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ABSTRACT: Piezoelectric plates have been widely used for the vibration reduction and noise
control of structures. Due to power forces considerations, electrostrictive patches present a
growing interest. It is thus the purpose of the present research to contribute to modeling
aspects of thin structures integrating such actuators. Many three-dimensional finite element
models have then been elaborated to simulate these structures behavior but no two-
dimensional models have been presented up to now. The aim of this article is thus to set out
the elaboration of a thin plate electrostrictive finite element for PMN-PT type ceramics used as
actuators. This element is developed for dynamic purposes and thus takes into account
phenomena induced by applying to the patch a cycling electric field. The finite element
formulation is based on electromechanical constitutive equations derived in a previous paper,
mechanical and electrical considerations and direct a priori plate assumptions. The
electrostrictive finite element is here derived using techniques inspired from a piezoelectric
finite element. This method has the particular property of reducing the initial electro-
mechanical problem to a purely mechanical problem based on a modified elastic constitutive
law. The electrical unknowns are then explicitly derived from the mechanical displacements.
This method considerably simplifies the resolution of the problem since classical finite
elements for laminated plates can be used to model the electrostrictive plate with a modified
constitutive law. This paper is focused on the plate modeling and corresponding variational
formulations.

INTRODUCTION

P
IEZOELECTRIC plates have been widely used for the

vibration reduction and noise control of structures.

Due to power forces considerations, electrostrictive

patches present a growing interest. It is thus the purpose

of the present research to contribute to modeling aspects

of thin structures integrating such actuators.

Several researches have been performed on electro-

strictive ceramics for the last fifteen years with the view

of characterizing their electromechanical behavior under

varying electric fields. These studies particularly showed

a great sensitivity of induced polarization to operating

parameters: bias electric field and dynamic electric field

magnitudes, dynamic electric field excitation frequency,

surrounding temperature, and pre-stress (Uchino et al.,

1980, 1981; Zhang et al., 1988, 1989; Pan et al., 1989;

Namboodri and Rogers, 1992; Blackwood and Ealey,

1993; Namboodri, 1993; Rittenmyer, 1994; Brown et al.,

1996; Sherrit et al., 1998; Kurutcharry, 2000).

We additionally proved in a paper devoted to the

establishment of electrostrictive constitutive laws (see

(Pablo and Petitjean, 2000a)), that an important heating

of electrostrictive patches occurs under cycling electric

field. We then underlined that the sensitivity of the

electromechanical behavior of electrostrictive ceramics

to operating parameters was, in fact, a sensitivity of this

behavior to the ceramic own temperature. A modeling

of the electrostrictive ceramic heating has been elabo-

rated through an experimental curve fitting with respect

to operating parameters and led to a complex law.

We thus opted for using lookup tables so that to

determine the ceramic temperature. Finally, isothermal

constitutive laws for electrostrictive ceramics were esta-

blished in a similar way as Hom and Shankar (1994). We

remark here that recent works, such as those performed

by Kurutcharry (2000), established modified consti-

tutive laws in order to take into account hysteresis

observable in ferroelectric cycles.

Results presented in the present paper has been

obtained within the framework of a study aimed at

performing active vibration control of plate structures

using electrostrictive patches as actuators (Pablo, 2002).
*Author to whom correspondence should be addressed.
E-mail: pablo@onera.fr
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As, very little research has – up to now – been done with

the view of using these materials in such applications

(Fripp et al., 1994; Fripp, 1995; Fripp and Hagood,

1997), new studies were necessary.

The behavior simulation of the controlled structure

coupled with electrostrictive ceramics is needed in order

to be able to elaborate the controller. Such simulations

will then be carried out through aFinite ElementMethod.

The aim of this article is thus to present the develop-

ment of an electrostrictive finite element. The first part

of this paper, here presented, is focused on the plate

theory leading to finite element formulation which will

be studied more precisely in the second part.

The electromechanical coupling in active vibration

control applications using electro-actuators, implies the

necessity of simultaneously solving electrical and

mechanical equations which increases computation

times. This could be a penalty for controller elaboration.

The element here to be described is characterized by the

faculty of reducing this electromechanical problem to a

purely mechanical problem having a particular elastic

constitutive law. Finally, we underline that the theory

allowing such a simplification is only based on a priori

assumptions, and can thus, just as well, be applied to con-

tinuous media as to discrete ones (as exposed hereafter).

This paper will first deal with an important discussion

on the driving input to be used in active vibration

control applications. The structure of this article in two

main parts, each of one being focused on consequences

of using a particular driving input on the plate theory, is

then induced by this discussion. Additional parts will,

afterwards, expose considerations on the electrostrictive

plate finite element and application to the active

vibration control.

DRIVING INPUT DISCUSSION

Current active vibration control applications integrat-

ing electromechanical actuators such as piezoelectric or

electrostrictive ceramics, mainly use voltage as the

driving input. These actuators then work as follows:

an electric potential difference (V) is applied between the

lower and upper faces of the patches which induces a

transverse electric field (E) in the ceramic, which, in

turn, generates strains (S).

When a voltage driving input is used for piezoelectric

actuators, strains are linear functions of the applied

electric field (when actuators are working in the electric

field range defined by the manufacturer), but, when used

for electrostrictive ceramics the strains are no longer

linear functions of this field.

This remark is, for example, observable in Figure

1(a), where electrostrictive strains are plotted as func-

tions of the electric field for a 500V/mm bias electric

field magnitude, a 500V/mm dynamic electric field

magnitude, a 200Hz excitation frequency and a 20�C

surrounding temperature. Indeed, one can observe in

this figure that strains are quadratic functions of electric

field for low magnitudes but saturate from about

400V/mm. We moreover remark that this electrome-

chanical cycle underscores non negligible hysteresis.

If we now plot these previous electrostrictive strains as

functions of polarization (or electric displacement) for

similar operating parameters (Figure 1(b)), a quadratic

dependence of strains on polarization is observable, but

neither saturation nor hysteresis can be strongly noticed.

We underline here, that, observing experimental

curves obtained for various operating parameters, we

can note an hysteresis in polarization–strain curves, but

this hysteresis is small compared to the one observable

in electric field–strain curves.

From these observations it is obvious that saturation

and hysteresis non-linearities in the S(E) curves are

mainly induced by the ferroelectric cycle (electric field–

polarization curves). This conclusion can clearly be

verified in Figure 2 where the ferroelectric cycle of the

electrostrictive ceramic obtained for similar operating

parameter used to obtain curves of Figure 1 is plotted.

Indeed, this ferroelectric cycle is characterized by a

Figure 1. Electrostrictive strain as a function of electric field and
polarization. (a) electrostrictive strains functions of applied electric
field; (b) electrostrictive strains functions of polarization.
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significant hysteresis, and a polarization saturation

for electric field magnitudes greater than 400V/mm.

As the electromechanical behavior of electrostrictive

ceramics seems to be less non-linear when strains are

plotted as a function of polarization rather than electric

field, being able to impose polarization on electrostric-

tive patches would thus considerably simplify the use

of these ceramics as actuators. This would be done by

using current instead of voltage as the driving input of

these actuators.

These experimental observations are not brand-new

ones. Indeed, Comstock (1976) already discovered in

1976 that piezoceramics exhibited less hysteresis when

they were current driven than when they are voltage

driven. Moreover, some papers have already presented

methods allowing such a current driving for piezoelectric

(Lindner and Chandrasekaran, 1999a,b) and electro-

strictive (Znovar et al., 1996; Znovar and Lindner, 1997,

1998) stacked actuators.

Znovar and Lindner (1998) particularly developed

small power amplifers driving nine stacked actuators of

total nominal capacitance around 45 mF.

In our active vibration control applications, 20� 30�

0.4mm3 electrostrictive patches are used instead of

stacked actuators. These patches are especially char-

acterized by a nominal capacitance of about 150 nF.

This very low capacitance compared to the previous one

implies the need of using high voltage and low current

magnitudes – up to 400V and less than 300mA –

compared to those given by Znovar and Lindner (1998)

(voltage magnitude about 30V and peak to peak current

around 3A). For these reasons, a new electronic techno-

logy was needed with the view of using current driven

electrostrictive patch actuators.

As we underlined the necessity of using current

as input of electrostrictive actuators, the plate theory

presented in the following will take into account this

assumption. Nevertheless, a voltage driven plate theory

will also be established as to highlight difficulties

introduced in a classical voltage based theory.

PROBLEM STATEMENT

The aim of the present study is to perform active

vibration control of plate structures using electrostric-

tive actuators. The problem here to be solved is thus a

fully coupled electromechanical problem.

Moreover, previous researches proved that the

behavior of electrostrictive ceramics is non-linear with

respect to electric field. This non-linearity is then taken

into account through the constitutive laws. The problem

to be solved is thus a materially non-linear one. We

underline here that we moreover assume small strains

and rotations, and that we will thus not take into

account geometrical non-linearities.

The design of the controller implies the need of

simulating the behavior of the coupled structure through,

for example, a Finite Element Method.

Many piezoelectric finite elements have been devel-

oped for static and dynamic studies. Among this impor-

tant literature we can, for example, quote Gaudenzi

and Bathe (1995), Suleman and Venkayya (1995),

Rahmoune et al. (1998), Bisegna and Caruso (2000).

On the other hand, very few electrostrictive finite

elements have been elaborated up to now. Yet, three-

dimensional ones have been developed with the view of

simulating phase transition in non-linear ferroelectric

materials (Ghandi and Hagood, 1996, 1997). Moreover,

the simulation of electrostrictive stacks behavior also

required the creation of two-dimensional bar finite

elements (Hom and Shankar, 1996). Finally, Dubus et

al. developed two two-dimensional electrostrictive finite

elements (an 8 nodes quadrangular element and a 6

nodes triangular one) based on a three-dimensional

variational formulation as a function of mechanical

and electrical variables (Dubus et al., 1996, 1999; Debus

et al., 1998).

As we wish to simulate the behavior of plate struc-

tures equipped with electrostrictive patches, the use of

plate finite elements seems to be more suitable than

three-dimensional ones. No electrostrictive plate finite

element with a priori plate assumptions has – to our

knowledge – been developed up to now.

The present section exposes the theory leading to such

an elaboration. The underlying major ideas of the

theory have been given in an earlier work carried out by

the second author which was devoted to linear piezo-

electric plates (see Osmont, 1996). This theory was

moreover proved to be valid for linear Kirchhoff–Love

plates through an asymptotic theory (Rahmoune et al.,

1996, 1998).

This section is in particular focused on establishing

the basic equations of the plate theory. Given the

coupling of mechanics and electrics in electrostrictive

ceramics, sets of equations able to model mechanical

and electrical behaviors are needed to correctly set the

problem. Constitutive laws established in a previous

Figure 2. 0.9PMN-0.1PT ferroelectric cycle.
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paper and Kirchhoff–Love a priori plates assumptions

will moreover be reminded.

Remark: From now on, we will respectively note down

T, S, u, _uu €uu, f d and F d the Cauchy stresses, strains, mech-

anical displacements, velocity, acceleration, imposed

body forces and imposed surface forces, and respec-

tively, D, E, V, q d and Q d the electric displacement,

electric field, electric potential, imposed body charges

and imposed surface charges.

Mechanical Equations

In this paragraph, we will recall classical mechanical

equations and a modification that previous papers

proposed for dielectric media.

We consider in the following a body � delimited by its

surface boundary @�. We suppose that this body is

subjected to a body force f d, a surface traction F d on a

part @�F ¼ �F of its boundary, and an imposed

mechanical displacement ud on the complementary part

of the boundary @�u ¼ �u ¼ @�� �F , as presented in

Figure 3.

CLASSICAL MECHANICAL GOVERNING LAWS

The three-dimensional equations of a classical elasto-

dynamical problem are (with the usual initial Cauchy

conditions) (Fung, 1965):

Dynamic Equations:

T ij, j þ f d
i ¼ � €uui in �: ð1Þ

Displacement boundary conditions:

ui ¼ u d
i on �u, ð2Þ

Stress boundary conditions:

T ij, nj ¼ F d
i on �F , ð3Þ

Strain–displacement relationship:

S ij ¼
1

2
ðui, j þ uj, iÞ, ð4Þ

Constitutive law:

T ij ¼ T ijðSÞ: ð5Þ

ELECTROMECHANICS FOR CONTINUOUS

DIELECTRIC MEDIA

Toupin (1956, 1963) and Eringen (1963) showed that

in dielectrics (such as electrostrictive ceramics) subjected

to an electric field, mechanical governing equations

had to be slightly modified such as taking into account

the influence of this electric field on the mechanical

behavior. Hom and Shankar (1996) recently adapt this

theory for small deformations and rotations, for static

problems.

If we now moreover take into account elastic dyna-

mical phenomena, the elastodynamical problem of

dielectric continuous media subjected to an electric

field can be set down through the following governing

equations:

Dynamic equations:

T ij, j þm
i j, j

þ f d
i ¼ p €uui in �,

Displacement boundary conditions:

ui ¼ u d
i on �u,

Stress boundary conditions:

½T ij þmij 	, nj ¼ �F d
i on �F ,

Strain–displacement relationship:

S ij ¼
1

2
ðui, j þ uj, iÞ,

Maxwell tensor definition:

m ¼ "0 E iE j �
1

2
EkEk�ijÞ,

�

Constitutive laws:

T ij ¼ T ijðS,EÞ and Dk ¼ DkðS, EÞ:

Nevertheless, as it will be shown in the following

sections, in-plane electric field can, in our applications,

be neglected compared to imposed transverse one.

From this a priori assumption, the Maxwell electrostatic

stress tensor (m) is then a diagonal matrix composed by

terms of absolute value given by 0.5"0E
2
3: If we now

compare this value to the Cauchy stresses calculated

from the electric part of the constitutive laws presented

Figure 3. Classical mechanical problem.
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hereafter (second term of the right hand side of

Equation (12)), one can deduce that Maxwell electro-

static stresses are negligible compared to Cauchy stresses

(the ratio between these two stresses is of the order

of 10�6).

Given these observations, the Maxwell electrostatic

stress tensor will not be taken into account in our problem

formulation, and the mechanical behavior will thus be

given by mechanical governing Equations (1)–(5).

Electrical Equations

In the active vibration control applications we are

interested in, time varying electric fields are imposed to

the electrostrictive actuators in order to reduce the

vibrations of the host structures. A formulation of the

present electromechanical problem should thus use

electromagnetic theories.

Nevertheless, in dielectric materials such as piezo-

electric and electrostrictive ceramics, the electromag-

netic waves are characterized by a much greater

propagation speed – about that of light: 3.108ms�1 –

than elastic waves. Time scales used in structural

mechanics then imply electric fields to be established

at any time t. The electric field dynamics thus does not

play any part in this study. Electrostatics will therefore

be used from now on.

Let us now consider a body � delimited by its surface

boundary @�: We suppose that this body is subjected to

a body charge density q d, a surface charge density Q d

on a part @�Q ¼ �Q of its boundary, and an electric

potential V d on the complementary part of its boundary

@�V ¼ �V ¼ @�� �Q, as presented in Figure 4).

Electrostatics laws for dielectric materials are then

(Landau and Lifchitz, 1969):

Gauss law:

Di, i � q d ¼ 0 in �: ð6Þ

Electric potential boundary conditions:

V ¼ V d on �v, ð7Þ

Electric displacement boundary conditions:

Dini ¼ �Q d on �Q, ð8Þ

Electric field–electric potential relationship:

Ei ¼ �Vi: ð9Þ

Constitutive Laws

We underlined in Pablo and Petitjean (2000a) that

electrostrictive ceramics are characterized by a non-

linear behavior which is moreover fully electro-mechani-

cally coupled. This strong coupling can then be

mathematically formulated through the material con-

stitutive laws.

This paragraph recalls the constitutive laws which

have been analysed in Pablo and Petitjean (2000a) for

electrostrictive patches subjected to a time varying

electric field.

CURRENT DRIVEN ACTUATORS

If we are interested in current driven patches, one has

to use the strain (S) and the electric displacement (D) as

the mechanical and electrical independent variable, to

establish the electrostrictive constitutive laws.

These current driven constitutive laws, obtained in

Pablo et al. (2001b), then respectively express the

mechanical and electrical intensive variables (T and E)

as functions of mechanical and electrical extensive

variables (S and D). One can then obtain:

T ij ¼ C
D
ijklðSkl �QklmnDmDmÞ, ð10Þ

Em ¼ ð�

mmÞ

�1Ds
m arctanh

Dm

Ds
m

� �

� 2CD
ijklQklmnDsðS ij �QijpqDpDqÞ, ð11Þ

where �
 and Ds are respectively a pseudo-susceptibility

obtained by the slope of the ferroelectric cycle around a

nil polarization and a saturation constant which have an

electric displacement dimension and which characterize

the saturation of the ferroelectric cycle for high electric

fields.

VOLTAGE DRIVEN ACTUATORS

If we are now interested in voltage driven patches, one

has to use the strain (S) and the electric field (E) as the

mechanical and electrical independent variables, to

establish the electrostrictive constitutive laws.

Proceeding in a similar way as used to derive

Equations (10) and (11), the voltage driven constitutive

laws then respectively express the intensive mechanicalFigure 4. Classical electrical problem.
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variable (T) and the extensive electrical variable (D) as

functions of the extensive mechanical variable (S) and

the intensive electrical variable (E). One can then write:

T ij ¼ C
E
ijklSkl � C

E
ijklQklmn�



mm�



nnE

s
mE

s
n

� tanh
Em

Es
m

� �

tanh
En

Es
n

� �

,
ð12Þ

Dm ¼ �

mmE

s
m tanh

Em

Es
m

� �

þ 2CE
ijklQklmnS ij�



mm�



nnE

s
n

tanhðEn=E
s
nÞ

cosh2ðEm=E
s
mÞ

� 2CE
ijklQklmnQijpq�



mm�



nn�



pp�



qqE

s
nE

s
pE

s
q

� tanh
Ep

Es
p

 !

tanh
Eq

Es
q

 !

tanhðEn=E
s
nÞ

cosh2ðEm=E
s
mÞ

ð13Þ

where E s is a saturation constant which has an electric

field dimension and which characterizes the saturation

of the ferroelectric cycle for high electric fields.

REMARKS

We underline here that developing constitutive equa-

tions as functions of one or more intensive variable

induces more complex expressions. These laws moreover

introduce new parameters (�
 and Es) which were shown

in a previous paper (Pablo and Petitjean, 2000a) to be

sensitive to the ceramic own temperature. Voltage driv-

ing electrostrictive patches thus introduces additional

non-linearities.

The advantages of using current as the driving input

instead of voltage, discussed in a previous section,

remain true.

Material Assumptions

We will suppose up to now that this study is focussed

on a particular class of materials which are mechanically

and electro-mechanically orthotropic. These additional

assumptions can then be formulated as follows:

1. there is no coupling, through the constitutive laws,

between transverse distorsions and stresses on the

one hand, and, plane strains and stresses on the other,

2. there is no coupling, through the constitutive laws,

between transverse electric field and displacement on

the one hand, and, in-plane electric field and displace-

ment on the other,

3. electrostriction couples transverse electric displace-

ment and field, and plane stresses and strains on the

one hand, and, in-plane electric displacements and

fields, and transverse stresses and strains on the

other.

Let us remark that electrostrictive ceramics such as

PMN-PT and piezoelectric ceramics such as PZT belong

to this particular class of materials.

A Priori Assumptions for Plate Modeling

We will suppose afterwards that the structures we are

interested in, are slender structures, which means that

the thickness h is supposed to be of first order compared

to the in-plane characteristic dimension L. One thus

have: h=L � 1:

From the dynamic Equations (1), one can write:

T�	, 	 þ T�z, z þ f d
� ¼ � €uu�,

Tz�, � þ Tzz, z þ f d
z ¼ � €uuz:

with �, 	¼ x, y.

From, these two equations, one can deduce that T�	, 	

and T�z, z, and, Tz�, � and Tzz, z are of the same order.

If we moreover underline that:

T�	, 	 is of order
1

L
kT�	k,

T�z, z is of order
1

h
kT�zk,

Tz�, � is of order
1

L
kTz�k,

Tzz, z is of order
1

h
kTzzk,

one can conclude that transverse stresses Tiz (i¼ x, y, z)

are at least of h /L order compared to in-plane stresses

T�	 (�,	¼ x, y) and are thus negligible.

We now additionally suppose that plates are

orthotropic and thus meet Kirchhoff–Love assumptions

which state that every straight line in the plate that

was originally perpendicular to the plate middle surface

remains straight after the deformation and perpendicu-

lar to the detected middle surface (Fung, 1965). From

these assumptions, one can express in-plane displace-

ments (ux and uy) as linear functions of z (transverse

variable), the coefficients being independent of this

variable. Moreover, the transverse displacement (uz) is

constant and independent of z. One can thus write:

uxðx, y, z, tÞ ¼ uðx, y, tÞ � zw, xðx, y, tÞ ð14Þ

uyðx, y, z, tÞ ¼ vðx, y, tÞ � zw, yðx, y, tÞ ð15Þ

uzðx, y, z, tÞ ¼ wðx, y, tÞ ð16Þ

From mechanical strain–displacement relationship

(Equation (4)), in-plane strains (SP¼S�	) associated

with these displacements can be written as linear

6



functions of z:

SP ¼ S0 � zR1 ¼

u, x

v, y

u, y þ v,x

0

@

1

A� z

w,xx

w, yy

2w, xy

0

@

1

A, ð17Þ

where S 0 and R1 are respectively the in-plane strains

deriving from membrane and the curvatures of the plate,

and are independent on z. Transverse strains (Siz, i¼ x,

y, z), derived from the displacements here defined,

(Equation (17)) are, as for them, zero. These equations

are the expression of the well-known Kirchhoff–Love

assumptions.

Assumptions introduced in this section will allow

simplifications in the theory developed hereafter.

PLATE MODELING

The purpose of the present section is to present a

plate theory for electrostrictive patches, leading to the

elaboration of an electrostrictive finite element.

As was previously underlined, working with electro-

strictive materials implies – as for piezoceramics –

coupling mechanical and electrical phenomena. The

theory here developed is based on the assumption that

the in-plane electric displacements and fields are negli-

gible with respect to transverse electric displacement and

field. This assumption makes it possible to obtain an

explicit expression of the transverse displacement

(respective field) as a function of the transverse electric

field (respective displacement) and, stresses or strains. It

is then possible to eliminate the unknown electrical

variables in favor of the mechanical displacements and

to obtain a purely mechanical problem with equivalent

electric forces and modified elastic constitutive laws.

The simplifcation of the electromechanical problem to

a purely mechanical problem is slightly different

according to the driving input used. This section is

thus composed of two main parts, each one being

focused on the theory for one of these driving inputs.

Current Driven Actuator

In this operating configuration an out-of-plane current

is imposed through the electrostrictive patch. This

current then induces charges on the upper and lower

ceramic surfaces which can be associated with electric

displacements. We will thus, in this section, suppose that

transverse electric displacements (Dz) will be known for

each time t on the upper and lower patch surfaces.

WEAK FORMULATION OF THE PROBLEM

When electrostrictive actuators are current driven, the

electromechanical problem consists in solving, for each

time t and whatever the point M(x, y, z), the mechanical

motion Equation (1) meeting the constitutive laws (10)

and (11), where the electric displacement D statisfies the

Gauss law (6).

Using the weak form of Equation (1) by projection

on the mechanical test function u
ðMÞ, and considering

all other equations as constraints (Equations (2)–(4),

(6)–(9), (10) and (11)), one can formulate the electro-

mechanical problem:

Find u(M, t), T(M, t), D(M, t) and V(M, t) such that:

8t 2 	0,T ½,

8 u
 2 U 0
u, U

0
u ¼ fu
ðMÞj u
ðMÞ ¼ 0 on �u, u
 regularg,

the dynamic equation:

Z

�

ðT ij, j u


i þ f di u



i
�� €uuiu



i Þ d� ¼ 0,

the constitutives laws:

T ij ¼ C
D
ijklðSkl �QklmnDmDnÞ,

Em ¼ ��1
mmD

s
m arctan h

Dm

D s
m

� �

� 2CD
ijklQklmnDnðS ij �QijpqDpDqÞ

8

>

>

>

>

>

<

>

>

>

>

>

:

the strain–mechanical displacement boundary condi-

tions:

S ij ¼
1

2
ðui, j þ uj, iÞ,

the mechanical displacement boundary conditions:

ui ¼ udi on �u , u 2 U0
u,

the stress boundary conditions:

T ij , nj ¼ Fd
i on �F ,

the Gauss law:

Di, i � q d ¼ 0 on �,

the electric potential boundary conditions:

V ¼ Vd on �V ,

the electric displacement boundary conditions:

Di, ni ¼ Qd on �Q,

the initial mechanical conditions:

u
i
jt¼0 ¼ u0i and _uu

i
jt¼0 ¼ _uu0i ,

7



the initial electrical conditions:

Dijt¼0 ¼ D0
i :

GAUSS LAW INTEGRATION

The method used to simplify the electromechanical

problem consists in solving the electric problem, that is

the Gauss law (Equation (6)) meeting the electric

boundary conditions.

As we are using current as the driving input, we are

able to impose charges to the electro-actuator. The

Gauss law can then be integrated. Indeed, Gauss law

can be read:

div D ¼ Dx, x þDy, y þDz, z ¼ q d , ð18Þ

where qd is body charges density imposed to the

dielectric medium.

If one now elaborates constitutive equations expres-

sing strains (S) and electric displacements (D) as func-

tions of stresses (T) and electric field (E) in a similar way

as exposed in Pablo and Petitjean (2000a), one can

obtain:

Dm ¼ AmnijEnT ij þ BmnEn,

Din ¼ �AmnijV, nT ij � BmnV, n,
ð19Þ

where A and B are respectively fourth and second rank

tensors expressing coefficients.

If we now take into account the material assumptions

previously introduced, and the fact that transverse

stresses are negligible compared to in-plane stresses,

the previous equation gives:

D� ¼ �A�	
zV, 	T
z � B�	V, 	 and

Dz ¼ �Azz�	V, zT�, 	 � BzzV, z ð�, 	, 
 ¼ x, yÞ:

Moreover, electrostrictive patches can be regarded as

plane capacitors. In such capacitors, the transverse

electric field is much more greater than the in-plane

field (at least of L/h order). It is thus possible to neglect

the in-plane electric field with respect to the transverse

one. Introducing these assumptions in the previous

equation, it is then consistent to neglect the in-plane

electric displacements D� (�¼ x, y) compared to the

transverse electric displacement Dz. The Gauss law thus

simplifies to:

Dz, z ¼ q d : ð20Þ

Integrating this relationship according to the z

variable, one can then obtain:

Dz ¼ q d þ A, ð21Þ

where A is independent on z.

Given that no body charge density is applied in the

electrostrictive actuator, and given the electric boundary

conditions (electric displacements are imposed on the

upper and lower metallized surfaces of the ceramic),

constant A is fully determined since the patch is current

driven (electric displacement D d
z is imposed through the

boundary condition: Di � ni ¼ Q d on �QÞ: Equation (21)

thus becomes:

Dz ¼ Dd
z ðx, yÞ: ð22Þ

The Gauss law integration thus implies the transverse

electric displacement to be constant through the thick-

ness of the plate and to be equal to the imposed value.

CONSTITUTIVE LAWS CHANGES

In this point, we introduce the solution of the electric

problem obtained above, in the electromechanical

constitutive equations (Equations (10) and (11)) such

as to eliminate the electric variables from the problem

unknown.

In order to perform this unknown elimination, we

first respectively set down:

Tp ¼ ðTxz Tyy TyyÞ
t,

TT ¼ ðTxz Tyz TzzÞ
t,

SP ¼ ðSxx Syy 2SxyÞ
t,

DP ¼ ðDz DyÞ
t and

EP ¼ ðEz EyÞ
t,

as the in-plane stresses vector, the out-of-plane stresses

vector, the in-plane strains vector, the out-of-plane

strains vector, and, the in-plane electric displacements

and electric fields vectors.

A matrix form of constitutive laws can then be

written:

TP

TT

EP

Ez

0

B

B

B

@

1

C

C

C

A

¼

CD
PP CD

PT Q�D
PP Q�D

Pz

CD
TP CD

TT Q�D
TP Q�D

Tz

QES
PP QES

PT dD
PP dD

Pz

QES
zP QES

zT dD
zP dD

zz

0

B

B

B

B

@

1

C

C

C

C

A

SP

ST

DP

Dz

0

B

B

B

@

1

C

C

C

A

,

where the matrices Q

�
�, 	 and dD

�	 are dependent on D and

will not be detailed here.

Inverting out-of-plane stresses and strains, and

supposing planes stresses (thin plate assumptions

8



implies out-of-plane stresses to be negligible), one can

then write:

TP

EP

Ez

0

B

@

1

C

A
¼

~CCD
PP

~QQ�D
PP

~QQ�D
Pz

~QQES
PP

~ddD
PP

~ddD
Pz

~QQES
zP

~ddD
zP

~ddD
zz

0

B

@

1

C

A

SP

DP

Dz

0

B

@

1

C

A
: ð23Þ

Taking moreover into account the assumptions that

in-plane electric displacements are negligible compared

to transverse one, Equation (23) becomes:

TP

Ez

� �

¼
~CCD
PP

~QQ�D
Pz

~QQES
zP dD

zz

!

Sp

Dz

� �

: ð24Þ

We thus have:

TP ¼ ~CCD
PPSP þ ~QQ�D

Pz Dz

¼ ~CCD
PPSP þ �QQ�D

Pz ðD
d
z ðx, yÞÞ

2: ð25Þ

We thus proved here that using plate assumptions, the

electrical variables could be eliminated from the pro-

blem unknowns. The influence of electric phenomena is

then taken into account through an imposed pre-stress.

A classical mechanical variational formulation of the

plate can then been used to set down the electromecha-

nical problem where the current density is assumed to be

known on the faces of the plate. This formulation uses

the isolated elastic constants which does not depend on

the electric state. Nevertheless, the drawback of this

formulation is that the density of charges has to be

known at each point of the faces of the plate.

PARTIAL CONCLUSIONS

We have proved in this paragraph that using current

driven electrostrictive actuators to perform active

vibration control of plate structures could lead to a

simplification of the non-linear electromechanical pro-

blem if the current density could be measured at each

point of the faces of the plate. Indeed, as established

above, the non-linear constitutive equations reduce to

linear mechanical ones with additional non-linear

electrically induced prescribed stresses (known for each

time t). When dealing with current driven electrostrictive

actuators, plate a priori assumptions thus entitle to take

into account electromechanical effects only through

prescribed stresses.

Voltage Driven Actuator

We now assume the electrostrictive patches to be

voltage driven. In this part we analyse the effects of thin

plate assumptions on the electromechanical problem

for such a driving input. In this operating configuration

a transverse voltage is imposed through the electro-

strictive patch. We will thus, in this section, suppose that

transverse voltage (V) is known for each time t on upper

and lower patch surfaces.

WEAK FORMULATION MODIFICATION

The present problem consists in solving for each time

t and whatever the point M(x, y, z) the mechanical

motion Equation (1) meeting the constitutive laws (12)

and (13) where the electric displacement D satisfies the

Gauss law (6).

Using the weak form of Equation (1) by projection

on the test function u
ðMÞ, and considering all other

equations as constraints (Equations (2)–(4), (6)–(9), (12)

and (13)), one can formulate the electromechanical

problem as follows:

Find u(M, t), T(M, t), D(M, t) and V(M, t) such that:

8t =2 	0,T ½,

8 u
 2 U0
a,U

0
u ¼ xfu
ðMÞj u
ðMÞ ¼ 0 on �u, u


 regularg,

the dynamic equation:

Z

�

ðT ij, j u


i
þf di u


i
�� €uui u



i
Þ d� ¼ 0,

the electromechanical constitutive equations:

T ij ¼ C
E
ijklSkl � CijklQklmn�



mm�



nnE

s
mE

s
n

tanh
Em

Es
m

� �

tanh
En

Es
n

� �

,

Dm ¼ �

mmE

s
m tanh

Em

Es
m

� �

þ 2CE
ijklQklmnS ij�



mm�



nnE

s
n

tanhðEn=E
s
nÞ

cosh2ðEm=E
s
mÞ

� 2CE
ijklQklmnQijpq�



mm�



nn�



pp�



qqE

s
nE

s
pE

s
q

� tanh
EP

Es
p

 !

tanh
Eq

Es
q

 !

tanh ðEn=E
s
nÞ

cosh2ðEm=E
s
mÞ

:
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>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

the strain–mechanical displacement relationship:

S ij ¼
1

2
ðui, j þ uj, iÞ,

the mechanical displacement boundary conditions:

ui ¼ u d
i on �u , u 2 U0

u,

the stress boundary conditions:

T ij�nj ¼ F d
i on �F ,

9



the Gauss law:

Di, i � q d ¼ 0 on �,

the electric potential boundary conditions:

V ¼ Vd on �V ,

the electric displacement boundary conditions:

Di�ni ¼ Qd on �Q,

the initial mechanical conditions:

uijt¼0 ¼ u0i and _uuijt¼0 ¼ _uu0i :

the initial electrical conditions:

Vijt¼0 ¼ V 0
i :

This weak formulation for voltage driven electro-

strictive actuator is moreover similar to:

Find u(M, t), T(M, t), D(M, t) and V(M, t) such that:

8t 2 	0, T ½,

8u
 2 U 0
u,U

0
u ¼ fu
ðMÞju
ðMÞ ¼ 0 on �u, u


 regularg:

the dynamic equation:

Z

�

ðT ij, j u


i
þf d

i u


i
�� €uui u



i
Þ d� ¼ 0 ð26Þ

the electromechanical constitutive equations:

T ij ¼ C
D
ijklSkl � C

D
ijklQklmnDmðS, EÞDnðS,EÞ,

Dm ¼ �

mmE

s
m tanh

Em

Es
m

� �

þ 2CE
ijklQklmnS ij�



mm�



nnE

s
n

tanhðEn=E
s
nÞ

cosh2ðEm=E
s
mÞ

� 2CE
ijklQklmnQijpq�



mm�



nn�



pp�



qqE

s
nE

s
pE

s
q

� tanh
EP

Es
p

 !

tanh
Eq

Es
q

 !

tanh ðEn=E
s
nÞ

cosh2ðEm=E
s
mÞ
,
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>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð27Þ

the strain–mechanical displacement relationship:

S ij ¼
1

2
ðui, j þ uj, iÞ, ð28Þ

the mechanical displacement boundary conditions:

ui ¼ udi on �u , u 2 u½0,T 	
u , ð29Þ

the stress boundary conditions:

T i, j�nj ¼ Fd
i on �F , ð30Þ

the Gauss law:

Di, i � qd ¼ 0 on �, ð31Þ

the electric potential boundary conditions:

V ¼ Vd on �V , ð32Þ

the electric displacement boundary conditions:

Di�ni ¼ Qd on �Q, ð33Þ

the initial mechanical conditions:

uijt¼0 ¼ u0i and _uuijt¼0 ¼ _uu0i ð34Þ

the initial electrical conditions:

Vijt¼0 ¼ V0
i : ð35Þ

INCREMENTAL CONSTITUTIVE LAWS

We underlined in a previous section, that when

electrostrictive actuators are voltage driven, additional

non-linearities are introduced in the constitutive

laws. However, the strongly non-linear electromechani-

cal problem can be linearized around an operating point

for each time t. This point is then characterized by its

known mechanical displacements u0, stresses T 0, electric

potential V 0
þ=� (or electric fields E 0) imposed on the

actuator upper and lower surfaces, and electric displace-

ments D0.

From this assumption, any variable v can be written

as the sum of its known value at the operating point v0

and an increment around this point �vv : v ¼ v0 þ �vv:

Introducing this writing in the dynamic equation

(Equation (26)), one then obtains, for each time t:

Z

�

f½T 0
ij, j þ f d

i ¼ � €uu0i 	 u


i
þ½ �TT ij, j � ��€uu€uui	 u



i
g d� ¼ 0: ð36Þ

In order to solve this new dynamic equation, one has

to establish the value of each term. This is, in particular,

possible through the constitutive laws. Indeed, the

values of T 0
ij and D0

i are obtained by substituting all

parameters and variables of the constitutive equations

(Equation (27)) (i.e., �
,Es,S andEÞ by their values at

10



operating point (known values). One thus obtains:

T 0
ij ¼ C

D
ijklS

0
kl

� C
D
ijklQ

0
klmnD

0
mðS

0,E 0ÞD0
nðS

0,E 0Þ,

D0
m ¼ �
0

mmE
s 0
m tanh

E 0
m

Es0
m

 !

ð37Þ

þ 2CE0
ijklQ

0
klmnS

0
ij�


0
mm�


0
nnE

s 0
n

tanh ðEo
n=E

s 0
n Þ

cosh2ðE 0
m=E

s0
m Þ

� 2CE0
ijklQ

0
klmnQ

0
ijpq�


0
mm�


0
nn�


0
pp�


0
qqE

s0
n E

s0
p E

s0
q

� tanh
E 0

p

E s0
p

 !

tanh
E 0

q

Es 0
q

 !

tanh ðEo
n=E

s 0
n Þ

cosh2ðE0
m=E

s 0
m Þ

: ð38Þ

With regard to the incremental part of the stresses and

the electric displacements ( �TT and �DD), one can express

each of these terms as bilinear functions of strains and

electric fields increments. This is carried out through a

differentiation of the constitutive laws (Equation (27))

with respect to strains S and electric field E. One

can then obtain:

�TT ij ¼ �CC
D
ijkl

�SSkl þ d
�D
ijk

�DDkð �SS, �EEÞ, ð39Þ

�DDi ¼ d
DS
ikl

�SSkl þ h
E
ij
�EEj: ð40Þ

We underline here, that the coefficients �CC
D
ijkl, d

�D
ijk ,

d
DS
ikl and h

E
ij are known values calculated for parameters

established at the operating point ð�
 ¼ �
0, Es ¼ Es 0,

S ¼ S 0 and E ¼ E 0Þ: Coefficients thus depend of this

operating point, and will thus have to be modified

for each time t. We moreover underline that we don’t

have given here the expression of these coefficients as

functions of the parameters recalled above, as they are

quite complex and do not provide any essential data

for the following demonstration.

Let us finally remark that one can compare these

‘‘incremental’’ constitutive laws (Equations (39) and

(40)) to the linear piezoelectric constitutive laws. One

can then apply the results of Osmont (1996), Rahmoune

et al. (1998) to solve the linearized electromechanical

problem. In a way to adapt this theory to electro-

strictors, we will first apply the in-plane stresses

assumption to the incremental constitutive laws. We

will then be able to integrate in a similar way as in a

previous section the Gauss law.

PLANE STRESSES ASSUMPTIONS

The first step needed to integrate the Gauss law

consists in applying the in-plane stresses assumption to

the incremental constitutive laws.

Let’s first respectively define:

�TTP ¼ ð �TTxx
�TTyy

�TTyyÞ
t,

�TTT ¼ ð �TTxz
�TTyz

�TTzzÞ
t,

�SSP ¼ ð �SSxx
�SSyy 2 �SSxyÞ

t,

�ST ¼ ð2 �SSxz 2 �SSyz
�SSzzÞ

t,

�DDP ¼ ð �DDx
�DDyÞ

t,

�EEP ¼ ð �EEx
�EEyÞ

t,

�DDz and �EEz,

as the incremental in-plane stresses vector, the incre-

mental out-of-plane stresses vector, the incremental in-

plane strains vector, the incremental out-of-plane strains

vector, the incremental in-plane electric displacements

and incremental electric fields vectors, and, the incre-

mental transverse electric displacements and incremental

transverse electric fields.

Differentiating the constitutive laws (12) and (13), and

applying the previous definition of incremental vectors,

one can write:

�TTP

�TTT

�DDP

�DDz

0

B

B

@

1

C

C

A

¼

�CC
E
PP

�CC
E
PT d

�E
PP d

�E
Pz

�CC
E
TP

�CC
E
TT d

�E
TP d

�E
Tz

d
DS
PP d

DS
PT h

E
PP h

E
Pz

d
DS
zT d

DS
zP h

E
zP h

E
zz

0

B

B

B

@

1

C

C

C

A

�SSP

�SST

�EEP

�EEz

0

B

B

@

1

C

C

A

:

where sub-matrices are dependent on E.

If we now invert out-of-plane stresses and strains and

apply the plane stresses assumption to this matrix form

equation, one can rewrite the incremental constitutive

equation as follows:

�TTP

�DDP

�DDz

0

B

B

@

1

C

C

A

¼

~CC
E
PP

~dd
�E
PP

~dd
�E
Pz

~dd
DS
PP

~hh
E
PP

~hh
E
Pz

~dd
DS
zP

~hh
E
zP

~hh
E
zz

0

B

B

B

@

1

C

C

C

A

�SSP

�EEP

�EEz

0

B

B

@

1

C

C

A

ð41Þ

We now focus our study on mechanically and electri-

cally orthotropic materials (previously underlined). We

moreover recall that electro-actuators such as electro-

strictive and piezoelectric patches can be regarded as

plane capacitors where transverse electric field is much

more greater than in-plane fields, which thus can be

neglected.

From Equation (41), one can then, in particular, read:

�DDz ¼ ~dd
DS
zP

�SSP þ ~hh
E
zz
�EEz: ð42Þ

Finally, proceeding in a similar way for constitutive

laws (10) and (11), one obtains, with the plane stresses
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assumption:

�TTP ¼ ~CC
D
PP

�SSP þ ~dd
�D
Pz

�DDz: ð43Þ

Given the incremental electric displacement relation-

ship (42), we are now able to integrate the Gauss

law and thus find a solution for the electrical problem,

which will then be introduced in the stress constitutive

law (43).

GAUSS LAW INTEGRATION

As previously proved, in-plane electric displacements

(Dx and Dy) are negligible compared to transverse

one (Dz). Integrating the simplified Gauss law (Equa-

tion (20)) with respect to the z variable, one can then

read:

Dz, z ¼ D 0
z, z þ

�DDz, z ¼ q d

+

�DDz ¼

Z z

�h=2

qddz�D0
z þ A0,

ð44Þ

where A0 is a constant independent of z which is to be

fixed.

We derived in the previous paragraph, the incre-

mental electromechanical constitutive laws. From Equa-

tion (42) and given the electric field–voltage relationship

(Equation (9)) one can write:

Dz ¼ ~dd
DS
zP SP þ ~hh

E
zzE ¼ ~dd

DS
P SP � ~hh

E
zz

�VV, z:

Substituting this equation in Equation (44) gives:

�VV, z ¼
1

~hh
E
zz

D0
z � A0 þ ~dd

DS
zP

�SSP �

Z z

�h=2

qddz

� �

: ð45Þ

If we now substitute Kirchhoff–Love plane strains

(Equation (17)) in this expression, and integrate with

respect to the z variable, we can write:

�VV ¼

Z z

�h=2

1

~hh
E
zz

~dd
DS
zP S0 � z ~ddDS

zP R1
h i

( )

dz

þ

Z z

�h=2

1

~hh
E
zz

D 0
z � A0 �

Z z

�h=2

q ddz

� �

( )

dz

þ V �
h

2

� �

:

ð46Þ

Let us remark that from this expression, electric

potential and field are respectively quadratic and linear

functions of z through the thickness of the plate. When

electrostrictive patches are voltage driven, an electrical

potential is applied on upper and lower ceramic

surfaces. In a similar way, a potential increment �VV

could be applied on these surfaces with �VV ¼ �VV� for

z¼�h/2 and �VV ¼ �VVþ for z¼ h/2. These voltage incre-

ment boundary conditions substituted in Equation (46)

then give us the value of the constant A0:

A0 ¼
1

h1= ~hhEzzi
~dd
DS
zP

�

~hh
E
zz

D E

S0 � z ~ddDS
zP

�

~hh
E
zz

D E

R1
h i

þD0
z �

1

h1= ~hhEzzi
�qqd1
�

~hh
E
zz

D E

þ
1

h
ð �VVþ � �VV�Þ

� �

, ð47Þ

where we set down: 1=h
R h=2

�h=2
a dz ¼ hai the mean value

of any variable a and
R z

�h=2
qddz ¼ �qqd to simplify

expressions.

Replacing this constant value in Equations (44) and

(45), and taking into account the electric field–electric

potential relationship (Equation (9)), one respectively

obtains the electric displacement and the field incre-

ments as linear functions of membrane in-plane strains

and curvatures increments:

�DDz ¼ �
D
0 S

0 ��
D
1 R

1 þ �DD
elec

z , ð48Þ

�EEz ¼ �
E
0 S

0 ��
E
1R

1 þ E
elec

z : ð49Þ

In these expressions, we set down:

�
D
0 ¼

~dd
DS
zP

�

~hh
E
zz

D E

h1= ~hhEzzi
and �

D
1 ¼

z ~ddDS
zP

�

~hh
E
zz

D E

h1= ~hhEzzi
,

D
elec

z ¼ �qqd �
�qqd
�

~hh
E
zz

D E

h1= ~hhEzzi
�

1

h1= ~hhEzzi

V
þ
� V�

h
,

�
E
0 ¼

1

~hh
E
zz

~dd
DS
zP

�

~hh
E
zz

D E

h1= ~hhEzzi
� ~dd

DS
zP

2

4

3

5,

�
E
1 ¼

1

~hh
E
zz

z ~ddDS
zP

�

~hh
E
zz

D E

h1= ~hhEzzi
� z ~ddDS

zP

2

4

3

5, and,

E
elec

z ¼
1

~hh
E
zz

�qqd �
�qqd= ~hhEzz

D E

h1= ~hhEzzi
�

1

h1= ~hhEzzi

V
þ
� V�

h

2

4

3

5:

SIMPLIFICATION OF INCREMENTAL

CONSTITUTIVE LAWS

If we now substitute the bilinear electric displace-

ments obtained above (Equation (48)) in the incremental

12



stresses constitutive law (43), one can then write the

constitutive laws as bilinear functions of membrane in-

plane strains and curvatures increments:

TP ¼ �
�
0S

0 ��
�
1R

1 þ T
elec

P

Dz ¼ �
D
0 S

0 ��
D
1 R

1 þD
elec

z :

(

ð50Þ

where we set:

�
�
0 ¼

~CC
D
PP þ ~dd

�D
Pz �

D
0 ¼ ~CC

D
PP þ ~dd

�D
Pz

~dd
DS
zP

�

~hh
E
zz

D E

h1= ~hhEzzi
,

�
�
1 ¼ z ~CC

D
PP þ ~dd

�D
Pz �

D
1 ¼ z ~CCD

PP þ ~dd
�D
Pz

z ~ddDS
zP

�

~hh
E
zz

D E

h1= ~hhEzzi
,

T
elec

P ¼ ~dd
�D
Pz D

elec

z ¼ ~dd
�D
Pz �qqd �

�qqd
�

~hh
E
zz

D E

h1= ~hhEzzi
, �

V
þ
�V�

h1= ~hhEzzih
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In the particular case of homogeneous materials and

null electrical volumic charges, this law simplifes in:

TP ¼ ~CC
D
PP þ

~dd
�D
Pz

~dd
DS
zP

� �

S 0 � z ~CCD
PPR

1 � ~dd
�D
Pz

~hh
E
zz

V
þ
�V�

h
:

ð51Þ

Dz ¼ ~dd
DS
zP S 0 � ~hh

E
zz

V
þ
� V�

h
: ð52Þ

Let us remark that the coefficient of the membrane

in-plane strains increments of Equation (51) ð ~CCD
PPþ

~dd
�D
Pz

~dd
DS
zP Þ is in fact equivalent to the short-circuited elastic

constant ð ~CCE
PPÞ. This can thus underline that the

membrane stresses are governed by the short-circuited

elastic constants and that bending stresses are governed

by the isoled elastic constants.

PARTIAL CONCLUSIONS

In this part we have shown that when electrostrictive

ceramics are voltage driven, the non-linear electrome-

chanical problem could be linearized around an operat-

ing point (Equation (36)) for each time t, each unknown

being written as the sum of an established term at

operating point and an incremental term. We moreover

proved that an incremental constitutive law could be

deduced from classical ones (Equations (12) and (13))

and that these ones were linear functions of strains and

electric fields increments. Finally, these linear equations

were reduced to linear functions of plane strains only.

The electromechanical problem was thus reduced to

a simple mechanical problem with modified stiffness

coefficients and additional prescribed stresses.

FINITE ELEMENT METHOD

It was highlighted in the last section that whatever the

electrostrictive actuators driving input chosen, a plate

theory for orthotropic materials with a priori

Kirchhoff–Love assumptions reduces the electromecha-

nical non-linear problem to a simple non-linear mechan-

ical problem through a modification of stiffness

coefficients or additional applied prescribed stresses.

When electrostrictive patches are current driven, the

plane stresses can be written as linear functions of plane

strains (Equation (25)). This law is then similar to a

classical mechanical constitutive law using isolated

elastic constants, with prescribed stresses dependent on

the imposed electric displacement. Classical plate finite

element can thus be used to simulate electrostrictive

thin plate behavior. But in this case, the surface charges

are to be known at each point of the faces of the plate.

When electrostrictive patches are voltage driven, the

non-linear problem is linearized around an operating

point. Electromechanical constitutive laws are then split

up into an established part (calculated by introducing

displacement and voltage known values in constitutive

equations) and an incremental part (linear function

of strains and electric field increments). Kirchhoff–

Love plate assumptions then allow to express these

incremental constitutive laws as linear functions of

strains only through modification of stiffness coeffi-

cients and additional prescribed stresses (Equation (50)).

One can thus conclude that in a similar way as for

current driven actuator, classical plate finite element

can be used here to simulate electrostrictive thin plate

behavior. Furthermore, the particular constitutive law

(51) can be taken into account through the use of a

stratified plate finite element with three layers.

Finally, whatever the electrostrictive actuators driving

input chosen, a plate theory with a priori Kirchhoff–

Love assumptions leads to use classical mechanical plate

finite elements. No special electromechanical electro-

strictive finite element thus needs to be developed.

This observation will be the subject of the second part

of this paper which will be devoted to numerical and

experimental results, and presented at ICAST’01 (Pablo

et al., 2001a).

APPLICATION TO ACTIVE VIBRATION

CONTROL

Applications of plates active vibration control mainly

use patches which are metallized on the upper and lower

faces. These surfaces are thus electric equipotentials

which implies that the distribution of electric charges on

these faces cannot be known. In fact, only the mean

value [Dz] of these charges over the surfaces can be

prescribed through the measurement of the driving
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current. If one supposes the patch to be homogeneous,

then the mean value of the stresses [T ] over the patch is

related to the mean value of the strains [S ] over this

patch, using the isolated elastic constants through the

relationship:

½TP	 ¼ ~CC
D
PP½SP	 þ ~dd

D
Pz½Dz	: ð53Þ

Furthermore, deviations of stresses T� [T ] and

strains S� [S] from their mean values are related

together using the short-circuited elastic constants

through the relationship:

ðTP � ½TP	Þ ¼ ~CC
E
PPðS

0 � ½S 0	Þ � z ~CCD
PPðR

1 � ½R1	Þ: ð54Þ

Given that one can write T¼ (T� [T])þ [T], these last

two relationships can be combined to obtain:

TP ¼ ~CC
D
PPS

0 � ~zzDPPR
1 þ ~dd

�D
Pz ½Dz	

þ ð ~CCD
PP � ~CC

E
PPÞðS

0 � ½S 0	Þ: ð55Þ

It then seems that, in practice, it will not be possible to

avoid the influence of electric field on constitutive law in

the patch and therefore, in the control law.

However, if one wants a patch to be efficient on a

vibration it has to be placed on an antinode of this

vibration. However, at such a place, the deviation is

minimum. If L is the characteristic in-plane dimension

of the patch and � the wave length, the deviation of

stresses or strains are of order L/� with respect to their

mean value. So, if the difference between the isolated

constants ~CC
D
PP and the short-circuited ones ~CC

E
PP is small

enough, the expression ð ~CCD
pp �

~CC
E
PPÞðS

0 � ½S 0	Þ) may be

neglected. One then obtains the current driven model in

which the surface charges are supposed to be constant

over the patch.

This approximation, if consistent, allows to simplify

the control process, making it possible to use the current

as driving input.

Further details on the current driven actuator will

be reported in the second part of this paper.

SUMMARY AND CONCLUSIONS

This paper aims at exposing the elaboration of thin

electrostrictive plate finite element in order to simulate

the dynamic behavior of thin plate structures coupled

with electrostrictive patches as actuators.

It was first shown that current driving electrostrictors

would be valuable since this input avoids strain

saturations observed for high electric field magnitudes

when the ceramic is voltage driven. Moreover, on the

one hand, the constitutive laws obtained for current

driven ceramics are only dependent on two parameters

which are not ceramic temperature sensitive (isolated

parameters). On the other hand, voltage driving these

ceramics introduces additional parameters in constitu-

tive laws that were shown to be dependent on ceramic

temperature (Pablo and Petitjean, 2000b).

In a second part, governing equations and assump-

tions needed for developing the thin electrostrictive

plate finite element were formulated. From these equa-

tions, plate theories, based on Osmont (1996) were

respectively established for current driven and voltage

driven actuators. In one hand, when ceramics were

current driven, it was proved that the non-linear

electromechanical problem could be reduced to a

simple mechanical problem with additional prescribed

stresses dependent on applied electric displacements. On

the other hand, when actuators were voltage driven, we

demonstrated that the non-linear electromechanical

problem could be linearized around an operating

point, unknowns being split up into a well known part

and an incremental one. This linearization led to

incremental constitutive laws which are linear functions

of strains and electric field increments. Application of

thin plate assumptions then reduced these electrome-

chanical equations to simple mechanical laws with

specific stiffness coefficients depending on the electric

field and electrically induced prescribed stresses.

From these results, the elaboration of new plate

electrostrictive finite elements were no longer necessary

since classical ones could take into account non-linear

electrostrictive effects through prescribed stresses and

modifications of stiffness coefficients. It is moreover

important to highlight here that similar results for

orthotropic plates could be obtained using Mindlin-

Reissner plate assumptions instead of the Kirchhoff–

Love ones postulated in this paper.

Finally, we propose to use these plate models to

simplify the design of current driven control laws for the

reduction of vibration of plates with electrostrictive

patches. Further details will be given in the second part

of this paper.
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