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Finite element modelling of hybrid active–passive vibration
damping of multilayer piezoelectric sandwich

beams—part I: Formulation

M. A. Trindade∗;†, A. Benjeddou and R. Ohayon

Structural Mechanics and Coupled Systems Laboratory; Conservatoire National des Arts et M�etiers;

2; rue Cont�e; 75003 Paris; France

This work, in two parts, proposes, in this �rst part, an electromechanically coupled �nite element
model to handle active–passive damped multilayer sandwich beams, consisting of a viscoelastic core
sandwiched between layered piezoelectric faces. The latter are modelled using the classical laminate
theory, whereas the face=core=face system is modelled using classical three-layers sandwich theory,
assuming Euler–Bernoulli thin faces and a Timoshenko relatively thick core. The frequency-dependence
of the viscoelastic material is handled through the anelastic displacement �elds (ADF) model. To make
the control system feasible, a modal reduction is applied to the resulting ADF augmented system.
Validation of the approach developed in this part is presented in Part 2 of the paper together with the
hybrid

 
damping

 
performance

 
analysis

 
of

 
a

 
cantil ever

 
beam.

 
KEY WORDS: �nite element; multilayer sandwich beam; piezoelectric material; viscoelastic material;

active–passive vibration damping

INTRODUCTION

Since the mid 1980s, researches for new vibration control systems have been directed to
hybrid active–passive control strategies. These were mainly based on simultaneous use of
piezoelectric and viscoelastic materials in the same damping treatment. In particular, it was
found [1] that, during the last 6 years, these researches have focused on con�gurations that
augment the damping ability of the conventional passive constrained layer damping (PCLD)
treatments. Depending on the position of the piezoelectric actuator, the passive and active
actions can operate either separately or simultaneously. In the former con�guration, the passive
constrained layer and piezoelectric patches are placed away from each other, so that each
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of them uses independently its own damping mechanism. That is, the piezoelectric actuator
uses the conventional active control (AC) mechanism, based on induced in-plane piezoelectric
actuation strains; whereas, the passive constrained layer uses its conventional passive damping
mechanism, based on vibratory energy dissipation through transverse shear strains induced in
the viscoelastic material by relative in-plane displacements of the constraining layer and base
structure. Such con�guration is then called AC=PCLD treatment. Moreover, combined active
and passive control actions can be obtained by replacing the passive constraining layer by
an active piezoelectric layer. This is the so-called active constrained layer damping (ACLD)
treatment. Here, the active constraining layer tends to augment the relative in-plane displace-
ments in order to increase the relative shear in the viscoelastic core. Hence, more dissipation
and damping can be obtained. Thus, the ACLD uses the same damping mechanism as the
PCLD. This is also the mechanism of the con�gurations where the piezoelectric actuator is
bonded to the upper surface of the constraining layer.

Review of hybrid damping con�gurations proposed in the literature can be found in Refer-
ences [1; 2]. Although these hybrid damping constructions vary from three up to seven layers,
they were mainly modelled using the classical three-layer sandwich theory. This was made us-
ing several simplifying assumptions. Hence, Baz and Ro [3] have reduced a four-layer ACLD
beam into a three-layer one by assuming the piezoelectric sensor and base beam as an equiv-
alent single layer in order to formulate a speci�c two-node sandwich �nite element. Later, the
previous element was adapted by Crassidis, Baz and Wereley [4] to model a �ve-layers hybrid
beam which was reduced to a three-layer construction by considering the base beam and the
attached piezoelectric sensor and actuator on its upper and lower surfaces, respectively, as
a single layer. Recently, the extension and 
exure motions of a seven-layers hybrid damped
beam were modelled separately using a Rayleigh–Ritz approach by Rongong et al. [5]. Here,
the strains of the constraining layer and the bonded piezoelectric actuator on its upper sur-
face were supposed compatible. Four-layer hybrid beam con�gurations were also analysed
without reduction of the number of layers. Chen and Baz [6] have discretized each layer of
the construction using three-dimensional �nite elements. In particular, for the piezoelectric
layers, additional electric potential degrees of freedom were necessary to take into account
the piezoelectric e�ect. However, Lam et al. [7] have used the Rayleigh–Ritz approach to
compare various three- and four-layer hybrid AC=PCLD beam con�gurations. Nevertheless,
no models have been presented for other than piezoelectric and passive constraining layer
patches attached on the same side of the beam; that is for three-layer construction only.

In a previous work [8], a �nite element model was proposed by the present authors to handle
piezoelectric sandwich beams. To solve shear locking phenomena of this model, its kinematics
parametrization was then modi�ed in Reference [9] leading to a shear locking free electrome-
chanically coupled �nite element model. In the present work, this sandwich beam model
[9] is extended to account for multilayer sandwich beams, consisting of a viscoelastic core
sandwiched between layered piezoelectric faces. The latter are modelled using the classical
laminate theory, whereas classical sandwich theory is considered for the face=core=face beam,
assuming Euler–Bernoulli hypotheses for the faces and Timoshenko ones for the core. The
anelastic displacement �elds (ADF) model, developed by Lesieutre and Bianchini [10], is
used to handle the frequency-dependence of the viscoelastic material. The latter was preferred
to that of Golla–Hughes–McTavish (GHM), because the former has less material parameters
and leads to smaller system according to a recent comparison made by Trindade et al. [11].
Then, a complex-basis model reduction of the augmented system is proposed and applied to
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the active–passive constrained optimal control of sandwich damped beams. The control gains
are provided by an LQR control law with limited control voltage and restricted beam tip
de
ection, in order to respect the model assumptions. After its validation, achieved in the
Part 2 of this paper, the new �nite element is used to study the active control of a sandwich
cantilever beam with viscoelastic core through a pair of attached piezoelectric actuators. The
hybrid damping performance of the �ve-layer con�guration is studied for viscoelastic layer
thickness and actuator length variations.

The speci�c two-node sandwich �nite element with layered faces containing piezoelectric
actuator patches, the modal reduction of the augmented ADF viscoelastic model, and the
piezoelectric active control of sandwich damped beam con�guration are the main originalities
of the present work. In what follows, a theoretical variational formulation of the problem
is presented and then used to develop the electromechanically coupled �nite element model
of multilayer sandwich beams. Next, the ADF model is brie
y presented to account for the
frequency-dependence of the viscoelastic core properties. An elastic–piezoelectric–viscoelastic
coupled state-space model is then constructed, reduced and applied to an optimal LQR
controller design.

THEORETICAL FORMULATION

A sandwich beam made of laminate faces, with elastic and=or piezoelectric sublayers, and
viscoelastic core is considered. Therefore, faces are modelled using classical laminate theory
and the whole beam is modelled using classical sandwich theory. Euler–Bernoulli assumptions
are considered for the laminate faces, whereas those of Timoshenko are retained for the
viscoelastic core. The piezoelectric layers are supposed transversely poled and subject to
transverse electrical �elds. Elastic and viscoelastic layers are assumed insulated. All layers
are assumed perfectly bonded and in plane stress state. The length, width and thickness of the
beam are denoted by L, b and h, respectively. The subscripts aj, bj and c refer to quantities
relative to the jth sublayer of upper a and lower b faces and to the core, respectively. Detailed
nomenclature is presented in Appendix C.

Kinematics

Axial displacements �ui(x; y; z) of the ith layer are assumed linear through thickness, whereas
transverse ones �wi(x; y; z) are supposed constant

�ui(x; y; z) = ui(x) + (z − zi)�i(x); i= a; b; c

�wi(x; y; z) = w(x)
(1)

The kinematic description of the sandwich beam is presented in Figure 1. Notice that the
same displacement �elds uk (k = a; b) are considered for all sublayers kj of the face k. From
Euler–Bernoulli hypotheses, �k =�=−w′ (k = a; b), where, •′ is used to denote @ •=@x. The
mid-plan of the core is set to coincide with the origin of the z-axis, so that zc = 0. Let us
de�ne the mean and relative axial displacements of the laminate faces �u and ũ as (Figure 1)

�u=
ua + ub

2
; ũ= ua − ub (2)
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Figure 1. Kinematics representation of the laminate faces sandwich beam.

Using the displacement continuity conditions between layers, one may write their axial
displacements in terms of the above-de�ned variables �u and ũ:

�uk =

(

�u± ũ

2

)

− (z − zk)w
′; k = a(+); b(−)

�uc = (�u + dw′) + z

(

ũ

hc
+ �w′

)
(3)

where

d=
ha − hb

4
; �=

ha + hb
2hc

; zk =± hk + hc
2

; hk =
n;m
∑

j=1

hkj

with n and m being the number of sublayers in the faces a and b, respectively. Notice that
these displacement �elds are the same as those of Reference [9], they are repeated here
for clarity. Using the usual strain–displacement relations for each layer, in conjunction with
relations (3), the axial �1 and shear �5 strains of the ith layer can be written as

�1i = �mi + (z − zi)�
b
i

�5c = �s
c

(4)

where

�mk = �u′ ± ũ′

2
; �bk =−w′′; k = a(+); b(−)

�mc = �u′ + dw′′; �bc =
ũ′

hc
+ �w′′; �sc =

ũ

hc
+ (� + 1)w′

The superscripts m, b and s state for membrane, bending and shear strains. Notice also that d
is a membrane-bending coupling parameter. It vanishes for symmetric sandwich constructions.
Whereas, � is a relative shear-bending coupling parameter. This coupling increases for thin

4



cores and thick faces and decreases for the opposite case. The parameter � vanishes only for
a single Timoshenko core, i.e. without covering face layers.

A constant transverse electrical �eld is assumed for the piezoelectric layers and the remain-
ing in-plane components are supposed to vanish. Although electrostatic equilibrium equation
is only satis�ed with a linear electrical �eld assumption [8; 12], it was found that the linear
part is negligible for the problems treated in this work. Consequently it is, for the kjth face
piezoelectric sublayer,

E3kj =−
Vkj
hkj

(5)

where Vkj is the di�erence of electric potential of the kjth laminae, de�ned by Vkj =V+
kj
−V−

kj
,

where V+
kj

and V−

kj
are the voltages applied on the upper and lower skins of the kjth face

piezoelectric sublayer.

Reduced constitutive equations

Linear orthotropic piezoelectric materials with material symmetry axes parallel to those of the
beam are considered. cij, elj and ill (i; j= 1; : : : ; 6; l= 1; 2; 3) denote their elastic, piezoelectric
and dielectric constants. For simplicity of notation, all layers will be considered piezoelectric.
Elastic and viscoelastic layers are obtained by making their piezoelectric constants vanish.
The three-dimensional linear constitutive equations of an orthotropic piezoelectric layer can
be reduced to (for details of this reduction, see Reference [8])

�1 = c∗11�1 − e∗31E3; �5c = cc55�5c

D3 = e∗31�1 + i
∗

33E3

(6)

where

c∗11 = c11 −
c2

13

c33

; e∗31 = e31 −
c13

c33

e33; i
∗

33 = i33 +
e2

33

c33

�1, �5 and D3 are axial and shear stress components and transverse electrical displacement.
Notice that electromechanical coupling in the piezoelectric face sublayers is between axial
strain and transverse electrical �eld. This is the conventional piezoelectric extension actuation
mechanism. Its static actuation and control performances were compared with those of the
shear actuation mechanism in References [13; 14].

Variational formulation

Using d’Alembert’s principle, the following variational equation can be written for the piezo-
electric layered faces sandwich beam:

�T − �H + �W = 0; ∀� �u; �ũ; �w; �Vkj (7)

where �T , �H and �W are the virtual work of inertial, electromechanical internal and applied
mechanical forces, respectively.
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The electromechanical internal forces virtual work of the layered piezoelectric faces
sandwich beam is

�H = �Hc +
b
∑

k=a

n;m
∑

j=1

�Hkj (8)

where

�Hkj =

∫


kj

(�1kj��1k −D3kj�E3kj) d
kj ; �Hc =

∫


c

(�1c��1c + �5c��5c) d
c

with 
kj and 
c being the volume of the kjth sublayer and the core, respectively.
Using constitutive equations (6), strain (4) and electrical �eld (5) relations, then integrating

through thickness, the above equations, for the kjth face piezoelectric sublayer and elastic core,
become

�Hkj =

∫ L

0

[

c
∗kj
11

(

Akj��
m
k �

m
k + �Ikj��

m
k �

b
k + �Ikj��

b
k�

m
k + Ikj��

b
k�

b
k

)

+ e
∗kj
31

(

Akj��
m
k + �I kj��

b
k

) Vkj
hkj

+ e
∗kj
31

�Vkj
hkj

(

Akj�
m
k + �Ikj�

b
k

)

− i∗kj33 Akj

�Vkj
hkj

Vkj
hkj

]

dx (9)

�Hc =

∫ L

0

(

c∗c11Ac��
m
c �

m
c + c∗c11Ic��

b
c�

b
c + kcc

c
55Ac��

s
c�

s
c

)

dx

where kc is the shear correction factor. Notice that here, unlike in the three-layer sandwich
beam model of Reference [9], there are membrane-bending coupling terms due to the
multilayer characteristic of the faces. Akj , �Ikj and Ikj are, respectively, the area and the �rst
and second moments of inertia of the kjth face sublayer cross-section. These are

[Akj ; �Ikj ; Ikj ] =

∫ b=2

−b=2

∫ zkj+hkj =2

zkj−hkj =2

[1; (z − zk); (z − zk)
2] dz dy (10)

where the local z-axis of the kjth sublayer is situated at

zkj =±
hkj + hc

2
±

j−1
∑

r=1

hkr ; k = a(+); b(−)

One may notice from (9) that for an applied di�erence of potential Vkj on the kjth face
piezoelectric sublayer, the variations �Vkj vanish, in the last two terms of �Hkj , and its second
term results in the virtual work �Hkjme of a generalized piezoelectric load equivalent to

�Hkjme =−
∫ L

0

e
∗kj
31

(

Akj��
m
k + �Ikj��

b
k

) Vkj
hkj

dx (11)

when moved to the right-hand side of (7). For homogeneous properties in the axial direction,
according to (4), this may also be expressed as the virtual work of boundary generalized
piezoelectric loads,

�Hkjme =−e∗kj31

[

Akj

(

� �u± �ũ

2

)

− �Ikj�w
′

]L

0

Vkj
hkj

(12)
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The last term of (12) means that the piezoelectric layers may induce bending on the sandwich
beam due to layered faces asymmetry, unlike for single layer faces [9].

The inertial forces virtual work of the layered faces sandwich beam is

�T = �Tc +
b
∑

k=a

n;m
∑

j=1

�Tkj (13)

where

�Tkj =−
∫


kj

[�kj(��uk ��uk + � �w ��w)] d
kj ; �Tc =−
∫


c

[�c(��uc ��uc + � �w ��w)] d
c

with �i being the volumic mass density of the ith layer and •̇ states for @•=@t.
Using the displacements relations (1) and (3), and integrating through thickness, the above

equations become

�Tkj = −
∫ L

0

�kj [Akj(�uk �uk + �w �w) − �Ikj(�uk �w′ + �w′ �uk) + Ikj�w
′ �w′] dx

�Tc = −
∫ L

0

�c[Ac(�uc �uc + �w �w) + Ic��c ��c] dx

(14)

Notice that, due to the multilayer characteristic of the faces, there are translation–rotation
inertial coupling terms.

The beam is subjected to surface axial and transversal forces at the boundaries of each face

sublayer (F
kj
x ; F

kj
z ) and core (Fc

x ; Fc
z ), and to body ones (f

kj
x ; f

kj
z ; fc

x ; fc
z ). Their virtual

work on the beam can be written as

�W =
c
∑

i=a

�Wi (15)

where

�Wk =
n;m
∑

j=1







[

∫

Akj

(

F
kj
x � �uk + F

kj
z �w

)

dAkj

]L

0

+

∫


kj

(

f
kj
x � �uk + f

kj
z �w

)

d
kj







�Wc =

[
∫

Ac

(Fc
x � �uc + Fc

z �w) dAc

]L

0

+

∫


c

(fc
x � �uc + fc

z �w) d
c

Using displacement expressions (1), one may write the previous equation for the kth face and
the core as

�Wk = [Nk�uk −Mk�w
′ + Qk�w]L0 +

∫ L

0

(nk�uk −mk�w
′ + qk�w) dx

�Wc = [Nc�uc + Mc��c + Qc�w]L0 +

∫ L

0

(nc�uc + mc��c + qc�w) dx

(16)

where the, boundary and distributed, normal, moment and shear resultants are de�ned as

Nk =
∑

j

Nkj ; Mk =
∑

j

Mkj ; Qk =
∑

j

Qkj ; nk =
∑

j

nkj ; mk =
∑

j

mkj ; qk =
∑

j

qkj (17)
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with

Nkj =

∫

Akj

F
kj
x dAkj ; nkj =

∫

Akj

f
kj
x dAkj

Mkj =

∫

Akj

F
kj
x (z − zk) dAkj ; mkj =

∫

Akj

f
kj
x (z − zk) dAkj

Qkj =

∫

Akj

F
kj
z dAkj ; qkj =

∫

Akj

f
kj
z dAkj

Nc =

∫

Ac

Fc
x dAc; nc =

∫

Ac

fc
x dAc

Mc =

∫

Ac

Fc
x z dAc; mc =

∫

Ac

fc
x z dAc

Qc =

∫

Ac

Fc
z dAc; qc =

∫

Ac

fc
z dAc

One may notice that the multilayer characteristic of the faces has no e�ect on the normal and
transverse shear stress resultants Nk and Qk , since they may be obtained by the sum of
the forces corresponding to each sublayer. However, a di�erence between the axial forces

F
kj
x (j= 1; : : : ; (n;m)) of each sublayer of face k may induce a bending moment Mk . Similarly,

the distributed forces f
kj
x (j= 1; : : : ; (n;m)) may induce a distributed bending moment mk . This

membrane-bending coupling is equivalent to that observed for the piezoelectric action (12)
due to the �rst moment of inertia �Ikj .

FINITE ELEMENT FORMULATION

From the variational formulation and virtual work expressions presented in the last section,
a �nite element model was developed for the laminate faces adaptive sandwich beam. It
assumes Lagrange linear shape functions for the mean and relative axial displacements, �u and
ũ and Hermite cubic ones for the transverse de
ection w. The di�erence of electric potentials
Vkr (r= 1; : : : ; (n̂; m̂)) of the n̂; m̂ face piezoelectric sublayers are assumed constant in the
element (Figure 2). This leads to the following elementary degrees of freedom (dof) column
vector q̂e (cf. Appendix A):

q̂e = col( �u1; w1; w
′

1; ũ1; �u2; w2; w
′

2; ũ2; Va1e; : : : ; Van̂e; Vb1e; : : : ; Vbm̂e) (18)

Based on this dof vector and relations (9), the discretized virtual work of the elementary
electromechanical internal forces of the face sublayers �H e

kj
and the core �H e

c are

�H e
kj

= �q̂Te (K̂e
kjm

− K̂e
kjme

− K̂e T
kjme

+ K̂e
kje

)q̂e = �q̂Te K̂
e
kj
q̂e

�H e
c = �q̂Te K̂

e
cq̂e

(19)
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Figure 2. Piezoelectric laminated sandwich beam �nite element.

where the elementary mechanical K̂e
kjm
; K̂e

c, piezoelectric K̂e
kjme

and dielectric K̂e
kje

sti�ness

matrices have the expressions

K̂e
kjm

=

∫ Le

0

c
∗kj
11 [AkjB

T
kmBkm + �Ikj(B

T
kmBkb + BT

kbBkm) + IkjB
T
kbBkb] dx

K̂e
c =

∫ Le

0

[c∗c11(AcB
T
cmBcm + IcB

T
cbBcb) + kcc

c
55AcB

T
csBcs] dx

K̂e
kjme

= −
∫ Le

0

e
∗kj
31

1

hkj
[AkjB

T
km + �IkjB

T
kb]Npkj dx

K̂e
kje

= −
∫ Le

0

i
∗kj
33

Akj

h2
kj

NT
pkj
Npkj dx

(20)

with Le being the element length. Bkm, Bcm, Bkb and Bcb are the, faces (k) and core (c),
membrane (m) and bending (b) strain operators. Bcs is the core shear strain operator and,
Npkj is the di�erence of electric potential interpolation matrix (cf. Appendix A).

Similarly, the elementary inertial forces virtual work �T e
kj

and �T e
c may be discretized as

�T e
kj

= −�q̂Te (M̂e
kj t

− M̂e
kj tr

− M̂e T
kj tr

+ M̂e
kjr

) �̂qe = − �q̂Te M̂
e
kj

�̂qe

�T e
c = −�q̂Te (M̂e

ct + M̂e
cr)

�̂qe = − �q̂Te M̂
e
c
�̂qe

(21)

where �̂qe is the elementary acceleration vector. From (14) and (18), the elementary mass
matrices of the kjth face sublayer and core are, respectively,

M̂e
kj t

=

∫ Le

0

�kjAkj(N
T
kxNkx +NT

z Nz) dx; M̂e
kj tr

=

∫ Le

0

�kj �Ikj(N
T
kxNkr +NT

krNkx) dx

M̂e
kjr

=

∫ Le

0

�kj IkjN
T
krNkr dx

M̂e
ct =

∫ Le

0

�cAc(N
T
cxNcx +NT

z Nz) dx; M̂e
cr =

∫ Le

0

�cIcN
T
crNcr dx

(22)
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Nix, Nz and Nir are the translation in x and z directions and rotation interpolation matrices
(cf. Appendix A).

Since the point forces can be added a posteriori to the matricial system, the discretized
elementary virtual work of applied mechanical forces reduces to

�W e = �q̂Te F̂
e
m (23)

where F̂em de�nes the vector of generalized distributed mechanical nodal forces obtained from
(16),

F̂em =

∫ Le

0

[NT
axna +NT

bxnb +NT
cxnc +NT

az(qa + qb + qc) −NT
ar(ma + mb) +NT

crmc] dx (24)

Assembling on the faces sublayers, then on the beam layers and using Equations (19),
(21) and (23), the discretized variational equation (7) reduced to the element level can be
written as

(M̂e
f + M̂e

c)
�̂qe + (K̂e

f + K̂e
c)q̂e = F̂em (25)

where M̂e
f =

∑

k

∑

j M̂
e
kj

and K̂e
f =

∑

k

∑

j K̂
e
kj

. One may notice that, since electrical dofs

inertia vanishes, mechanical and electrical dofs are coupled statically only (time-independent
relationship). Therefore, two di�erent cases may be considered for each piezoelectric sublayer:
applied di�erence of potentials (actuator) or unknown di�erence of potentials (sensor). Let
us de�ne the corresponding subgroups Ve

A and Ve
S of the elementary electrical dofs Ve. Then,

the vector q̂e in (18) may be decomposed such that q̂e = col(qe;V
e
S ;V

e
A ). Consequently, the

system (25) becomes







M̂e 0 0

0 0 0

0 0 0















�qe

�V
e

S

�V
e

A









+







Ke
fm +Ke

c −Ke
fmeS −Ke

fmeA

−KeT
fmeS Ke

feS 0

−KeT
fmeA 0 Ke

feA

















qe

Ve
S

Ve
A











=











Fem

0

0











(26)

Since the electrical dofs Ve
A are imposed, their virtual variations �Ve

A vanish. Therefore, the
third equation of (26) is automatically satis�ed and may be ignored. Also the corresponding
term to Ve

A in the �rst equation can be moved to the right-hand side as an equivalent electrical
work, de�ned by

Fee =Ke
fmeAV

e
A (27)

The second equation of (26) can then be used to express the unknown potentials Ve
S in terms

of the mechanical dofs qe, such as

Ve
S =Ke−1

feSK
eT

fmeSqe (28)

Replacing expressions (27) and (28) in the �rst equation of (26) leads to the following
electrical dof condensed elementary system:

M̂e �qe + (Ke
fm −Ke

fmeSK
e−1

feSK
eT

fmeS +Ke
c)qe =Fem + Fee (29)
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Hence, the mechanical dofs, due to mechanical and=or electrical loads Fem and Fee, may be
evaluated �rst, then unknown electrical dofs are found through a post-processing calculation
using (28). This method not only leads to faster calculations since matrices dimensions are
lower but also prevents ill-conditioning problems of solving directly Equation (26). Therefore,
both piezoelectric actuators and sensors can be considered in a closed-loop analysis.

Then, one may assemble this elementary system to get the corresponding global mass and
sti�ness matrices, and mechanical and electrical load vectors, M, Kf, Kc, Fm and Fe. Also,
a standard viscous damping matrix D may be considered a posteriori. Consequently, the
assembled system becomes

M �q+Dq̇+ (Kf +Kc)q=Fm + Fe (30)

It is worthwhile to notice that the induced potential in the sensors due to the direct piezo-
electric e�ect, that is the piezoelectric layers in which the electric potentials are not imposed,
leads to an increase in the sti�ness of these layers. This is due to an electrical load gen-
erated in the piezoelectric layer by the induced potential. Through a theoretical analysis, it

can be shown that this sti�ness augmentation is such that the elastic material constants c
∗kj
11

of the passive piezoelectric layers are replaced by new augmented elastic constants �c
kj
11, for

membrane and membrane-bending coupling terms, and ĉ
kj
11, for bending terms, which are (see

Appendix B)

�c
kj
11 = c

∗kj
11 +

(

e
∗kj
31

)2

i
∗kj
33

; ĉ
kj
11 = c

∗kj
11 +

(

e
∗kj
31

)2

i
∗kj
33

�I 2
kj

Akj Ikj
(31)

VISCOELASTIC CORE FREQUENCY-DEPENDENCE MODELLING

In order to correctly model the viscoelastic core, one must take into account the frequency-
dependence of its viscoelastic material. This is done here, through the Lesieutre’s ADF model,
which allows both frequency and time-domain analyses of highly damped structures [10].
Using the procedure presented in Reference [11], it is possible to include the viscoelastic
modelling in the equations of motion (30) without needing to reformulate the �nite ele-
ment model. This procedure shall be brie
y recalled here. Hence, supposing the viscoelastic
Poisson’s ratio frequency-independent, so that the shear and Young’s moduli are proportional
the discretized equations of motion (30) can be written as

M �q+Dq̇+ [Kf + G∗(t) �Kc]q=Fm + Fe (32)

where the condensed faces sti�ness matrix of (30) is Kf and the viscoelastic core sti�ness

is Kc =G∗(t) �Kc. G
∗(t) is the complex frequency-dependent shear modulus of the viscoelastic

layer.
The ADF model is based on a separation of the viscoelastic material strains in an elastic

part, instantaneously proportional to the stress, and an anelastic part, representing material
relaxation [10]. Lesieutre and Lee [15] also suggested a �nite element implementation through
replacing the dofs vector q by qe = q −

∑

i q
a
i in the viscoelastic strain energy. qe and qai
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represent the dofs vectors associated with the elastic and anelastic strains, respectively. There-
fore the following systems, describing the evolution of elastic and anelastic dofs, respectively,
hold:

M �q+Dq̇+ (Kf +K∞

c )q −K∞

c

∑

i

qai = Fm + Fe (33)

Ci


i

K∞

c q̇
a
i −K∞

c q+ CiK
∞

c q
a
i = 0 (34)

where K∞

c =G∞
�Kc, for G∞ =G0(1 +

∑

i �i), Ci = (1 +
∑

i �i)=�i, and material parameters
G0, �i and 
i are evaluated by curve-�tting of the measurements of G∗(!), represented as
a series of functions in the frequency-domain

G∗(!) =G0 + G0

∑

i

�i

!2 + j!
i

!2 + 
2
i

(35)

and j states for j =
√
−1. Notice that there is one group of anelastic dofs qa

i for each series
of functions considered. From (35), the relaxed or static modulus is clearly G0 =G∗(0).
Combination of (33) and (34), leads to the following augmented system:

�M ��q+ �D �̇q+ �K �q= �F (36)

with

�M=

[

M 0

0 0

]

; �D=

[

D 0

0 Daa

]

; �F=

{

Fm + Fe

0

}

�K=

[

Kf +K∞

c Kea

KT
ea Kaa

]

; �q= col(q; qa1; : : :; q
a
n)

where

Daa =







C1


1
K∞

c 0

. . .

0 Cn


n
K∞

c






; Kaa =







C1K
∞

c 0
. . .

0 CnK
∞

c







Kea = [ −K∞

c · · · −K∞

c ]

After a modal decomposition qai =Tq̂di such that � =TTK∞

c T, the matrices Daa, Kaa and
Kea corresponding to the dissipative dofs can be written as (see Reference [11] for details)

Daa=G∞ diag

(

C1


1

�; · · · ; Cn


n

�

)

; Kaa=G∞ diag(C1�; · · · ; Cn�); Kea=[−K∞

c T · · · −K∞

c T]
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so that the system dimension is reduced and the matrices associated with the ADF dissipative
dofs are diagonalized. � is a diagonal matrix containing the non-vanishing eigenvalues of
the high-frequency viscoelastic sti�ness matrix K∞

c and T is the corresponding eigenvectors
matrix. More details on this passage may be found in Reference [11].

CONTROL ALGORITHM

For control design, the augmented equations (36) are transformed into state-space form as
follows:

ẋ = Ax+ Bu+ p

y = Cx
with x=

{

�q
q̇

}

(37)

where C establishes, in terms of the state vector x, the variables y to be measured. A, B and
p are the system dynamics, input distribution and perturbation matrices, respectively. They
are given by

A =



















0 0 · · · 0 I

1

C1
TT −
1I 0 0

...
. . . 0


n

Cn
TT 0 −
nI 0

−M−1(Kp +K∞

c ) M−1K∞

c T · · · M−1K∞

c T −M−1D



















B =





0

0

M−1F∗

e



 ; p=





0

0

M−1Fm





(38)

The potential factored-out piezoelectric force vector F∗

e is de�ned as the piezoelectric force
Fe for a unit applied voltage on the corresponding actuator.

The system matrices in (37) are, generally, too large for use in the control design. Hence,
they are reduced further using x=Trx̂, where the complex right eigenvector matrix Tr of the
system matrix A, and its corresponding left counterpart Tl, are the solution of

ATr = �Tr ; ATTl = �Tl (39)

normalized by TT
l Tr = I. The overdamped modes, corresponding to the dissipative dofs, are

eliminated and some elastic modes are retained, leading to a reduced state vector x̂. Thus,
the reduced state-space system of (37) is

˙̂x= Âx̂+ B̂u+ p̂; y= Ĉx̂ (40)

where

Â=TT
l ATr ; B̂=TT

l B; p̂=TT
l p; Ĉ=CTr

A full state feedback control u=−Kgx̂ is considered. Replacing this control law in (40),
the following control system is obtained:

˙̂x= (Â − B̂Kg)x̂+ p̂; y= Ĉx̂ (41)
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Figure 3. Optimal control design under voltage constraint Vmax.

An iterative linear quadratic regulator (LQR) optimal control algorithm, modi�ed from that
developed in Reference [14], is used for Kg evaluation, under limited maximum beam tip
de
ection and di�erence of electric potential applied to the piezoelectric actuator. That is, the
LQR weight matrices are considered as Q and R= 
I, 
 being evaluated to respect maximum
beam de
ection and control voltage. The algorithm is shown in Figure 3.

Notice that, here, the factor 
 controls the input weight matrix R, and not the state one Q
as in Reference [14], although the concept is equivalent.

CONCLUSIONS

An electromechanically coupled �nite element model to handle active–passive damped multi-
layer sandwich beams was presented. Classical laminate theory was used to model the mul-
tilayer piezoelectric faces, whereas classical sandwich theory was considered for the laminate
piezoelectric face=viscoelastic core=laminate piezoelectric face beam, leading to three-layer
kinematic description and layerwise material constitutive equations. This has resulted in ad-
ditional membrane-bending coupling terms in electromechanical internal and external forces
and translation–rotation coupling terms in inertial forces. The �nite element was implemented
assuming Lagrange linear shape functions for the mean and relative axial displacements and
Hermite cubic ones for the transverse de
ection. The di�erences of electric potentials of the
piezoelectric layers were assumed constant in the element. This yielded eight mechanical dofs
and one electrical dof per piezoelectric layer. It was shown that sensor voltages can be either
considered as electrical dofs or evaluated through post-processing of mechanical results. When
using electrical dofs, these were condensed at the elementary level, leading to a modi�ed eight
mechanical dofs �nite element.

The viscoelastic core was modelled through Lesieutre’s ADF time-domain model to account
for frequency-dependent properties of such material. This has resulted in an augmented state-
space system capable of well representing, even in time-domain analyses, the frequency-
dependence of highly damped beams. The problem of increase in the system dimension, due
to the additional ADF internal variables, was solved through a complex-basis model reduction
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of the augmented state-space system. The reduced system was then applied to the active–
passive constrained optimal control of sandwich damped beams, using an iterative control
algorithm to account for input constraints.

In the second part of this paper, this piezo–visco–elastic �nite element model will be
validated through comparisons with analytical, numerical and experimental results found in
the literature. Then, the performance of the hybrid active–passive control system will be
evaluated through the active control of a viscoelastically damped cantilever sandwich
beam.

The present �nite element model has been extended to take into account the viscoelastic ma-
terial temperature-dependence e�ect [16] and optimization procedures are to be implemented.
Also, this model was used to compare the performance of several control algorithms [17].

APPENDIX A. FINITE ELEMENT INTERPOLATION
AND DEFORMATION MATRICES

Lagrange linear and Hermite cubic shape functions were considered for the axial displacements
and de
ection, respectively. Therefore, the generalized displacements vector d= col(�u; w; ũ),
are discretized as

d= N̂dq̂e

where

N̂d =







N1 0 0 0 N2 0 0 0 0 · · · 0

0 N3 N4 0 0 N5 N6 0 0 · · · 0

0 0 0 N1 0 0 0 N2 0 · · · 0







with q̂e the dofs vector de�ned in (18) and Nl (l= 1; : : : ; 6) being the following standard
shape functions:

N1 = 1 − x

Le
; N2 =

x

Le
; N3 = 1 − 3x2

L2
e

+
2x3

L3
e

N4 = x

(

1 − x

Le

)2

; N5 =
x2

L2
e

(

3 − 2x

Le

)

; N6 =
x2

Le

(

x

Le
− 1

)

The di�erences of electric potentials in the faces sublayers are discretized as

Vkj = N̂pkj q̂e
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where the interpolation matrices N̂pkj are



























N̂pa1

...

N̂pan̂

N̂pb1

...

N̂pbm̂



























=





















0 0 0 0 0 0 0 0 1 0 0 0
...

. . .
. . .

...
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
...

. . .
. . .

...
0 0 0 0 0 0 0 0 0 0 0 1





















Then, to discretize the displacements of each layer of the beam (3), separate interpolation
matrices are introduced. Those corresponding to the translation in x and z directions and
rotation are the following:

Nkx = [N1 0 0 ± 1
2
N1 N2 0 0 ± 1

2
N2 0 · · · 0 ]; k = a(+); b(−)

Ncx = [N1 dN ′

3 dN ′

4 0 N2 dN ′

5 dN ′

6 0 0 · · · 0 ]

Nkr = [ 0 −N ′

3 −N ′

4 0 0 −N ′

5 −N ′

6 0 0 · · · 0 ]; k = a(+); b(−)

Ncr = [ 0 �N ′

3 �N ′

4
1
hc
N1 0 �N ′

5 �N ′

6
1
hc
N2 0 · · · 0 ]

Nz = [ 0 N3 N4 0 0 N5 N6 0 0 · · · 0 ]

Starting from relations (4) and using these displacements interpolation matrices, the faces
(k) and core (c), membrane (m) and bending (b) strain operators are written as

Bkm = [N ′

1 0 0 ± 1
2
N ′

1 N ′

2 0 0 ± 1
2
N ′

2 0 · · · 0 ]; k = a(+); b(−)

Bcm = [N ′

1 dN ′′

3 dN ′′

4 0 N ′

2 dN ′′

5 dN ′′

6 0 0 · · · 0 ]

Bkb = [ 0 −N ′′

3 −N ′′

4 0 0 −N ′′

5 −N ′′

6 0 0 · · · 0 ]; k = a(+); b(−)

Bcb = [ 0 �N ′′

3 �N ′′

4
1
hc
N ′

1 0 �N ′′

5 �N ′′

6
1
hc
N ′

2 0 · · · 0 ]

Shear strains are only considered in the core which are represented by the following oper-
ator:

Bcs = [ 0 (� + 1)N ′

3 (� + 1)N ′

4
1
hc
N1 0 (� + 1)N ′

5 (� + 1)N ′

6
1
hc
N2 0 · · · 0 ]

APPENDIX B. PIEZOELECTRIC STIFFNESS AUGMENTATION
DUE TO INDUCED POTENTIALS

From the terms of (9) corresponding to �Vkj and noting that no terms relative to such variations
are present neither in (14) nor in (16), the variational formulation (7) results, for the electric
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potential variation �Vkj of the kjth face piezoelectric sublayer, in

e
∗kj
31

(

Akj�
m
k + �Ikj�

b
k

)

− i∗kj33 Akj

Vkj
hkj

= 0

leading to

Vkj
hkj

=
e
∗kj
31

i
∗kj
33

(

�mk +
�Ikj
Akj

�bk

)

Substitution of this result in (9) leads, for a known di�erence of potential (�Vkj = 0), to

�H̃kj =

∫ L

0







c
∗kj
11

[

Akj��
m
k �

m
k + �Ikj

(

��mk �
b
k + ��bk�

m
k

)

+ Ikj��
b
k�

b
k

]

+
e
∗kj
31

2

i
∗kj
33

[

Akj��
m
k �

m
k + �Ikj

(

��mk �
b
k + ��bk�

m
k

)

+
�I 2
kj

Akj

��bk�
b
k

]







dx

or, introducing two new modi�ed elastic constants �c
kj

11 and ĉ
kj
11,

�H̃kj =

∫ L

0

{

�c
kj

11

[

Akj��
m
k �

m
k + �Ikj

(

��mk �
b
k + ��bk�

m
k

)]

+ĉ
kj
11Ikj��

b
k�

b
k

}

dx

where these modi�ed constants are given in (31).

APPENDIX C. NOMENCLATURE

Ai cross-sectional area of the layer i
A state-space system matrix

Â reduced state-space system matrix
a piezoelectric actuators length
B state-space control input matrix

B̂ reduced state-space control input matrix
Bim ith layer membrane strain interpolation matrix
Bib ith layer bending strain interpolation matrix
Bcs core shear strain interpolation matrix
b; L beam width and length, respectively
C state-space output matrix

Ĉ reduced state-space output matrix
Ci ADF viscoelastic material parameter of the ith series
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cij ; elj ; ill elastic, piezoelectric and dielectric constants, respectively
D viscous damping matrix
�D ADF augmented damping matrix
�i ADF viscoelastic material parameter of the ith series
d membrane-bending coupling parameter
dof degrees of freedom
�H virtual work of electromechanical internal forces
�T virtual work of inertial forces
�W virtual work of external forces
E3; D3 transverse electrical �eld and displacement, respectively
�bi bending strain of layer i
�mi axial strain at centreline of layer i (membrane strain)
�sc, �5c shear strain of layer c
�1i axial strain of layer i
Fm mechanical loads vector
Fe induced electrical loads vector
G∗ viscoelastic core frequency-dependent complex shear modulus
G0 viscoelastic core relaxed (static) shear modulus
G∞ viscoelastic core unrelaxed shear modulus

 LQR state ponderation factor
hi thickness of layer i
hv thickness of viscoelastic layer
Ii cross-section second moment area of the layer i
�Ii cross-section �rst moment area of the layer i
�K ADF augmented sti�ness matrix
Kc core sti�ness matrix
K∞

c unrelaxed core sti�ness matrix
Kf faces sti�ness matrix

K̂e
kjm

elementary mechanical sti�ness matrix

K̂e
kjme

elementary piezoelectric sti�ness matrix

K̂e
kje

elementary dielectric sti�ness matrix

Kg control gain matrix
� relative shear-bending coupling parameter
M mass matrix
�M ADF augmented mass matrix
Ni; Mi; Qi point normal, moment and shear resultants on layer i, respectively
ni; mi; qi distributed normal, moment and shear resultants on layer i, respectively
Nix translation in x direction interpolation matrix for ith layer
Nir rotation interpolation matrix for ith layer
Nz translation in z direction interpolation matrix
Npkj kj sublayer di�erence of electric potential interpolation matrix

i ADF viscoelastic material parameter of the ith series
p state-space perturbation vector
Q LQR state ponderation matrix
q dofs vector
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�q ADF augmented dofs vector
qe elastic dofs vector
qai ith anelastic dofs vector
qe elementary mechanical dofs vector
q̂e elementary dofs vector
R LQR input ponderation matrix
�i mass density of the layer i
�1; �5 axial and shear stresses, respectively
Tl; Tr left and right state-space complex eigenvectors matrices
u control input vector
�u mean of the axial displacements of surface layers centrelines
ũ di�erence between the axial displacements of surface layers centrelines
�u1; ũ1; w1; w

′

1 mean and relative axial faces displacements,
transverse de
ection and its derivative for element node 1

�u2; ũ2; w2; w
′

2 mean and relative axial faces displacements,
transverse de
ection and its derivative for element node 2

ui axial displacement of the centreline of the layer i
�ui axial displacement of the layer i
Ve
A applied (actuator) elementary electric dofs vector
Ve
S unknown (sensor) elementary electric dofs vector
Vkj di�erence of electric potentials on the sublayer kj
V+
kj
; V−

kj
electric potentials at the top and bottom skins of the sublayer kj,

respectively
w transverse displacement of beam centreline
x state vector
x̂ reduced state vector
x; z axial and transverse coordinates
y state-space output vector
zk distance to centreline of surface layer k (k = a; b)
zkj distance to centreline of face sublayer kj

Subscripts

c states for quantities related to sandwich core
f states for quantities related to sandwich surface layers
i states for beam layers a, b or c
j states for faces sublayers
k states for surface layers a or b
m states for mechanical contributions

Superscripts

∗ states for modi�ed material constants
b states for bending contributions
c states for core material constants
f states for surface layers material constants
m states for membrane contributions
s states for shear contributions
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