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Finite element modelling of hybrid active-passive vibration damping of multilayer piezoelectric sandwich beams -part I: Formulation

INTRODUCTION

Since the mid 1980s, researches for new vibration control systems have been directed to hybrid active-passive control strategies. These were mainly based on simultaneous use of piezoelectric and viscoelastic materials in the same damping treatment. In particular, it was found [START_REF] Benjeddou | Advances in hybrid active-passive vibration and noise control via piezoelectric and viscoelastic materials[END_REF] that, during the last 6 years, these researches have focused on congurations that augment the damping ability of the conventional passive constrained layer damping (PCLD) treatments. Depending on the position of the piezoelectric actuator, the passive and active actions can operate either separately or simultaneously. In the former conguration, the passive constrained layer and piezoelectric patches are placed away from each other, so that each of them uses independently its own damping mechanism. That is, the piezoelectric actuator uses the conventional active control (AC) mechanism, based on induced in-plane piezoelectric actuation strains; whereas, the passive constrained layer uses its conventional passive damping mechanism, based on vibratory energy dissipation through transverse shear strains induced in the viscoelastic material by relative in-plane displacements of the constraining layer and base structure. Such conguration is then called AC=PCLD treatment. Moreover, combined active and passive control actions can be obtained by replacing the passive constraining layer by an active piezoelectric layer. This is the so-called active constrained layer damping (ACLD) treatment. Here, the active constraining layer tends to augment the relative in-plane displacements in order to increase the relative shear in the viscoelastic core. Hence, more dissipation and damping can be obtained. Thus, the ACLD uses the same damping mechanism as the PCLD. This is also the mechanism of the congurations where the piezoelectric actuator is bonded to the upper surface of the constraining layer.

Review of hybrid damping congurations proposed in the literature can be found in References [1; 2]. Although these hybrid damping constructions vary from three up to seven layers, they were mainly modelled using the classical three-layer sandwich theory. This was made using several simplifying assumptions. Hence, Baz and Ro [START_REF] Baz | Performance characteristics of active constrained layer damping[END_REF] have reduced a four-layer ACLD beam into a three-layer one by assuming the piezoelectric sensor and base beam as an equivalent single layer in order to formulate a specic two-node sandwich nite element. Later, the previous element was adapted by Crassidis, Baz and Wereley [START_REF] Crassidis | H∞ control of active constrained layer damping[END_REF] to model a ve-layers hybrid beam which was reduced to a three-layer construction by considering the base beam and the attached piezoelectric sensor and actuator on its upper and lower surfaces, respectively, as a single layer. Recently, the extension and exure motions of a seven-layers hybrid damped beam were modelled separately using a Rayleigh-Ritz approach by Rongong et al. [START_REF] Rongong | Modelling of a hybrid constrained layer=piezoceramic approach to active damping[END_REF]. Here, the strains of the constraining layer and the bonded piezoelectric actuator on its upper surface were supposed compatible. Four-layer hybrid beam congurations were also analysed without reduction of the number of layers. Chen and Baz [START_REF] Chen | Performance characteristics of active constrained layer damping versus passive constrained layer damping with active control[END_REF] have discretized each layer of the construction using three-dimensional nite elements. In particular, for the piezoelectric layers, additional electric potential degrees of freedom were necessary to take into account the piezoelectric eect. However, Lam et al. [START_REF] Lam | Vibration control through passive constrained layer damping and active control[END_REF] have used the Rayleigh-Ritz approach to compare various three-and four-layer hybrid AC=PCLD beam congurations. Nevertheless, no models have been presented for other than piezoelectric and passive constraining layer patches attached on the same side of the beam; that is for three-layer construction only.

In a previous work [START_REF] Benjeddou | A unied beam nite element model for extension and shear piezoelectric actuation mechanisms[END_REF], a nite element model was proposed by the present authors to handle piezoelectric sandwich beams. To solve shear locking phenomena of this model, its kinematics parametrization was then modied in Reference [START_REF] Benjeddou | New shear actuated smart structure beam nite element[END_REF] leading to a shear locking free electromechanically coupled nite element model. In the present work, this sandwich beam model [START_REF] Benjeddou | New shear actuated smart structure beam nite element[END_REF] is extended to account for multilayer sandwich beams, consisting of a viscoelastic core sandwiched between layered piezoelectric faces. The latter are modelled using the classical laminate theory, whereas classical sandwich theory is considered for the face=core=face beam, assuming Euler-Bernoulli hypotheses for the faces and Timoshenko ones for the core. The anelastic displacement elds (ADF) model, developed by Lesieutre and Bianchini [START_REF] Lesieutre | Time domain modeling of linear viscoelasticity using anelastic displacement elds[END_REF], is used to handle the frequency-dependence of the viscoelastic material. The latter was preferred to that of Golla-Hughes-McTavish (GHM), because the former has less material parameters and leads to smaller system according to a recent comparison made by Trindade et al. [START_REF] Trindade | Modeling of frequency-dependent viscoelastic materials for activepassive vibration damping[END_REF]. Then, a complex-basis model reduction of the augmented system is proposed and applied to the active-passive constrained optimal control of sandwich damped beams. The control gains are provided by an LQR control law with limited control voltage and restricted beam tip deection, in order to respect the model assumptions. After its validation, achieved in the Part 2 of this paper, the new nite element is used to study the active control of a sandwich cantilever beam with viscoelastic core through a pair of attached piezoelectric actuators. The hybrid damping performance of the ve-layer conguration is studied for viscoelastic layer thickness and actuator length variations.

The specic two-node sandwich nite element with layered faces containing piezoelectric actuator patches, the modal reduction of the augmented ADF viscoelastic model, and the piezoelectric active control of sandwich damped beam conguration are the main originalities of the present work. In what follows, a theoretical variational formulation of the problem is presented and then used to develop the electromechanically coupled nite element model of multilayer sandwich beams. Next, the ADF model is briey presented to account for the frequency-dependence of the viscoelastic core properties. An elastic-piezoelectric-viscoelastic coupled state-space model is then constructed, reduced and applied to an optimal LQR controller design.

THEORETICAL FORMULATION

A sandwich beam made of laminate faces, with elastic and=or piezoelectric sublayers, and viscoelastic core is considered. Therefore, faces are modelled using classical laminate theory and the whole beam is modelled using classical sandwich theory. Euler-Bernoulli assumptions are considered for the laminate faces, whereas those of Timoshenko are retained for the viscoelastic core. The piezoelectric layers are supposed transversely poled and subject to transverse electrical elds. Elastic and viscoelastic layers are assumed insulated. All layers are assumed perfectly bonded and in plane stress state. The length, width and thickness of the beam are denoted by L, b and h, respectively. The subscripts a j , b j and c refer to quantities relative to the jth sublayer of upper a and lower b faces and to the core, respectively. Detailed nomenclature is presented in Appendix C.

Kinematics

Axial displacements u i (x; y; z)o ft h eith layer are assumed linear through thickness, whereas transverse ones w i (x; y; z) are supposed constant

u i (x; y; z)=u i (x)+(z -z i ) i (x);i = a; b; c w i (x; y; z)=w(x) (1) 
The kinematic description of the sandwich beam is presented in Figure 1. Notice that the same displacement elds u k (k = a; b) are considered for all sublayers k j of the face k. From Euler-Bernoulli hypotheses, k = = -w ′ (k = a; b), where, • ′ is used to denote @ •=@x. The mid-plan of the core is set to coincide with the origin of the z-axis, so that z c = 0. Let us dene the mean and relative axial displacements of the laminate faces u and ũ as (Figure 1) Using the displacement continuity conditions between layers, one may write their axial displacements in terms of the above-dened variables u and ũ:

u = u a + u b 2 ; ũ = u a -u b (2) 
u k = u ± ũ 2 -(z -z k )w ′ ;k = a(+);b(-) u c =( u + dw ′ )+z ũ h c + w ′ (3) 
where

d = h a -h b 4 ; = h a + h b 2h c ;z k = ± h k + h c 2 ;h k = n; m j=1 h kj
with n and m being the number of sublayers in the faces a and b, respectively. Notice that these displacement elds are the same as those of Reference [START_REF] Benjeddou | New shear actuated smart structure beam nite element[END_REF], they are repeated here for clarity. Using the usual strain-displacement relations for each layer, in conjunction with relations (3), the axial 1 and shear 5 strains of the ith layer can be written as

1i = m i +(z -z i ) b i 5c = s c ( 4 
)
where

m k = u ′ ± ũ′ 2 ; b k = -w ′′ ;k = a(+);b(-) m c = u ′ + dw ′′ ; b c = ũ′ h c + w ′′ ; s c = ũ h c +( +1)w ′
The superscripts m, b and s state for membrane, bending and shear strains. Notice also that d is a membrane-bending coupling parameter. It vanishes for symmetric sandwich constructions. Whereas, is a relative shear-bending coupling parameter. This coupling increases for thin cores and thick faces and decreases for the opposite case. The parameter vanishes only for a single Timoshenko core, i.e. without covering face layers. A constant transverse electrical eld is assumed for the piezoelectric layers and the remaining in-plane components are supposed to vanish. Although electrostatic equilibrium equation is only satised with a linear electrical eld assumption [8; 12], it was found that the linear part is negligible for the problems treated in this work. Consequently it is, for the k j th face piezoelectric sublayer,

E 3kj = - V kj h kj (5) 
where V kj is the dierence of electric potential of the k j th laminae, dened by V kj = V + kj -V - kj , where V + kj and V - kj are the voltages applied on the upper and lower skins of the k j th face piezoelectric sublayer.

Reduced constitutive equations

Linear orthotropic piezoelectric materials with material symmetry axes parallel to those of the beam are considered. c ij , e lj and i ll (i; j =1;::: ;6; l =1; 2; 3) denote their elastic, piezoelectric and dielectric constants. For simplicity of notation, all layers will be considered piezoelectric. Elastic and viscoelastic layers are obtained by making their piezoelectric constants vanish. The three-dimensional linear constitutive equations of an orthotropic piezoelectric layer can be reduced to (for details of this reduction, see Reference [START_REF] Benjeddou | A unied beam nite element model for extension and shear piezoelectric actuation mechanisms[END_REF])

1 = c * 11 1 -e * 31 E 3 ; 5c = c c 55 5c D 3 = e * 31 1 + i * 33 E 3 (6) 
where 

c * 11 = c 11 - c 2 
= i 33 + e 2 33 c 33 
1 , 5 and D 3 are axial and shear stress components and transverse electrical displacement. Notice that electromechanical coupling in the piezoelectric face sublayers is between axial strain and transverse electrical eld. This is the conventional piezoelectric extension actuation mechanism. Its static actuation and control performances were compared with those of the shear actuation mechanism in References [13; 14].

Variational formulation

Using d'Alembert's principle, the following variational equation can be written for the piezoelectric layered faces sandwich beam:

T -H + W =0; ∀ u; ũ; w; V kj (7) 
where T , H and W are the virtual work of inertial, electromechanical internal and applied mechanical forces, respectively.

The electromechanical internal forces virtual work of the layered piezoelectric faces sandwich beam is

H = H c + b k=a n; m j=1 H kj (8) 
where

H kj = k j ( 1kj 1k -D 3kj E 3kj )d kj ; H c = c ( 1c 1c + 5c 5c )d c
with kj and c being the volume of the k j th sublayer and the core, respectively. Using constitutive equations ( 6), strain (4) and electrical eld (5) relations, then integrating through thickness, the above equations, for the k j th face piezoelectric sublayer and elastic core, become

H kj = L 0 c * kj 11 A kj m k m k + I kj m k b k + I kj b k m k + I kj b k b k + e * kj 31 A kj m k + I kj b k V kj h kj + e * kj 31 V kj h kj A kj m k + I kj b k -i * kj 33 A kj V kj h kj V kj h kj dx (9) 
H c = L 0 c * c 11 A c m c m c + c * c 11 I c b c b c + k c c c 55 A c s c s c dx
where k c is the shear correction factor. Notice that here, unlike in the three-layer sandwich beam model of Reference [START_REF] Benjeddou | New shear actuated smart structure beam nite element[END_REF], there are membrane-bending coupling terms due to the multilayer characteristic of the faces. A kj , I kj and I kj are, respectively, the area and the rst and second moments of inertia of the k j th face sublayer cross-section. These are

[A kj ; I kj ;I kj ]= b=2 -b=2 z k j +h k j =2 z k j -h k j =2 [1; (z -z k ); (z -z k ) 2
]dz dy [START_REF] Lesieutre | Time domain modeling of linear viscoelasticity using anelastic displacement elds[END_REF] where the local z-axis of the k j th sublayer is situated at

z kj = ± h kj + h c 2 ± j-1 r=1 h kr ;k = a(+);b(-)
One may notice from ( 9) that for an applied dierence of potential V kj on the k j th face piezoelectric sublayer, the variations V kj vanish, in the last two terms of H kj , and its second term results in the virtual work H kjme of a generalized piezoelectric load equivalent to

H kjme = - L 0 e * kj 31 A kj m k + I kj b k V kj h kj dx ( 11 
)
when moved to the right-hand side of [START_REF] Lam | Vibration control through passive constrained layer damping and active control[END_REF]. For homogeneous properties in the axial direction, according to (4), this may also be expressed as the virtual work of boundary generalized piezoelectric loads,

H kjme = -e * kj 31 A kj u ± ũ 2 - I kj w ′ L 0 V kj h kj (12) 
The last term of [START_REF] Rahmoune | New thin piezoelectric plate models[END_REF] means that the piezoelectric layers may induce bending on the sandwich beam due to layered faces asymmetry, unlike for single layer faces [START_REF] Benjeddou | New shear actuated smart structure beam nite element[END_REF]. The inertial forces virtual work of the layered faces sandwich beam is

T = T c + b k=a n; m j=1 T kj (13) 
where

T kj = - k j [ kj ( u k u k + w w)] d kj ; T c = - c [ c ( u c u c + w w)] d c
with i being the volumic mass density of the ith layer and • states for @•=@t.

Using the displacements relations ( 1) and ( 3), and integrating through thickness, the above equations become

T kj = - L 0 kj [A kj (u k u k + w w) - I kj (u k w ′ + w ′ u k )+I kj w ′ w ′ ]dx T c = - L 0 c [A c (u c u c + w w)+I c c c ]dx (14) 
Notice that, due to the multilayer characteristic of the faces, there are translation-rotation inertial coupling terms. The beam is subjected to surface axial and transversal forces at the boundaries of each face sublayer (F kj x ;F kj z ) and core (F c x ;F c z ), and to body ones (f

kj x ;f kj z ;f c x ;f c z ).
Their virtual work on the beam can be written as

W = c i=a W i (15) 
where

W k = n; m j=1    A k j F kj x u k + F kj z w dA kj L 0 + k j f kj x u k + f kj z w d kj    W c = Ac (F c x u c + F c z w)dA c L 0 + c (f c x u c + f c z w)d c
Using displacement expressions (1), one may write the previous equation for the kth face and the core as

W k =[ N k u k -M k w ′ + Q k w] L 0 + L 0 (n k u k -m k w ′ + q k w)dx W c =[ N c u c + M c c + Q c w] L 0 + L 0 (n c u c + m c c + q c w)dx (16) 
where the, boundary and distributed, normal, moment and shear resultants are dened as

N k = j N kj ;M k = j M kj ;Q k = j Q kj ;n k = j n kj ;m k = j m kj ;q k = j q kj (17) 
with

N kj = A k j F kj x dA kj ;n kj = A k j f kj x dA kj M kj = A k j F kj x (z -z k )dA kj ;m kj = A k j f kj x (z -z k )dA kj Q kj = A k j F kj z dA kj ;q kj = A k j f kj z dA kj N c = Ac F c x dA c ;n c = Ac f c x dA c M c = Ac F c x z dA c ;m c = Ac f c x z dA c Q c = Ac F c z dA c ;q c = Ac f c z dA c
One may notice that the multilayer characteristic of the faces has no eect on the normal and transverse shear stress resultants N k and Q k , since they may be obtained by the sum of the forces corresponding to each sublayer. However, a dierence between the axial forces F kj x (j =1;::: ;(n; m)) of each sublayer of face k may induce a bending moment M k . Similarly, the distributed forces f kj x (j =1;::: ;(n; m)) may induce a distributed bending moment m k . This membrane-bending coupling is equivalent to that observed for the piezoelectric action [START_REF] Rahmoune | New thin piezoelectric plate models[END_REF] due to the rst moment of inertia I kj .

FINITE ELEMENT FORMULATION

From the variational formulation and virtual work expressions presented in the last section, a nite element model was developed for the laminate faces adaptive sandwich beam. It assumes Lagrange linear shape functions for the mean and relative axial displacements, u and ũ and Hermite cubic ones for the transverse deection w. The dierence of electric potentials V kr (r =1;::: ;(n; m)) of the n; m face piezoelectric sublayers are assumed constant in the element (Figure 2). This leads to the following elementary degrees of freedom (dof) column vector qe (cf. Appendix A): qe = col( u 1 ;w 1 ;w ′ 1 ; ũ1 ; u 2 ;w 2 ;w ′ 2 ; ũ2 ;V a1e ;::: ;V a n e ;V b1e ;:::

;V b m e ) (18) 
Based on this dof vector and relations [START_REF] Benjeddou | New shear actuated smart structure beam nite element[END_REF] 

B kb + B T kb B km )+I kj B T kb B kb ]dx Ke c = Le 0 [c * c 11 (A c B T cm B cm + I c B T cb B cb )+k c c c 55 A c B T cs B cs ]dx Ke kjme = - Le 0 e * kj 31 1 h kj [A kj B T km + I kj B T kb ]N pkj dx Ke kje = - Le 0 i * kj 33 A kj h 2 kj N T pkj N pkj dx (20) 
with L e being the element length. B km , B cm , B kb and B cb are the, faces (k) and core (c), membrane (m) and bending (b) strain operators. B cs is the core shear strain operator and, N pkj is the dierence of electric potential interpolation matrix (cf. Appendix A). Similarly, the elementary inertial forces virtual work T e kj and T e c may be discretized as 

T
)
where qe is the elementary acceleration vector. From ( 14) and ( 18), the elementary mass matrices of the k j th face sublayer and core are, respectively, where Fe m denes the vector of generalized distributed mechanical nodal forces obtained from [START_REF] Trindade | Finite element analysis of frequency-and temperature-dependent hybrid active-passive vibration damping[END_REF],

Fe m = Le 0 [N T ax n a + N T bx n b + N T cx n c + N T az (q a + q b + q c ) -N T ar (m a + m b )+N T cr m c ]dx (24)
Assembling on the faces sublayers, then on the beam layers and using Equations ( 19), ( 21) and ( 23), the discretized variational equation [START_REF] Lam | Vibration control through passive constrained layer damping and active control[END_REF] reduced to the element level can be written as

( Me f + Me c ) qe +( Ke f + Ke c ) qe = Fe m ( 25 
)
where Me f = k j Me kj and Ke f = k j Ke kj . One may notice that, since electrical dofs inertia vanishes, mechanical and electrical dofs are coupled statically only (time-independent relationship). Therefore, two dierent cases may be considered for each piezoelectric sublayer: applied dierence of potentials (actuator) or unknown dierence of potentials (sensor). Let us dene the corresponding subgroups V e A and V e S of the elementary electrical dofs V e . Then, the vector qe in (18) may be decomposed such that qe = col(q e ; V e S ; V e A ). Consequently, the system (25) becomes Since the electrical dofs V e A are imposed, their virtual variations V e A vanish. Therefore, the third equation of ( 26) is automatically satised and may be ignored. Also the corresponding term to V e A in the rst equation can be moved to the right-hand side as an equivalent electrical work, dened by

F e e = K e fmeA V e A ( 27 
)
The second equation of ( 26) can then be used to express the unknown potentials V e S in terms of the mechanical dofs q e , such as

V e S = K e -1
feS K e T fmeS q e (28)

Replacing expressions ( 27) and (28) in the rst equation of (26) leads to the following electrical dof condensed elementary system:

Me q e +(K e fm -K e fmeS K e -1 feS K e T fmeS + K e c )q e = F e m + F e e (29)

Hence, the mechanical dofs, due to mechanical and=or electrical loads F e m and F e e , may be evaluated rst, then unknown electrical dofs are found through a post-processing calculation using (28). This method not only leads to faster calculations since matrices dimensions are lower but also prevents ill-conditioning problems of solving directly Equation (26). Therefore, both piezoelectric actuators and sensors can be considered in a closed-loop analysis.

Then, one may assemble this elementary system to get the corresponding global mass and stiness matrices, and mechanical and electrical load vectors, M, K f , K c , F m and F e . Also, a standard viscous damping matrix D may be considered a posteriori. Consequently, the assembled system becomes

M q + D q +(K f + K c )q = F m + F e ( 30 
)
It is worthwhile to notice that the induced potential in the sensors due to the direct piezoelectric eect, that is the piezoelectric layers in which the electric potentials are not imposed, leads to an increase in the stiness of these layers. This is due to an electrical load generated in the piezoelectric layer by the induced potential. Through a theoretical analysis, it can be shown that this stiness augmentation is such that the elastic material constants c In order to correctly model the viscoelastic core, one must take into account the frequencydependence of its viscoelastic material. This is done here, through the Lesieutre's ADF model, which allows both frequency and time-domain analyses of highly damped structures [START_REF] Lesieutre | Time domain modeling of linear viscoelasticity using anelastic displacement elds[END_REF].

Using the procedure presented in Reference [START_REF] Trindade | Modeling of frequency-dependent viscoelastic materials for activepassive vibration damping[END_REF], it is possible to include the viscoelastic modelling in the equations of motion (30) without needing to reformulate the nite element model. This procedure shall be briey recalled here. Hence, supposing the viscoelastic Poisson's ratio frequency-independent, so that the shear and Young's moduli are proportional the discretized equations of motion (30) can be written as

M q + D q +[K f + G * (t) K c ]q = F m + F e (32) 
where the condensed faces stiness matrix of (30) is K f and the viscoelastic core stiness is

K c = G * (t) K c . G * (t)
is the complex frequency-dependent shear modulus of the viscoelastic layer.

The ADF model is based on a separation of the viscoelastic material strains in an elastic part, instantaneously proportional to the stress, and an anelastic part, representing material relaxation [START_REF] Lesieutre | Time domain modeling of linear viscoelasticity using anelastic displacement elds[END_REF]. Lesieutre and Lee [START_REF] Lesieutre | A nite element for beams having segmented active constrained layers with frequencydependent viscoelastics[END_REF] also suggested a nite element implementation through replacing the dofs vector q by q e = qi q a i in the viscoelastic strain energy. q e and q a i represent the dofs vectors associated with the elastic and anelastic strains, respectively. Therefore the following systems, describing the evolution of elastic and anelastic dofs, respectively, hold:

M q + D q +(K f + K ∞ c )q -K ∞ c i q a i = F m + F e (33) 
C i i K ∞ c qa i -K ∞ c q + C i K ∞ c q a i = 0 (34)
where

K ∞ c = G ∞ K c , for G ∞ = G 0 (1 + i i ), C i =(1+ i i )= i
, and material parameters G 0 , i and i are evaluated by curve-tting of the measurements of G * (!), represented as a series of functions in the frequency-domain

G * (!)=G 0 + G 0 i i ! 2 +j! i ! 2 + 2 i (35)
and j states for j = √ -1. Notice that there is one group of anelastic dofs q a i for each series of functions considered. From (35), the relaxed or static modulus is clearly G 0 = G * (0). Combination of (33) and (34), leads to the following augmented system:

M q + D q + K q = F (36) 
with

M = M0 00 ; D = D0 0D aa ; F = F m + F e 0 K = K f + K ∞ c K ea K T ea
K aa ; q = col(q; q a 1 ;:::;q a n )

where

D aa =    C1 1 K ∞ c 0 . . . 0 Cn n K ∞ c    ; K aa =    C 1 K ∞ c 0 . . . 0 C n K ∞ c    K ea =[-K ∞ c ••• -K ∞ c ]
After a modal decomposition q a i = T qd i such that = T T K ∞ c T, the matrices D aa , K aa and K ea corresponding to the dissipative dofs can be written as (see Reference [START_REF] Trindade | Modeling of frequency-dependent viscoelastic materials for activepassive vibration damping[END_REF] for details)

D aa =G ∞ diag C 1 1 ; ••• ; C n n ; K aa =G ∞ diag(C 1 ; ••• ;C n ); K ea =[-K ∞ c T ••• -K ∞ c T]
so that the system dimension is reduced and the matrices associated with the ADF dissipative dofs are diagonalized. is a diagonal matrix containing the non-vanishing eigenvalues of the high-frequency viscoelastic stiness matrix K ∞ c and T is the corresponding eigenvectors matrix. More details on this passage may be found in Reference [START_REF] Trindade | Modeling of frequency-dependent viscoelastic materials for activepassive vibration damping[END_REF].

CONTROL ALGORITHM

For control design, the augmented equations (36) are transformed into state-space form as follows:

ẋ = Ax + Bu + p y = Cx with x = q q ( 37 
)
where C establishes, in terms of the state vector x, the variables y to be measured. A, B and p are the system dynamics, input distribution and perturbation matrices, respectively. They are given by

A =          00 ••• 0I 1 C1 T T -1 I0 0 . . . . . . 0 n Cn T T 0 -n I0 -M -1 (K p + K ∞ c ) M -1 K ∞ c T ••• M -1 K ∞ c T -M -1 D          B =   0 0 M -1 F * e   ; p =   0 0 M -1 F m   (38) 
The potential factored-out piezoelectric force vector F * e is dened as the piezoelectric force F e for a unit applied voltage on the corresponding actuator.

The system matrices in (37) are, generally, too large for use in the control design. Hence, they are reduced further using x = T r x, where the complex right eigenvector matrix T r of the system matrix A, and its corresponding left counterpart T l , are the solution of

AT r =T r ; A T T l =T l (39) 
normalized by T T l T r = I. The overdamped modes, corresponding to the dissipative dofs, are eliminated and some elastic modes are retained, leading to a reduced state vector x. Thus, the reduced state-space system of (37) is ẋ = Â x + Bu + p; y = Ĉ x (40)

where  = T T l AT r ; B = T T l B; p = T T l p; Ĉ = CT r A full state feedback control u =-K g x is considered. Replacing this control law in (40), the following control system is obtained: ẋ =(  -BK g ) x + p; y = Ĉ x (41) An iterative linear quadratic regulator (LQR) optimal control algorithm, modied from that developed in Reference [START_REF] Trindade | Parametric analysis of the vibration control of sandwich beams through shear-based piezoelectric actuation[END_REF], is used for K g evaluation, under limited maximum beam tip deection and dierence of electric potential applied to the piezoelectric actuator. That is, the LQR weight matrices are considered as Q and R = I, being evaluated to respect maximum beam deection and control voltage. The algorithm is shown in Figure 3.

Notice that, here, the factor controls the input weight matrix R, and not the state one Q as in Reference [START_REF] Trindade | Parametric analysis of the vibration control of sandwich beams through shear-based piezoelectric actuation[END_REF], although the concept is equivalent.

CONCLUSIONS

An electromechanically coupled nite element model to handle active-passive damped multilayer sandwich beams was presented. Classical laminate theory was used to model the multilayer piezoelectric faces, whereas classical sandwich theory was considered for the laminate piezoelectric face=viscoelastic core=laminate piezoelectric face beam, leading to three-layer kinematic description and layerwise material constitutive equations. This has resulted in additional membrane-bending coupling terms in electromechanical internal and external forces and translation-rotation coupling terms in inertial forces. The nite element was implemented assuming Lagrange linear shape functions for the mean and relative axial displacements and Hermite cubic ones for the transverse deection. The dierences of electric potentials of the piezoelectric layers were assumed constant in the element. This yielded eight mechanical dofs and one electrical dof per piezoelectric layer. It was shown that sensor voltages can be either considered as electrical dofs or evaluated through post-processing of mechanical results. When using electrical dofs, these were condensed at the elementary level, leading to a modied eight mechanical dofs nite element.

The viscoelastic core was modelled through Lesieutre's ADF time-domain model to account for frequency-dependent properties of such material. This has resulted in an augmented statespace system capable of well representing, even in time-domain analyses, the frequencydependence of highly damped beams. The problem of increase in the system dimension, due to the additional ADF internal variables, was solved through a complex-basis model reduction of the augmented state-space system. The reduced system was then applied to the activepassive constrained optimal control of sandwich damped beams, using an iterative control algorithm to account for input constraints.

In the second part of this paper, this piezo-visco-elastic nite element model will be validated through comparisons with analytical, numerical and experimental results found in the literature. Then, the performance of the hybrid active-passive control system will be evaluated through the active control of a viscoelastically damped cantilever sandwich beam.

The present nite element model has been extended to take into account the viscoelastic material temperature-dependence eect [START_REF] Trindade | Finite element analysis of frequency-and temperature-dependent hybrid active-passive vibration damping[END_REF] and optimization procedures are to be implemented. Also, this model was used to compare the performance of several control algorithms [START_REF] Trindade | Piezoelectric active vibration control of sandwich damped beams[END_REF].

APPENDIX A. FINITE ELEMENT INTERPOLATION AND DEFORMATION MATRICES

Lagrange linear and Hermite cubic shape functions were considered for the axial displacements and deection, respectively. Therefore, the generalized displacements vector d = col( u; w; ũ), are discretized as

d = Nd qe where Nd =    N 1 000 N 2 000 0 ••• 0 0 N 3 N 4 0 0 N 5 N 6 0 0 ••• 0 000N 1 000N 2 0 ••• 0   
with qe the dofs vector dened in (18) and N l (l =1;::: ;6) being the following standard shape functions:

N 1 =1- x L e ;N 2 = x L e ;N 3 =1- 3x 2 L 2 e + 2x 3 L 3 e N 4 = x 1 - x L e 2 ;N 5 = x 2 L 2 e 3 - 2x L e ;N 6 = x 2 L e x L e - 1 
The dierences of electric potentials in the faces sublayers are discretized as

V kj = Npkj qe
where the interpolation matrices Npkj are 

             Npa1 . . . Npa n Npb1 . . . Npb m              =           0000 

Figure 1 .

 1 Figure 1. Kinematics representation of the laminate faces sandwich beam.

Figure 2 .

 2 Figure 2. Piezoelectric laminated sandwich beam nite element.

  (N T cx N cx + N T z N z )dx; Me cr = Le 0 c I c N T cr N cr dx(22)N ix , N z and N ir are the translation in x and z directions and rotation interpolation matrices (cf. Appendix A). Since the point forces can be added a posteriori to the matricial system, the discretized elementary virtual work of applied mechanical forces reduces to

Figure 3 .

 3 Figure 3. Optimal control design under voltage constraint V max .

k

  Substitution of this result in (9) leads, for a known dierence of potential (V kj = 0constants are given in (31

  ). ;M i ;Q i point normal, moment and shear resultants on layer i, respectively n i ;m i ;q i distributed normal, moment and shear resultants on layer i, respectively N ix translation in x direction interpolation matrix for ith layer

	c ij ;e lj ; i ll	elastic, piezoelectric and dielectric constants, respectively
	D		viscous damping matrix
	D		ADF augmented damping matrix
	i		ADF viscoelastic material parameter of the ith series
	d		membrane-bending coupling parameter
	dof		degrees of freedom
	H		virtual work of electromechanical internal forces
	T		virtual work of inertial forces
	W		virtual work of external forces
	E 3 ;D 3		transverse electrical eld and displacement, respectively
	b i m i s c , 5c		bending strain of layer i axial strain at centreline of layer i (membrane strain) shear strain of layer c
	1i		axial strain of layer i
	F m		mechanical loads vector
	F e		induced electrical loads vector
	G *		viscoelastic core frequency-dependent complex shear modulus
	G 0		viscoelastic core relaxed (static) shear modulus
	G ∞		viscoelastic core unrelaxed shear modulus
			LQR state ponderation factor
	h i		thickness of layer i
	h v		thickness of viscoelastic layer
	I i		cross-section second moment area of the layer i
	I i		cross-section rst moment area of the layer i
	K		ADF augmented stiness matrix
	K c		core stiness matrix
	K ∞ c		unrelaxed core stiness matrix
	K f		faces stiness matrix
	Ke kjm		elementary mechanical stiness matrix
	Ke kjme		elementary piezoelectric stiness matrix
	Ke kje		APPENDIX C. NOMENCLATURE elementary dielectric stiness matrix
	A i K g	control gain matrix cross-sectional area of the layer i relative shear-bending coupling parameter
	A M Â M	state-space system matrix mass matrix reduced state-space system matrix ADF augmented mass matrix
	a B B B im N N ir	piezoelectric actuators length state-space control input matrix reduced state-space control input matrix ith layer membrane strain interpolation matrix rotation interpolation matrix for ith layer
	B ib N z	ith layer bending strain interpolation matrix translation in z direction interpolation matrix
	B cs N pkj	core shear strain interpolation matrix k j sublayer dierence of electric potential interpolation matrix
	b; L i	beam width and length, respectively ADF viscoelastic material parameter of the ith series
	C p	state-space output matrix state-space perturbation vector
	Ĉ Q	reduced state-space output matrix LQR state ponderation matrix
	C i q	ADF viscoelastic material parameter of the ith series dofs vector

i
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Then, to discretize the displacements of each layer of the beam (3), separate interpolation matrices are introduced. Those corresponding to the translation in x and z directions and rotation are the following:

Starting from relations (4) and using these displacements interpolation matrices, the faces (k) and core (c), membrane (m) and bending (b) strain operators are written as

Shear strains are only considered in the core which are represented by the following operator:

From the terms of ( 9) corresponding to V kj and noting that no terms relative to such variations are present neither in [START_REF] Trindade | Parametric analysis of the vibration control of sandwich beams through shear-based piezoelectric actuation[END_REF] nor in [START_REF] Trindade | Finite element analysis of frequency-and temperature-dependent hybrid active-passive vibration damping[END_REF], the variational formulation (7) results, for the electric q ADF augmented dofs vector q e elastic dofs vector q a i ith anelastic dofs vector q e elementary mechanical dofs vector qe elementary dofs vector R LQR input ponderation matrix i mass density of the layer i 1 ; 5 axial and shear stresses, respectively T l ; T r left and right state-space complex eigenvectors matrices u control input vector u mean of the axial displacements of surface layers centrelines ũ dierence between the axial displacements of surface layers centrelines u 1 ; ũ1 ;w 1 ;w ′ 1 mean and relative axial faces displacements, transverse deection and its derivative for element node 1 u 2 ; ũ2 ;w 2 ;w ′ 2 mean and relative axial faces displacements, transverse deection and its derivative for element node 2 u i axial displacement of the centreline of the layer i u i axial displacement of the layer i V e A applied (actuator) elementary electric dofs vector V e S unknown (sensor) elementary electric dofs vector V kj dierence of electric potentials on the sublayer k j V + kj ;V