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Abstract. This article extends a classical marker-based image segmen-
tation method proposed by Salembier and Garrido in 2000. In the original
approach, the segmentation relies on two sets of pixels which play the role
of object and background markers. In the proposed extension, the mark-
ers are not represented by crisp sets, but by fuzzy ones, i.e., functions
of the image domain into the real interval [0, 1] indicating the degree
of membership of each pixel to the markers. We show that when the
fuzzy markers are indicator functions of crisp sets, the proposed method
produces the same result as the original one. We present a linear-time
algorithm for computing the result of the proposed method given two
fuzzy markers and we establish the correctness of this algorithm. Addi-
tionally, we discuss possible applications of the proposed approach, such
as adjusting marker strength in interactive image segmentation proce-
dures and optimizing marker locations with gradient descent methods.

1 Introduction

Image segmentation is one of the fundamental tasks in image processing, and can
be described as partitioning an image into distinct regions that comprise similar
objects. Many argue that image segmentation is in fact a multi-scale problem,
where regions at a coarser detail level are formed by a merging of regions at
a finer detail level [1,11,25]. Following this idea, authors often utilize hierar-
chies constructed from a given image to produce a segmentation [1,4,20,23], and
efficient algorithms for constructing such hierarchies have been proposed [16].
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Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG – (Grants PPM-00006-
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Fig. 1: A tree representation for a marker-based image segmentation with respect
to a hierarchy on (a). On (b), the original image, on (c) a representation of the
partitions with markers, and a segmentation on (d).

Even with the recent advances in the area of image processing, automatic seg-
mentation can still be a very challenging task. The introduction of prior knowl-
edge in the form of markers (often called seeds) that carry information about
the location of objects of interest can drastically improve segmentation results.
Many works study different approaches for producing marker-based segmenta-
tions, ranging from the classic graph-based works relying on watersheds [7,23],
graph cuts [19,5], random walks [12], geodesics [2] and shortest paths [10], to
the more recent works based on convolutional neural networks [13,24,14]. Also,
when markers are provided by users over an interaction system, they can take
different shapes. These shapes include scribbles [2,7,12], bounding boxes [19],
points [13], and image regions [20,15]. In classical graph-based methods, mark-
ers usually have a binary nature, i.e., a region of the image is either marked and
represents an object with total certainty, or is unmarked. With that, distinct
markers in the same image guide the segmentation with equal power.

Different approaches were proposed for controlling the way markers prop-
agate when guiding a segmentation. In [23], the shape of the surface where
markers propagate is modified to simulate a flooding by a viscous fluid, but dif-
ferent markers still guide the segmentation with equal power. In [6], the costs for
propagating a marker to a region are dynamically estimated during propagation
time. In this work, we are interested in the scenario where markers have a fuzzy
nature instead of a binary one, and where different markers propagate and guide
a segmentation with different power.

For that, we propose an extension of a classical method introduced in [20],
which uses two sets of pixels as object and background markers and propagate
them over a hierarchy of partitions to produce a two-class segmentation, i.e., a
partition of the image into a region classified as object and a region classified
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as background. In this extension, markers are not binary, but represented by
positive real functions, referred to as fuzzy markers. The value of each element
in a fuzzy marker represents its membership degree to the marker and dictates
the influence of the marker at its location.

To present our extension, we rely on a characterization of [20] based on
connection values (also called “fuzzy connectedness” [22] or “degree of connec-
tivity” [18]). In our extension, we produce a segmentation based on fuzzy con-
nection values to the object and background markers, similarly to the method
proposed in [21]. However, contrary to [21], the fuzzy connection values proposed
in this work also take the membership degree of elements to fuzzy markers into
consideration.

The main contributions of this article are fourfold. First, we propose an ex-
tension of a classical segmentation method, where markers are fuzzy instead
of being crisp. Second, we show that this method is indeed equivalent to the
original one when markers are crisp (with Property 5). Third, we provide an
efficient algorithm for computing in linear-time the proposed segmentation. Fi-
nally, we establish the correctness of the proposed algorithm (with Corollary 9).
Due to space limitation, proofs of the presented properties will be included in an
forthcoming extended version of this article. Furthermore, we discuss possible
applications of the proposed method, such as adjusting the strength of markers
when performing interactive segmentation and optimizing seed locations using
gradient descent methods.

This article is organized as follows. In Section 2, we present the marker-based
segmentation proposed in [20]. In Section 3, we define an extension of the marker-
based segmentation, where markers are represented by fuzzy sets. We introduce
an efficient algorithm for computing the fuzzy-marker-based segmentation in
Section 4. Finally, in Section 5 we present the conclusion, possible applications
of the proposed method, and directions for future works.

2 Marker-based segmentation using hierarchies

In this section, we present a classical approach for performing a marker-based im-
age segmentation proposed by Salembier and Garrido in [20]. This method relies
on extracting relevant regions of a hierarchy with respect to provided markers.
First, we provide fundamental notions to define indexed hierarchies. Then, we
present the notion of a marker-based segmentation from a hierarchy as intro-
duced in [20]. Finally, we present a characterization of this segmentation based
on ultrametric distances associated to given hierarchies. This characterization
allows us to extend in Section 3 the method proposed in [20] to the case where
the markers are fuzzy instead of being crisp.

In this article, the symbol V denotes a finite nonempty set. A hierarchy H
(on V ) is a set of subsets of V such that:

1. V is an element of H;
2. for every element x of V , the singleton {x} belongs to H; and
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3. for any two elements X and Y of H if the intersection of X and Y is
nonempty, then X either includes Y or is included in Y .

Let H be any hierarchy, any element of H is called a region of H. For any
region X of H, we define the index of X as a positive real value denoted by
ω(X). An indexed hierarchy (on V ) is a pair (H, ω), where H is a hierarchy and
where ω is a function from H to R+ such that:

1. ω(X) = 0 if and only if X is a singleton; and
2. for any two regions X and Y of H, if X is included in Y , then we have
ω(X) < ω(Y ).

Let H be a hierarchy and let X and Y be two regions of H. The region X
is a parent of Y and Y is a child of X if Y is included in X and if any region
of H which is proper superset of Y is also a superset of X. A region R of H is
called a leaf (resp. root) of H if it is not the parent (resp. child) of any region
of H. It can be observed that V is the only root of H and that the set of leaves
of H is precisely the set of all singletons on V . It can also be noticed that any
non-root region X of H has a unique parent, which is denoted by par(X) in the
following. A hierarchy H is considered a binary hierarchy if any non-leaf region
has exactly two distinct children.

In the remaining part of this article, the pair (H, ω) denotes an indexed
binary hierarchy, that is an indexed hierarchy such that H is a binary hierarchy.

Let us now provide the definition of the method introduced in [20]. The main
idea is to produce a partition by classifying as object any region of the hierarchy
that intersects a given object marker and that does not intersect the background
marker.

Let O and B be two subsets of V . The marker-based segmentation (of V )
for (O,B) (with respect to (H, ω)), denoted by SH(O,B) is the union of the
regions of H which contain an element of O but no element of B:

SH(O,B) = ∪{X ∈ H | X ∩O 6= ∅, X ∩B = ∅}. (1)

Our main interest in this article is to extend the notion of a segmentation for
a pair of subsets of the space called markers to the case where the markers are
fuzzy. In order to present this extension, we will rely on an alternative charac-
terization of the marker-based segmentation based on a (ultrametric) distance
induced by the hierarchy.

We define dH as the function from V × V to R+ such that, for any two
elements x and y of V , the value dH(x, y) is the index of the smallest region
of H which contains both x and y:

dH(x, y) = min {ω(X) | X ∈ H, x ∈ X, y ∈ X} . (2)

It is well known that the function dH is a distance which is furthermore ultra-
metric [3]. Let x be any element of V and let Y be any subset of V . We define
the connection value of x to Y (for the hierarchy H), denoted by CH(x, Y ), as
the shortest distance between x and an element of Y :

CH(x, Y ) = min{dH(x, y) | y ∈ Y }. (3)



Fuzzy-marker-based segmentation using hierarchies 5

Property 1. Let O and B be two subsets of V . The following statement holds
true:

SH (O,B) = {x ∈ V | CH(x,O) < CH(x,B)} .

In other words, Property 1 states that a point x belongs to the marker-based
segmentation SH (O,B) if the shortest distance between x and an element of O
is smaller than the shortest distance between x and an element of B.

3 Fuzzy-marker-based segmentation

The marker-based segmentation defined in [20] and presented in Section 2, relies
on two subsets which play the role of markers. In this section we define an
extension in which markers are not crisp sets anymore but fuzzy sets.

Fuzzy sets can be seen as membership functions defined on a set, in which
each element has a membership degree. On a crisp set, the relationship between
an element and a set is binary, i.e., either the element belongs to the set or not.
With a fuzzy set, elements can be considered partially included in a set, with
higher membership degrees meaning a “stronger” inclusion in the set.

A fuzzy set (on V ) is defined as a function from V to the real interval [0, 1].
Let µ be a fuzzy set. The function µ is also referred to as a membership function
of V , where for any element x of V , the value µ(x) represents the membership
degree of x in µ.

In the remaining of this article, fuzzy markers will be represented by fuzzy
sets. We now extend the notion of connection value to fuzzy sets.

Definition 2. (Fuzzy connection value) Let x be an element of V , and
let µ be a fuzzy set. The fuzzy connection value of x to µ (for (H, ω)), denoted

by CfH(x, µ), is defined by:

CfH(x, µ) = min{α(µ(y))(1− µ(y) + dH(x, y)) | y ∈ V },

where α is a decreasing function such that α(1) = 1 and α(0) is strictly greater
than the maximal value of dH, i.e., α(0) > max{dH(x, y) | x ∈ V, y ∈ V }.

The notion of a fuzzy connection value is an extension of the one of connection
value. The information given by the membership degree of an element to a fuzzy
set is incorporated to the fuzzy connection value by the term α(µ(y)). Observe
that for two elements x and y in V , such that µ(y) is equal to 1, we have
that α(µ(y))(1 − µ(y) + dH(x, y)) is equal to dH(x, y). Since α is a decreasing
function, as the value µ(y) decreases, the overall fuzzy connection value increases.
In other words, we want that elements with low membership degrees lead to
greater fuzzy connection values than elements with high membership degrees.
The term 1−µ(y) and the constraint on α(0) allow us to show the link between
connection values and fuzzy connection values, which is formally introduced in
Property 3.

The following property makes the link between connection values and fuzzy
connection values explicit by means of indicator functions.



6 G. Fonseca et al.

x1 x2

x3 x4

(a) V

1 0.8

0.2 0

(b) µO

0.2

0.8

0.2

0.4

(c) µB

x1 x2 x4x3

R1

R2

R3

(d) (H, ω)

0 0.4

2 3

(e) Connection values to µO

4 4

2.4 0.4

(f) Connection values to µB

x1 x2

x3 x4

(g) Sf
H(µO, µB)

Fig. 2: Example of a fuzzy-marker-based segmentation. Graphical representations
of: (a) a set V ; (b,c) fuzzy sets µO and µB ; (d) an indexed hierarchy (H, ω) on V ;
(e,f) fuzzy connection values to µO and µB , respectively; (g) the segmentation

SfH(µO, µB) highlighted in blue. The α function is given by α(x) = (6− 5x).

Let A be a subset of V . The indicator function of A is the fuzzy set 1A, such
that for any x in V , the value 1A is equal to 1 if x belongs to A and is equal
to 0 otherwise.

Property 3. Let A be a non-empty subset of V , and 1A be the indicator function
of A. Then, the following statement holds true:

∀x ∈ V, CH(x,A) = CfH(x,1A).

We are now ready to extend the notion of a segmentation of a set V for a
pair of subsets of V to a segmentation of V for a pair of fuzzy sets of V .

Definition 4. (Fuzzy-marker-based segmentation) Let µO and µB be two
fuzzy sets. The fuzzy-marker-based segmentation (of V ) for (µO, µB) (with re-

spect to (H, ω)), denoted by SfH(µO, µB) is defined by

SfH (µO, µB) =
{
x ∈ V | CfH(x, µO) < CfH(x, µB)

}
,

In other words, the fuzzy-marker-based segmentation of V for (µO, µB) is
the set that contains every element of V with a fuzzy connection value to µO
smaller than to µB .

An example of a fuzzy-marker-based segmentation for a pair of fuzzy sets is
illustrated in Figure 2. A set V is illustrated in Figure 2a, followed by the fuzzy
markers µO and µB in Figures 2b and 2c, respectively. We can observe in Fig-
ure 2d a tree representation of a given indexed hierarchy. The fuzzy connection
values of the elements of V to the fuzzy sets µO and µB can be observed in
Figures 2e and 2f, respectively. For the elements x1, x2, x3, the fuzzy connection
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value to the fuzzy set µO is smaller than to the fuzzy set µB . Consequently,
{x1, x2, x3} is the segmentation SfH(µO, µB), as shown in Figure 2g.

The following property shows the relationship between the fuzzy-marker-
based segmentation proposed in this article and the marker-based segmentation
proposed in [20].

Property 5. Let O and B be two subsets of V , and 1O and 1B be the indicator
functions of O and B, respectively. Then, the following statement holds true:

SfH(1O,1B) = SH(O,B).

In other words, Property 5 states that when the fuzzy markers indeed repre-
sent crisp sets, the marker-based segmentation is the same as the fuzzy-marker-
based segmentation.

4 Efficient computation of fuzzy-marker-based
segmentation

In this section, we present an efficient algorithm for computing the fuzzy connec-
tion values for every element of a set to a given fuzzy set on this space. Before
presenting the algorithm, we give some definitions and properties that allow us
to introduce the algorithm and prove its correctness. Finally, we give a brief
discussion about the complexity of the proposed algorithm.

Let X and Y be two distinct regions of H. The region X is a sibling of Y and
X and Y are siblings if the parent of X and the parent of Y are the same. Since
H is a binary hierarchy, every region on H that has a parent has exactly one
sibling. If X is a non-root region of H, we denote by sib(X) the unique sibling
of X.

We define the restriction of a fuzzy set µ to a subset X of V , denoted by
µ↓X , as the fuzzy set such that µ↓X (x) = µ(x) for any x in X, and µ↓X (x) = 0
for any x in V \X, i.e., µ↓X= inf(µ,1X).

Property 6. Let µ be a fuzzy set and let x be an element in V . Then, the fuzzy
connection value from x to µ is given by:

CfH(x, µ) = min
{
CfH(x, µ↓V \{x}), α(µ(x))(1− µ(x))

}
.

From Property 6, we see that the connection value of x to µ can be ob-
tained from the connection value of x to the restriction of µ to V \{x} and
from α(µ(x))(1− µ(x)). The computation of the later term can be done in con-
stant time. We will now present an efficient way to compute the former one.

Let µ be a fuzzy set. We denote by max(µ) the maximum of µ(x) for all x
in V .
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Fig. 3: A set V on (a). A fuzzy set µ on (b). A representation of an indexed
hierarchy (H, ω) on (c). On (d), the value max(µ ↓R) for each region of H in
blue. On (e), the regional connection value of each region of H in blue and the
fuzzy connection value of each element of V (the leaves) in red. For this example,
we set α(x) = 6− 5x.

Definition 7. (Regional connection value) Let µ be a fuzzy set and let R be
a region of H. The regional connection value of R, denoted by TµH(R), is defined
by:

TµH(R) = α(0)(1 + ω(R)), if R = V (i.e., R is the root of H); and

TµH(R) = min
(
TµH(par(R)), α(max(µ↓sib(R)))(1−max(µ↓sib(R)) + ω(par(R)))

)
,

if R 6= V.

The regional connection value TµH(R) of each region can be obtained by
browsing the hierarchy H in root-to-leaves order, i.e., an order in which a parent
region is processed before its children. Algorithm 1 presents the different steps
to compute these values in linear time with respect to the number of regions
in H.

In Figure 3 we have illustrations of a set V in Figure 3a, a fuzzy set µ in
Figure 3b, and an indexed hierarchy (H, ω) in Figure 3c. In Figure 3e, we have
the values of the regional connection values of every region of the hierarchy in
blue. For example, by using the equations from Definition 7, the regional con-
nection value of the root of H (region R3) is given by α(0)(1 + ω(R3)). By
setting α = 6− 5x, as in the example illustrated in Figure 3, we have that
TµH(R3) = (6)(1 + 4) = 30. For the left child of the root (region R1), its re-
gional connection value is given by the minimum between the values TµH(R3) and
α(max(µ↓R2

))(1−max(µ↓R2
) + ω(R3)) = (6−5 ∗ 0.2)(1−0.2 + 4) = 24. As the

value TµH(R3) = 30, we have TµH(R1) = min(30, 24) = 24.
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As we will see with Property 8 and Corollary 9, the regional connection
values allows us to compute the fuzzy connection values of every element x in V .
With the proposed algorithm, we can efficiently compute the fuzzy connection
values from all elements of a set to two distinct fuzzy sets. Having the fuzzy
connection values to a pair of fuzzy sets, one can compute the fuzzy-marker-
based segmentation of a given set with Definition 4.

The following property links the regional connection value to fuzzy connection
values. This property allows us to show the correctness of the proposed algorithm
for computing fuzzy connection values.

Property 8. Let µ be a fuzzy set and let x be an element of V . Then, the fuzzy
connection value of x to the restriction of µ to V \{x} is equal to TµH({x}):

CfH(x, µ↓V \{x}) = TµH({x}).

Then, from Properties 6 and 8 we can derive Corollary 9, which presents how
to obtain the fuzzy connection values for all x in V to µ by using the regional
connection values.

Corollary 9. Let x be an element of V , and µ be a fuzzy set. For any x in V ,
the fuzzy connection value CfH(x, µ) is given by:

CfH(x, µ) = min {TµH({x}), α(µ(x))(1− µ(x))} .

A set V is illustrated in Figure 3a, followed by a fuzzy set µ illustrated in
Figure 3b and a hierarchy (H, ω) illustrated in Figure 3c. In Figure 3e, we can
observe the fuzzy connection values (in red) of the elements of the set V to µ
with respect to (H, ω). By observing Figure 3e and using the equation from
Corollary 9, it can be seen that the fuzzy connection value of the leaf x1 is
equal to the minimum between TµH({x1}) and α(µ(x1))(1− µ(x1)). By setting
α(x) = 6− 5x, we have that TµH({x1}) = 2 and α(0.8)(1− 0.8) = 0.4, thus the
fuzzy connection value of x1 to µ is equal to 0.4.

The computation of the value max(µ ↓R) for a function µ and every re-
gions R in H can be done with a single pass on the hierarchy in leaves-to-
root order, i.e., in which a region is processed after its children. The compu-
tation of TµH({x}) for every x in V is done with a single pass on the hierar-
chy, in linear time with respect to the number of regions of H. Then, after
computing TµH({x}) for every x in V , computing the fuzzy connection values

CfH(x, µ) for all x in V is done in linear time with respect to the number of
elements in V , as it can be observed in Algorithm 2. As the number of re-
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gions in H is at most 2|V | − 1, this leads to an overall complexity of O(|V |).
Algorithm 1: Regional connection values

Input : A hierarchy (H, ω), a fuzzy set µ, and the values max(µ↓R)
for every region R of H

Output: The array T containing the values TµH({x}) for all x in V
1 T [V ] := α(0)(1 + ω(V ));
2 foreach non-root region R in H in root-to-leaves order do
3 csib := α(max(µ↓sib(R)))(1−max(µ↓sib(R)) + ω(par(R)));

4 T [R] := min
(
T [par(R)], csib

)
;

5 end

Algorithm 2: Fuzzy connection values

Input : A set V , a fuzzy set µ on V
Output: The array Out containing the values CfH(x, µ) for all x in V

1 Compute regional connection values with Algorithm 1;
2 foreach element x in V do
3 Out[x] := min (T [x], α(µ(x))(1− µ(x)));
4 end

5 Conclusion and discussions

In this work, we propose an extension of a classical method of marker-based
image segmentation to the case where markers are represented by fuzzy sets. We
also propose an algorithm for computing the fuzzy-marker-based segmentation
in linear time, and prove its correctness. With the proposed extension, a new
extent of applications becomes possible, such as:

Interactive segmentation with adjustable marker strength: In an inter-
active segmentation framework, markers usually represent the location of objects
of interest, and distinct markers guide the segmentation with equal power. By
using the method proposed in this article, it is possible to add extra informa-
tion to the markers, in the form of marker strength. With a fuzzy marker, we
can adjust its membership degree from 0 to 1, where 1 denotes the maximum
strength, and 0 the minimum.

An example of such application is illustrated in Figure 4. The segmentations
produced in the illustration are computed with a watershed by area hierarchy [8]
created over a 4-adjacency graph weighted by a SED gradient [9]. We can see
on the second row of Figure 4 that when the markers are crisp (with strength of
1 on all marker locations) there is a leakage of the object segmentation to the
background. We show that we can decrease this leakage by adjusting the strength
of the object markers, without the need of changing the locations of any markers.
The code for performing a fuzzy-marker-based interactive segmentation with
adjustable marker strength developed using the HIGRA library [17] is available
at https://higra.readthedocs.io/en/latest/notebooks.html.

https://higra.readthedocs.io/en/latest/notebooks.html
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Fig. 4: Example of fuzzy-marker-based interactive segmentation. On the top row,
from left to right: an image, object and background makers (in blue and red,
respectively) superimposed over the image, and a saliency map representation of
a hierarchy on the image. On the second and third row we can observe the map
of fuzzy connection values from the regions of the image to the object marker,
followed by the map of fuzzy connection values to the background marker, and
finally the produced segmentation. On the maps of connection values, darker
colors represent smaller values. On the second row, the markers are crisp, and
on the third row, the value of the object markers is set to 0.5.

Marker optimization: Given a ground-truth segmentation, we can also ask
ourselves what are the optimal markers to obtain this segmentation. It can be
seen that the function CfH given in Definition 2 is sub-differentiable with respect
to µ, this allows us to use a classical gradient descent algorithm to optimize
markers for a given ground-truth.

Given an image and a pair of fuzzy markers, we can produce a segmenta-
tion for the given markers. With the produced segmentation, we can compute a
segmentation loss with respect to the ground-truth, using for instance a pixel-
wise cross-entropy loss. We search for a pair of markers that minimize the loss
function, i.e., that produce a segmentation which is closer to the ground-truth.
We can find a solution to this minimization problem with gradient descent, thus
optimizing markers for a given ground-truth segmentation.

An example of a marker optimization is shown in Figure 5. In the example,
we use a pair of object and background markers, such that the background
marker intersects the object of interest. Due to part of the background marker
being located over the object, the produced segmentation has regions of the
object wrongly classified as background. After the optimization process, we can
observe that the produced markers lead to a better object segmentation, i.e.,
a segmentation which is more similar to the considered ground-truth. For the
example in Figure 5, we use a watershed by area hierarchy created over a 4-
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Fig. 5: Illustration of the marker optimization. On the top row, from left to right:
an image; a representation of a saliency map of a hierarchy for the image; and
the ground-truth of the object segmentation. On the second and third row: the
markers (object in blue, background in red) over the saliency maps, followed
by the map of fuzzy connection values to the object marker, the map of fuzzy
connection values to the background marker, and the fuzzy-marker-based seg-
mentation. On the second row we have the initial crisp markers, and on the
bottom row we have the optimized markers. On the maps of fuzzy connection
values, darker color represents lower values.

adjacency graph weighted by a SED gradient. During the optimization process
we also introduce a set of regularization functions to reduce the size and increase
the smoothness of the markers. Finally, we apply a grayscale dilation on the
markers after the optimization for better visualization.

In future works, we will extend the studies on learning marker locations, using
the proposed optimization framework to train a marker proposal convolutional
neural network. Ideally, the markers proposed by the network would be able
to recover the segmentation ground-truth, and follow shape constraints that
characterize easily editable markers.
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