  

     a(u,v−u)+ j(u,v)− j(u,u)  (f,v− u)    v K. (2.16) 

 

 The proof of the formal equivalence,  i.e. if  u  is sufficiently regular, is straightforward 

(see e.g. Duvaut - Lions[7] or Demkowicz - Oden[6]). 

 The main mathematical difficulty when considering Coulomb's friction law arises from 

the fact that, in the previous functional framework, the contact forces belong to  
H

− 1/2
3( )

 

, so that the compactness condition, which is used in the general theory of variational 

methods, does not hold. The nonlocal friction law (2.7) enables us to overcome this 

difficulty; some physical and theoretical arguments in favour of nonlocal friction laws can 

be found in Oden-Pires [8]. 

 The following result on this nonlocal formulation of a static frictional contact problem 

holds (see e.g.Cocu [2]). 

 

Theorem 2.1. The problem P2 has at least one solution. If  satisfies the inequality 

 ̂  m/ C  where m and C have been defined in (2.13) and (2.15), then problem P2 has a 

unique  solution. 

 

 The solution of P2 is also locally regular. The proof of the following regularity result is 

based on the method of translation (see Cocu - Radoslovescu [3]). 

 

Theorem 2.2. If  is C3- smooth in all x   aijkl  C1(  ) 1 ² i,j,k,l ² d,   C1( 3 ) and 

the regularized stress RN(u)  C1( 3) with RN(u) ² 0, then for every open set U such 

that U    3   we have  u  [H
2

(U) ]d. 

 

 This regularity property enables us to consider pointwise unilateral contact conditions 

on   

 

2.2. Regularization due to space discretization 

 Here the terms due to friction are not regularized by a nonlocal friction law as was the 

case in the preceeding section. The variational  formulation of the problem is as follows. 

 

Problem D1 : Find uK such that 

 
a(u, v − u) −  N (u), vT − uT  (f,v − u) v K

, (2.17) 

 

where  ., . denotes the duality pairing on H
1/2

(3)  H
−1/2

(3) . 
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 Not much can be said about problem D1 from a mathematical point of view without 

adding extra assumptions, however if we discretize problem D1 using a finite element 

method, the discretized problem can be shown to possess interesting properties ( in fact the 

discretization has a similar regularizing effect on the friction terms as the nonlocal law). 

 

 Let us introduce the following notations: 

 - Th
is a regular triangulation of the domain  and 

 = T

TTh
, 

 - 

X
h

= w C
0
( ) ; w

TTh P1

 
 
 

 
 
  where P1 is the set of polynomials of degree 

1, 

 - 
V

h
= v (X

h
)
d

; v = 0 on 1 
, 

 - 
K

h
= v V

h
; vN  0 on 3 

, 

 -  ̃X 
h

 is the space of traces of X
h

 on 3, 

 - 
˜ V 

h
 is the space of traces of V

h
 on 3, 

 - 
h

 is the restriction to 3 of the interpolation operator associated with X
h

. Note 

that 
h

 possesses the two following properties which are due to the use of P1 finite 

elements: 

 (a)  
h

(v) is positive for all positive continuous v on 3, 

 (b) 
c(h) 

h
( v

h
)

L
2
(3)

 c(h) v
h

v
h

 ˜ V 
h

. 

 The following problem is then a discrete formulation of problem D1 in V
h

. 

 

Problem D2 : Find u
h

K
h

such that v K
h

 

 
a(u

h
,v − u

h
) − FN

h
(u

h
),

h
( vT − uT

h
)  (f, v − u

h
)
. (2.18) 

 

 The extra projection 
h

( v )  shall prove to be very constructive for writing the finite 

dimensional problem presented in the next section. In order to simplify the notations we 

have supposed here that the friction coefficient  is constant, the general case can be 

obtained by setting 
h

 instead of . 

 Existence and uniqueness results are obtained by expressing problem D2 as a fixed 

point problem on the sliding limit g. First if B is the set of positive linear mappings on  ̃X 
h

, 

for all gB the following problem, 

 

Problem D3 : 
Find ug

h
K

h
such that v K

h

 

 
a(ug

h
,v − ug

h
) + g,

h
( vT − ugT

h
)  (f,v − ug

h
)

 (2.19) 
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has a unique solution. This is because the use of P1 finite elements implies that the mapping 

v → g, 
h

( vT )
 is convex and therefore problem D3 is a classical minimization problem 

of a convex functional with quadratic growth. 

 

 Let us now define the mapping T by 
T(g) = − FN

h
(ug

h
) for g B

. 

 T(g) is a positive linear mapping on  ̃X 
h

 and the existence of a fixed point of T is 

equivalent to the existence of a solution uh of problem D2. T can fairly easily be shown to 

possess the following two properties : 

 (i)   c(h), a positive constant depending on h, such that g1,g2B, 

 

         

T(g2) − T(g1)


  c(h) g2 − g1 

where g


=
vh˜ V h
Sup

g,vh

vh

H
1/2

(3)  

 

 (ii)   M >0 such that 
T(g)   M g  B

. 

 

Theorem 2.3. There exists a solution to problem D2 and this solution is unique if 
 

1

c(h) . 

  

 The existence of a solution to problem D2 is obtained by applying Brouwer's theorem 

to the mapping T which is continuous because of (i) on the convex compact H, intersection 

of B with the ball of centre 0 and radius M ( T(H)  H because of (ii) ). 

 The uniqueness of the  solution to problem D2 is obtained, under the condition that 

 
1

c(h) , by applying Banach's theorem to the mapping T which is then a contraction 

because of (i) and the fixed point of T is obtained as the limit of the fixed point iterates 

gn+1=T(gn) with a given g0. 

 

2.3. Numerical treatment 

 The previous results are of course constructive and enable us to deduce a converging 

algorithm for the computation of the solution of (2.18). Using the fixed point method on the 

sliding limit g to determine the solution 
˜ g =   F

N , we have to solve a sequence of 

variational inequalities given by (2.19). The properties of the bilinear form a imply that 

these problems are equivalent to minimizations of a non-differentiable functional under the 

constraint induced by the non-penetration condition. The finite dimensional problem is set 

as follows. 
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Problem N1 : For a given G, find 

u  Kh = K
j

j=1

M


 such that : 

    J(u)  J(v)      v  Kh  (2.20) 

 

with  
J(v) =

1

2
v

T
Av − F

T
v + G

T
 v

T
, 

where :  - Aij = a(wi,wj), 

     - Fi = (f,wi), 

     - 

Gi = g wi dx

C



, 

     - wi is a basis function of the finite dimensional set associated with the finite 

element discretization, 

    - if Ic is the set of the subscripts related to a normal component of a displacement of 

a contact node, Kj is defined by : 

 

K
j

=
  R  if  j  Ic

 R- if  j  Ic

 
 
 

 

 

 A is a nn  symmetric and positive definite. matrix, v and F are two n-dimensional 

vectors and vT and G are two m-dimensional vectors, where n is the number of degrees of 

freedom (twice the number of nodes) and m is the number of tangential components of the 

contact displacement (number of contact nodes). 

 For solving problem N1, various numerical methods can be used (see Raous et al [9], 

Lebon-Raous[10], Barbarin-Raous [11]): 

- Successive Over-Relaxation with Projection, 

- Aitken acceleration of Gauss-Seidel, 

- Projected Conjugate Gradient with preconditioning. 

 

Remark . Other numerical methods have been developed in our group "Mechanics and 

Modelling of Contact" at the LMA. They are based on other formulations of the original 

problem : 

- mathematical programmming method (Lemke method) based on complementary 

formulation, 

- Lagrangian and augmented Lagrangian formulations and associated solvers. 

 Some of these methods are compared in another paper of this special issue (Chabrand 

et al [12]). 
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3. QUASISTATIC CONTACT PROBLEMS 

 

3.1. A unilateral contact problem with a nonlocal friction law in elasticity 

 We still consider a unilateral contact problem with a nonlocal friction law as in 2.1 but 

now the loading is supposed to be time dependent and the evolution to be quasistatic. For 

such evolution problems we can no longer adopt the static formulation of friction 

considered in section 2 so that the velocity field is present in the friction law. Two coupled 

variational inequalities constitute the variational formulation of this quasistatic problem. In 

this section we shall outline the proof of the existence of a solution to this quasivariational 

problem that can be found in [5], [13]. 

 We use the same notations as in section 2.1. We suppose that the given forces 1 and 

2  are sufficiently smooth in space and time, i.e. 1 W
1,2

(0,T;(L
2

())
d

)  and 

2 W
1,2

(0,T;(L
2

(2 ))
d

)  (see e.g.Cazenave - Haraux [14]) and that we may neglect the 

inertial terms. The quasistatic problem can be set as follows. 

 

Problem Q1 : Find u such that for all t[0,T]  equations  (2.1) - (2.3)  and  conditions  (2.4) 

- (2.6) hold together with the initial condition  

 u(0) = u0        in   , (3.1) 

 and with the following friction conditions for all t[0,T] 

        

T   RN     and   
if  T   RN    Ý u T = 0            on  3 ,               

if  T =  RN       0  Ý u T = − T     on 3 .

 
 
  (3.2) 

 

 We denote by W the space W
1,2

(0,T;V) , where V is defined by (2.8), and by 
 .  W   

the norm on W and ((.,.)) the scalar product on L2(0,T;V). We suppose that 

C(0,T;L_(3)), that t[0,T]  (t)³0  a.e. on 3 and that the initial condition u0 belongs 

to K and satisfies the following compatibility condition : 

 

 a(u0,w-u0) + j(u0,w-u0) ³ (f(0),w-u0)       wK. (3.3) 

 

 We adopt the following weak formulation of problem Q1 (see [5], [13]). 

 

Problem Q2 : Find uW1,2(0,T;V) such that u(0)=u0 and for almost all t[0,T], u(t)K and 

satisfies 

   a(u( t),v− Ý u (t)) + j(u( t),v)− j(u( t), Ý u (t))  ( f (t),v − Ý u (t) ) 

    +N(u( t)), vN − Ý u N (t)    vV (3.4) 

 
    N (u(t)),zN − uN(t)  0   z K

. (3.5) 

 

 If a solution u of problem Q2 is sufficiently regular it  also solves problem Q1. 
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 The mapping j(.,.) involved in this variational formulation has the following property:  

 

  

C  0      (u1, u2,v1,v2) V4  

              j(u1, v1) − j(u1, v2 ) − j(u2,v1) + j(u2, v2 )   C u1 − u2 v1 − v2   

 

with 

 = Sup
t 0,T 

(t)
L


(3 )  . 

 An incremental formulation is obtained by operating a time discretization of problem 

Q2, taking nN* and setting Æt = T/n , ti = i.t  and fi = f(ti)  for i = 0,...,n. We use an 

implicit scheme and obtain the following sequence (Qi
n

 )i=0,...,n-1 of variational inequalities 

defined for a given u0K by  

 

Problem Qi
n

 : Find  u
i+1

K such  that   

a(u i+1,v −
ui+1 − u i

t
) + j(ui+1, v) − j(ui+1,

u i+1 − ui

t
)  (f i+1,v −

u i+1 − u i

t
)

 + N(u
i+1

), vN −
uN

i+1 − uN
i

t
  v V, (3.6)

N(ui+1),zN − uN
i+1   0    z K. (3.7) 

  

 

 It can be shown by using its strong formulaton (see [5]) that problem (Qi
n

 ) is  equivalent to 

the following problem: 

 

Problem Si
n

 :  Find  u
i+1

K such  that  

 a(u
i+1

,w − u
i+1

) + j(u
i+1

,w − u
i
) − j(u

i+1
, u

i+1
− u

i
)  (f

i+1
,w − u

i+1
)   w K . 

 

 Inequalities such as S i
n

 , for a given i, are of the same type as (2.16) and thus possess a 

unique solution if the friction coefficient is sufficiently small. To be more precise, the 

friction coefficient must satisfy the following inequality   m / C where m and C have 

been defined in (2.13) and (2.15) . We shall from now on suppose that the friction 

coefficient is small enough to ensure that the above inequality is true. We suppose that u0 

satisfies the same condition (3.3) that we have imposed on u0 , i.e. that u0 satisfies : 

 

  a(u
0
, w − u

0
) + j(u

0
, w − u

0
)  (f

0
,w − u

0
)            w K . (3.8) 

 

 The following bounds for the incremental solution ui and also for the difference 

Æui=ui+1-ui can easily be obtained if  C  m : 
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u
i


f i

m −  C
           i = 0,...,n   

, (3.9) 

  

u
i


C' f i

m −  C
           i = 0,...,n −1  

. (3.10) 

 

 We define, for all nN*, a function fn: [0,T]V  by  fn(0) = f(0)  and fn(t) = f(ti+1) for 

t]ti,ti+1] where ti = i.Æt  and  Æt = T/n . 

 We then consider inequalities S i
n

 with fi = f(ti) for i = 0,...,n and we define the 

function unL2(0,T;V) by un(0) = u0 = u0 where u0K is the initial condition of problem 

Q2 and for t]ti,ti+1] by un(t) = ui+1 solution of S i
n

  i = 0,...,n-1. 

 

Lemma 3.1. There exists a subsequence (
unp )p of (un) such that for all t[0,T]  (

unp (t))p 

converges to u(t) weakly in V. 

 

 For the proof, see [5]. We shall omit the subscript p from now on for simplicity. 

 

Remark. For all t belonging to [0,T] and for all nN
*
 un(t) belongs to K so that the weak 

limit u(t) also belongs to K. 

 

  In order to show that u is sufficiently regular we shall now define the following sequence 

of functions : 

 

˜ u n(t) = ui +
(t − t i)

t
(ui+1 − ui)                     t ti ,ti+1 

˜ u n(0) = u0
                                                                        

 

 

  
where n belongs to the subset of N corresponding to the subsequence of (un) one has 

exhibited in the lemma 3.1. The mapping ˜ u n  is obviously an element of W
1,2

(0,T;V)  . We 

have the following result. 

 

Lemma 3.2. There exists a subsequence of ( ˜ u n ) that converges weakly in W
1,2

(0,T;V)  

and the weak limit of this subsequence is equal to u. 

 

 The functions un and ˜ u n  are defined by using u
i+1

, solution of S i
n

, but also solution 

of Qi
n

 , for i=0,...,n-1. A solution of Qi
n

 is such that 
N(u

i+1
), uN

i+1
= 0

  and as  

N (u
i+1

)  0    and  uN
i

 0    we have  
N(u

i+1
), uN

i
 0

   so that  



 11 

N (u
i+1

),vN −
uN

i+1 − uN
i

t
 N (u

i+1
),vN

 and by integration  on [0,T] we obtain for 

all vL2(0,T;V): 

 

   

(a(un(t), v(t) −
d

dt
0

T

 ˜ u n(t)) + j(un(t), v(t)) − j(un(t),
d

dt
˜ u n (t)))dt 

                                             (f n(t), v(t) −

0

T


d

dt
˜ u n (t))dt + N(un (t)),vN(t)

0

T

 dt .

 (3.11) 

 

Lemma 3.3. For  all  v L
2

(0,T;V)   we  have 

            

lim
n→

(fn (t),v(t) −
d

dt
˜ u n(t))

0

T

 dt = (f(t),v(t) − Ý u 

0

T

 (t))dt,

lim
n→

j(un(t), v(t))dt = j(u(t),v(t))dt,

0

T


0

T



lim
n→

a(un(t),v(t))dt = a(u(t), v(t))dt.

0

T


0

T


 

 

 The proof is straightforward as (un) converges weakly towards u, (

d

dt
˜ u n

) converges 

weakly towards Ý u  in L2(0,T;V), (fn) converges strongly towards f, and R is a compact 

operator. 

 

Lemma 3.4.([5]) We have 

 

lim inf
n→

a(un (t),
d

dt
0

T

 ˜ u n(t))dt  a(u(t), Ý u (t))dt,

0

T


 

 

lim inf
n→

j(un(t),
d

dt
0

T

 ˜ u n(t))dt  j(u(t), Ý u (t))dt.

0

T


 

 

 By passing to the limit in inequality (3.11), using lemmas 3.3, 3.4 and the continuity 

property of N  the following result can be proved. 

 

Theorem 3.1.([5]) The weak limit u of (un) satisfies :   

(a(u(t),v(t) − Ý u (t)) + j(u(t),v(t)) − j(u(t), Ý u (t)))dt

0

T



                                         (f(t), v(t) − Ý u (t))dt

0

T

 + N(u(t)), vN (t) − Ý u N (t)

0

T

 dt    

 (3.12) 

v  L
2

(0,T;V) , and the unilateral condition 
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t  0,T     v K        N(u(t)), vN − uN (t)  0

. (3.13) 

 

 Equation (3.12) is an integrated form of equation (3.4). 

 

3.2. A contact problem with friction for a class of inelastic bodies 

 The purpose of this section is to study the existence and uniqueness of solutions of  

quasistatic contact problems with given friction (or Tresca's friction law), involving the time 

derivative of u for a general model of elastoviscoplastic materials with internal state 

variables ([15], [16]). This model includes some viscoelastic ones as, for example, the 

Maxwell's model (see [17], [18]). 

 The quasistatic evolution contact problem with given friction for a general model of 

elastoviscoplastic material with internal state variables has the following classical 

formulation. 

 

Problem Q3 : Find the fields of displacements u, inelastic strain tensor ei = (
e ij

i

)   and 

 internal variables   = ( ,...,  ) such that for all t  [0,T]  (2.1), (2.3), (2.4),  (2.5) 

and (3.1) hold together with the following equations and conditions: 

  = E ee  in   (3.14) 

 Ý e 
i

= 1 ,( )   in   (3.15) 

 
Ý  = 2 ,( )  in  , (3.16) 

 ei(x, 0) = e 0
i

(x)  in   () 

  (x, 0) = (x)  in   () 

 N = FN  on   (3.19) 

 

T  g    and   
if  T  g   Ý u T = 0             on  3 ,                

if  T = g       0  Ý u T = −T     on 3 .

 
 
  () 

 

with e(u) = ee+ei , where e = (eij) and ee = (
e ij

e

) are respectively the total strain and the 

elastic strain, and e 0
i

 S with   S =  = (ij)  ij L2()  ij = ji , 1  i,j  d and  

L2() 

 We suppose that :Rs
dxd x R   Rs

dxd   with  Rs
dxd= b= (bij)  Rdxd    ;   bij = bji   

1 i, j  d} and :Rs
dxd x R    R satisfy the following Lipschitz conditions: 

 

      such that  b , c  Rs
dxd,       R, 

 (b,  ) − (c,  )R
dxd    (b − cR

dxd+ − R
 ). (3.21) 

 

     such that  b , c   Rs
dxd ,      R , 

 (b, ) − (c, )R
   (b − cR

dxd +  −R
 ) () 
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 We suppose also that 1 W
1,2

(0,T;(L
2

())
d

)  , 2 W
1,2

(0,T;(L
2

(2 ))
d

) ,  

FN W
1,2

(0,T; L
2
(3))   and that, for simplicity,  g  L(3)  is independent of time. 

 In order to set the classical problem in variational form let us define: 

 

         

j(v) = g

3

  vT

    v  V, (3.23) 

         

(f, v) = 1v



 + 2v + FNvN
3


2



    v  V, (3.24) 

         

b(,) = aijklijkl



       S, (3.25) 

 

where V is defined by (2.8). 

 We suppose that the initial conditions u0  and  e 0
i

  satisfy the following compatibility 

condition: 

 

 a(u0,w-u0) + j(w-u0) ³ (f(0),w-u0) + b(e 0
i

, e(w-u0))   w   V, (3.26) 

 

where  a  is defined by  (2.10). 

 If  U  is a Banach space we denote by  L


(0,T;U) , ³ 0,  the space L


(0, T;U)  with 

the norm 
y U,  = ess supe- t y(t) U  ;  t   T] } . 

 For any  ' , " ³ 0  the norms  U,'  and  U,"  are equivalent but suitable choices 

for   will be useful in proving the existence and uniqueness result. We set   = L2(). 

 If one knows  the evolution of ei  on [0,T], then, using Green's formula, the solution u 

satisfies the following variational inequality  for all  t   

 a(u,v- Ý u ) +j(v) - j( Ý u ) ³ (f,v- Ý u ) +b(ei, e(v- Ý u ))    v  V. 

 We can now state the following mixed formulation of problem Q3. 

 

Problem Q4 : Find u  W ei  W
1,

(0,T;S)  and   W
1,

(0,T;)  satisfying (3.14) to 

(3.16) and 

 a(u(t),v- Ý u (t)) +j(v) - j( Ý u (t)) ³ (f(t),v- Ý u (t)) +b(ei(t), e(v- Ý u (t)))    v  V, (3.27) 

for almost  all  t   with the initial conditions (3.1), (3.17) and (3.18), where W is 

defined by  (3.3).  

 

 Let us state the following standard result. 

 

Lemma 3.5.  For each    L


(0, T;S)  there exist a unique  ()  W
1,

(0,T;)  and a  

unique  ei()  W
1,

(0,T;S)   which for almost all t   satisfy the following equations: 
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 Ý e 
i

= 1 ,( )   in   () 

 
Ý  = 2 ,( )  in  ,  (3.29) 

with the initial conditions  (3.17)  and  (3.18). 

 

 The differential equation (3.29) satisfies the Cauchy - Lipschitz theorem for any given  

  L


(0, T;S)   so that the proof of this lemma is straightforward. 

 

Lemma 3.6.  For each    L


(0, T;S)  there exists a unique  u()  W  which satisfies the 

variational inequality  (3.27), for almost  all  t   where  ei = ei()  is given  by  lemma  

3.5. 

 

For the proof, we observe that for each    L


(0, T;S)   we have ei ()  W
1,

(0,T;S)   so 

that  (3.27)  is a variational inequality for which, by using similar arguments as for the 

Problem Q2, we obtain the existence of a solution  u()  W. The uniqueness readily 

follows. 

 

Theorem 3.2.  Let the above conditions on    u0, e 0
i

,    FN and g hold. 

Then the problem (3.14) to (3.16) and (3.27) with the initial conditions (3.1), (3.17) and 

(3.18) has  a unique  solution 

 (u, ei, )  W
1,2

(0,T;V)xW
1,

(0,T;S) xW
1,

(0,T;) . 

 

Proof..  For each    L


(0, T;S)  let  s() = (sij())  be given by   

 

 sij () = aijklekl(u()) − ekl
i

()    1 ² i, j, k, l ² N, (3.30) 

 

where  u()  and  ei()  are defined as above. Thus we define a new map 

 s: L


(0, T;S)   L


(0, T;S)  . 

 We will show that  s : L


(0,T;S)   L


(0,T;S)   is a contraction mapping for a 

suitable choice of  Then s has a unique fixed point  and  (u() ei() ())  is the unique 

solution of the problem. 

 Let     L


(0,T;S) . Then  z = u() w=u()  W
1,2

(0,T;V)   are the solutions of 

the following variational inequalities for almost all t   

 

 a(z,v- Ý z ) +j(v) - j( Ý z ) ³ (f,v- Ý z ) +b(ei(), e(v- Ý z ))    v  V, (3.31) 

 a(w,v- Ý w ) +j(v) - j( Ý w ) ³ (f,v- Ý w ) +b(ei(), e(v- Ý w ))    v  V. (3.32) 
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Choosing v = Ý w  in (3.31) and v = Ý z  in (3.32), integrating both sides of these inequalities 

and adding the resulting inequalities, we obtain, using the initial conditions, 

 

 
z − w V,  C1 e

i
() − e

i
()

S,
+ (C1 / ) Ý e 

i
() − Ý e 

i
()

S,     for all   ³ 0. (3.33) 

 

 Now, by (3.30)   

 

 
s() − s() S,  C2( z − w V, + e

i
() − e

i
()

S,
)
  for all   ³ 0, () 

 

and, using (3.28), (3.29) and the properties of  , one can infer (see [19]) the existence 

of  C3, ' > 0  such that , for all    ' 

 

 
e

i
() − e

i
()

S,
 C3( − C3)

−1
 −  S,

 . (3.35) 

 

 Finally, from (3.34), (3.33), (3.35) and (3.28) it results that there exists  " > 0 such 

that if  "  then  s : L


(0,T;S)   L


(0,T;S)   is a contraction and the theorem is proved. 

 

3.3. Numerical treatment 

 For solving the elastic quasistatic problem of section 3.1, the fixed point method on 

the sliding limit (introduced in section 2 with the problem D3) is now associated to the 

incremental formulation of problem S i
n

. Then a problem similar to the static discrete 

problem N1 is set for each ti+1. It includes an extra term u T
i

 which characterizes the 

memory of the system induced by friction. 

 

Problem N2 : Find u G
i+1



K
j

j=1

M


 such that 

 J1( u G
i+1

)²J1( v )          v 

K
j

j=1

M


 (3.36) 

with    

 J1( v )=

1

2 v TA v  - ( F 
i+1

)T v  + (G
i +1

)T
v T − uT

i

. (3.37) 

 

 The same methods as the ones of section 2.3 can be used with a slight modification for 

the treatment of the friction term. In problem N2, it has to be emphasised that the convex set 

remains the same for every ti+1 because the formulation is written with respect to the 

displacements. As presented in Cocu et al. [5] an alternative resolution can be deduced from 
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the incremental formulation : it is set in terms of the velocities (increments of 

displacement), the friction term remains the same as the one of the static case but the 

constraint convex set changes at each step. The problem can be expressed in the following 

way. 

 

Problem N3 : Find 

u G
i+1

 K j
i

j=1

M


 such that 

 

J2(u G
i+1

)  J2 (v )     v  K j
i

j=1

M


 (3.38) 

 

with 
J2(v ) =

1

2
v 

T
Av − (R 

i
+ F 

i+1
)
T

v + (G
i+1

)
T

 vT
, (3.39) 

 

where the convex set depends on the solution obtained at the previous step and is given by 

 

K j
i

=
R  if  j Ic

  ;  ( + vj
i )  0  if  j Ic

 
 
 

 

 
R 

i
= F 

i
− Au 

i
  being the previous residue of equilibrium (equal to the contact forces). 

 So, the various algorithms used for solving the static problem can be extended to the 

treatment of the quasistatic problem thanks to the simple modifications which give the 

dependance on the loading history. 

 In viscoelasticity or viscoplasticity, as shown in Raous [17][18][20], the problem can 

be set as a quasistatic elastic problem coupled with a differential equation by a viscous 

strain term. Various numerical methods can be used to integrate the differential equation, 

explicit Runge-Kutta methods such as Euler or Heun, or implicit ones such as −methods. 

In linear viscoelasticity, either explicit or implicit methods are easy to implement (see 

Raous [18] and Chabrand et al. [21]). A generalization to viscoplasticity is given in Raous 

[20] but explicit methods are prefered in that case. 

 

 

4. CONCLUSION 

 

 Mathematical tools of functional analysis play a major part in this paper as the static 

and quasistatic unilateral contact problems with friction are written as implicit variational 

inequalities, of which the dual form would be quasivariational inequalities. 

 We have chosen to work directly with the initial formulation of the problem in terms 

of inequalities rather than adopting other formulations such as the compliance model. The 

results concerning the quasistatic problems constitute a new advance in the field and may 

help us in the formulation of dynamic frictional contact problems on which we are actually 

working. 
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