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Reduced symmetric models for modal analysis of internal
structural-acoustic and hydroelastic-sloshing systems

Roger Ohayon *

Conservatoire National des Arts et Métiers (CNAM ), Chair of Mechanics, Structural Mechanics and Coupled Systems Laboratory,
2 rue Conté, F-75003 Paris, France

It is proposed to investigate several variational formulations for modal analysis of bounded fluid-structure systems, taking
into account in particular compressibility effects in the fluid for internal vibroacoustic problems, either gravity effects, in the
context of an incompressible fluid, for hydroelastic-sloshing interaction problems. Appropriate reduced symmetric matrix
models are constructed using zero-frequency static solutions of the fluid. In this respect, attention is paid to the behaviour of
the fluid—structure equations with regard to their validity for zero-frequency static limit.

1. Introduction

This paper deals with appropriate computational methods for modal analysis of elastic structures
containing an inviscid fluid (gas or liquid). These methods, based on Ritz—Galerkin projection using ap-
propriate functional basis, allow us to construct reduced models expressed in terms of physical displacement
vector field u in the structure, and generalized coordinates vector r describing the behavior of the fluid.
Those reduced models lead to symmetric generalized eigenvalue matrix system involving a reduced number
of degrees of freedom for the fluid. More precisely, we construct symmetric matrix models of the fluid
considered as a subsystem, by considering the response of the fluid to a prescribed normal displacement of
the fluid-structure interface. Two distinct situations are analyzed, namely, linear vibrations of an elastic
structure completely filled with a compressible gas or liquid and linear vibrations of an elastic structure
containing an incompressible liquid with free surface effects due to gravity. The first case is a structural-
acoustic problem with modal interaction between structural modes in vacuo for structure containing a gas or
incompressible hydroelastic modes for structure containing liquids, with acoustic modes in rigid motionless
cavity. Wall impedance can also be easily introduced in order to take into account fluid-structure interface
dissipation, for further forced response studies. The second case is a hydroelastic-sloshing problem with
modal interaction between incompressible hydroelastic structural modes with incompressible liquid sloshing
modes in rigid motionless cavity, involving an elastogravity operator elastogravity operator related to the
wall normal displacement of the fluid—structure interface. For the construction of reduced models, the static
behavior at zero frequency plays an important role. This is why we start from “well-posed” variational
formulations of the problem, in the sense that zero-frequency behavior must be well retrieved in the
equations. It should be noted that the so-called “quasi-static correction” term plays a fundamental role
in the Ritz—Galerkin procedure (error truncation). The general methodology corresponds to dynamic
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substructuring procedures adapted to fluid-structure modal analysis. For general presentations of com-
putational methods using appropriate finite element and dynamic substructuring procedures applied to
modal analysis of elastic structures containing inviscid fluids (sloshing, hydroelasticity and structural-
acoustics), we refer the reader to [5], and for the case of various damping effects, we refer the reader to [7].

2. Structural acoustic problem

We consider here the harmonic vibrations of an elastic structure completely filled with a homogeneous,
inviscid and compressible fluid considered as weightless (linear acoustic fluid). Among the applications, we
find, for instance, the important problem of acoustic comfort of “passengers’ related to the vibroacoustic
environment such as in launcher payloads, aircraft, automobiles. The particular case of a compressible
liquid with a free surface, negecting gravity effects, is also considered (for applications involving com-
pressibility effects in huge cryogenic tanks).

After an original derivation of the linearized equations of the fluid-structure coupled system, intro-
ducing an appropriate linear constraint in order to obtain a well-posed problem at zero frequency, we
discuss the basic ideas leading to a reduced model of the “fluid subsystem”. For this purpose, acoustic
modes in rigid motionless cavity are introduced as Ritz projection vector basis, including mandatory zero-
frequency (static) solution of the coupled system. Let us recall that the internal fluid—structure system is
characterized by a strong resonant behavior. Therefore, a direct finite element description can be costly.
That is why, starting from one of the possible variational formulations of the problem, reduced symmetric
matrix models are constructed.

3. Structural acoustic equations
3.1. Structure subjected to a fluid pressure loading

We consider an elastic structure occupying the domain Qg at equilibrium. The internal fluid—structure
interface is denoted as X. The angular frequency is denoted as w. The chosen unknown field in the structure
domain Qs is the displacement field u. The linearized deformation tensor is denoted as €;(x) and the
corresponding stress tensor is denoted as ¢;;(1#). We denote by pg the constant mass density at equilibrium
and by 7z the unit normal, external to the structure domain Qs. Let du be the test function, associated to u,
belonging to the admissible space %,,.

The weak variational formulation describing the response of the structure Qg to given harmonic forces of
amplitude F¢ on the external structure boundary 025\, and to fluid pressure field p acting on the internal
fluid—structure interface X is written as follows. For all real w and VYoéu € %,, find u € %, such that

k(u, ou) —wz/ psuéudx—/pnéuda:/ Fouda, (1)
as b 00s\2
in which
ke(u, ou) = k(u, ou) + kg (u, ou) + kp, (u, ou), (2)

and where k(u, ou) is the mechanical elastic stiffness such that
k(u, du) = / (1) e;(du) dx, 3)
Qg

and where kg (u, ou) and kg, (u, ou) are such that

ko (u, ou) :/ agulwiéulﬁjdx, kp, :/Ponl(u) oudo. (4)
Qs x



In Egs. (4) and (5), kg (u, du) represents the classical structural prestress geometric symmetric bilinear
form in which ¢’ denotes the prestress tensor, and kp, (1, du) represents an additional prestress symmetric
bilinear form due to rotation of normal n, in which P, denotes the initial pressure existing in the reference
equilibrium configuration. Finally, n;(u) represents the variation of normal n between the reference con-
figuration and the actual configuration.

3.2. Fluid subjected to a wall normal displacement

Since the fluid is inviscid, instead of describing the small motion of the fluid by a fluid displacement
vector field ur (see for instance [1]), which requires an appropriate discretization of the fluid irrotationality
constraint curl ur = 0, we will use the pressure scalar field p. It should be noted that the small movements
corresponding to w # 0 are obviously irrotational, but in the static limit case, i.e. at zero frequency, we
consider only fluids which exhibit a physical irrotational behavior.

Let us denote by ¢ the (constant) sound speed in the fluid, and by pp, the (constant) mass density of the
fluid at rest. We denote as Qf the domain occupied by the fluid at rest (which is taken as the equilibrium
state). The local equations describing the harmonic response of the fluid to a prescribed arbitrary normal
displacement un of the fluid-structure interface X are such that

Vp — ppo*up = 0g,, (5)
pP= —PFCZVW‘QW (6)
upn = un|y, (7)
curlug = 0|, . (8)

Eq. (5) corresponds to the linearized Euler equation in the fluid. Eq. (6) corresponds to the constitutive
equation of the barotropic fluid. Eq. (7) corresponds to the wall slipping condition. Eq. (8) corresponds to
the irrotationality condition, only necessary in order to ensure that when w — 0, ug tends to static irro-
tational motion, which corresponds to the hypothesis that for @ = 0, we only consider irrotational motions
(for simply connected fluid domain).

3.3. Relation between static pressure p* and un

For w = 0, Egs. (6) and (7) lead to the constant pressure static field which is related to the normal wall
displacement by the relation (see [5,6], and for the dissipative case [7])

2
PEC€

S = — d 9

P e S ©)

in which |Qg| denotes the measure of the volume occupied by domain Q.

3.4. Equations in terms of p and un

The elimination of ur between Eqgs. (5)—(8) leads to

2

w
AP+?P=0|QF7 (10)
op

L pporunl;, (1)



with the constraint
1
— pdx—i—/undazO. (12)
Prc? QF z

Eq. (10) is the classical Helmholtz equation expressed in terms of p. Eq. (11) corresponds to the kine-
matic condition defined by Eq. (7). The linear constraint defined by Eq. (12) corresponds to the global mass
conservation which ensures that the boundary problem defined by Egs. (10) and (11) is equivalent to the
problem defined by Egs. (5)—(8). In the absence of the condition defined by Eq. (12), we would obtain a
boundary value problem in terms of p which is not valid for w = 0 and which does not allow us to retrieve
the value of p* given by Eq. (9). This condition is usually omitted in the literature.

3.5. Variational formulation in terms of (u,p)

Let Jp be the test function, associated to p, belonging to the admissible space %,. The weak variational
formulation corresponding to Egs. (10)—(12) is obtained by the usual test-function method using Green’s
formula. The weak variational formulation corresponding to the modal analysis of the structural-acoustic
problem is then obtained by setting F¢ = 0 in Eq. (1). The eigenvalue structural-acoustic variational for-
mulation is then stated as follows. Find w* and u € %, and p € %, such that for all ou € 6, and 9, € €, we
have

k(u, ou) — /pnéuda = wz/ psu oudx, (13)
b ey

1 o’ )

— VpVipdx = — / popdx + o / undpda, (14)

PF Jar PrC” Jop b

with the constraint

1
2/ pdx—i—/undazO. (15)
PrC™ Jor z

The variational formulation defined by Eqs. (13)-(15) is original due to the presence of the constraint
defined by Eq. (15) which regularizes the (u, p) formulation for w = 0 (see also [8]). In effect, usually, only
Eqgs. (13) and (14) are written, and as pointed out above, are not valid for w = 0. In the case of a direct finite
element discretization of Eqs. (13)—(15), we obtain a matrix eigenvalue system of the type AY = ’BY, in
which A and B are not symmetric. That is why various symmetric formulations using for the fluid pressure
field p and displacement potential ¢, defined up to an additive constant and such that ur = V¢, have been
derived. The resulting symmetric formulations are then obtained by elimination of p or ¢ (see [2,4]), or for
detailed complete analysis, [5]. In the present case, we are not considering a direct finite element approach
of the variational formulation defined by Egs. (13)—(15).

3.6. Symmetric reduced model

Let us consider the following two basic problems. The first one corresponds to the acoustic modes in
rigid motionless cavity and is obtained by setting u = 0 into Egs. (14) and (15). The calculation of these
acoustic modes is generally done by using a finite element procedure. If we introduce the admissible sub-
space €, of ¢,

%;:{pe(ép; / pdsz}7 (16)
Qp

the variational formulation of acoustic modes is stated as follows: find w?> >0 and p € %, such that,
Vop € €, we have



Pr Jog P Qr

popdx, (17)
with the constraint

/dexzo. (18)

It should be noted that, in practice, if the constraint condition (18) is “omitted”, we only add a first
nonphysical zero-frequency constant pressure mode, the other modes corresponding to @ # 0 remaining the
same as those defined by Egs. (17) and (18). This zero-frequency mode must not be retained in any Ritz—
Galerkin projection analysis. In addition, we have the following orthogonality conditions

1
/ pocpﬁd-x = .“150([?, - Vp, Vpﬁdx @, (Sxﬁ (19)

2
PrC™ Joy Pr Jag

The second basic problem corresponds to the static response of the fluid to a prescribed wall normal
displacemnt un. The solution, denoted as p*(un), is given by Eq. (9). For any deformation un of the fluid—
structure interface, p*(un) belongs to a subset of %, denoted as ¢""

(gunz{ €6, p= —|QF| /unda} (20)

In the variational formulation defined by Eqgs. (13)-(15), p is searched under the form

N,

p=r(un)+> rup., (21)

=1

in which N, denotes the number of retained acoustic modes. The decomposition (21) is unique. In addition,
it should be noted that, since each eigenvector p, corresponding to w, # 0, verifies the constraint defined by
Eq. (18), then, using Eq. (9), we deduce that p and un satisfy the constraint defined by Eq. (15). The de-
composition defined by Eq. (21) corresponds to a decomposition of the admissible class %), into the direct
sum of the admissible classes defined, respectively, by Egs. (20) and (16)

C,=%6"2%, (22)
Following Eq. (21), the test function op is then searched under the following form:

N,
op = p*(dun) + Z 07Dy (23)

o=1

The variational formulation in du defined by Eq. (13) becomes

k(u, du) + k*(u, du) er/pznéudo: wZ/Q psu oudx, (24)
S

in which k(u, ou) is defined by Eq. (2) and &*(u, du) is such that

ke (u, ou) = p;zj < / unda> < /E 5unda>. (25)

If we consider a finite element discretization of the structure, the corresponding discretized form of
Eq. (24) can be written as




K+KJU-> C.r, =’MU, (26)

o=1

in which symmetric matrices K and K* correspond to finite element discretization of stiffness symmetric
bilinear forms defined by Egs. (2)—(4) and (25), respectively. In Eq. (26), M denotes the structural-sym-
metric mass matrix and rectangular coupling matrix C, corresponds to the discretization of the coupling
fluid—structure contribution fU poundo. The discretized form of Eq. (14) in dp can be rewritten as

o’ r, = &’ p,r, + 0*ClU. (27)

From Egs. (26) and (27), we obtain the following symmetric matrix reduced model

(K(;Ot Diz?gua) (lrj> B w2<1\§: Diag(l/l/wi)) <lrj) (28)

in which r denotes the vector of N generalized coordinates r,, with 1 <« < N,, and

KlOL — IN( _|_ KS, (29)
N,
M =M + Z ! c,C! (30)
a=1 G)g'u“ o
Ny
D,=) —C, 31
; o (31)

Further diagonalization of Eq. (28) implies a projection of U on the solutions of the following eigenvalue
problem

K°'Uj = ;MU (32)
Setting
N,
U= Z 95U, (33)
=1

in which g4 are the generalized coordinates describing the structure. Using the orthogonality conditions
associated with the solutions of Eq. (32), i.e. U/Tf/thUﬂ = uydpy and U/Tg/K“"U/; = uwyApdgy, Eq. (28) be-
comes

("5 o)) )

It should be noted that in vacuo structural modes can also be used (instead of those defined by Eq. (32)),
but the resulting matrix system would not be diagonal with respect to U.

3.7. Wall impedance condition

Referring to [3] or for more detailed modeling, to [7], wall impedance condition corresponds to a par-
ticular fluid—structure interface modeling. This interface is considered as a third medium with infinitesimal
thickness, without mass, and with the following constitutive equation

p = joZ(w)(un —upn), (35)

in which Z(w) denotes a complex impedance. Eqs. (7) and (11) must be replaced by Eq. (35), using
Op/on = prw’ugn.



3.8. Case of a liquid with a free surface

Let us consider a liquid with a free surface at rest denoted as I'. If we neglect gravity effects, the
boundary condition on I is such that

p=0. (36)

In this case, constraint condition (12) or (15) is replaced by Eq. (36). Eq. (9) is replaced by p* = 0.
Admissible space defined by Eq. (16) becomes %, = {p € €,; p=0}.

In this case, the static problem defined in Section 3.3 leads to a zero-pressure field.

Let us remark that in this case, the “structural” modal basis may be constituted by the hydroelastic
incompressible modes using the classical added mass operator.

The reduced modal matrix models has been extended to the dissipative case (dissipative internal fluid
with nonhomogeneous local impedance wall condition) in [7].

4. Incompressible hydroelastic-sloshing problem

We consider the harmonic vibrations of an elastic structure partially filled with an homogeneous, in-
viscid and incompressible liquid, taking into account gravity effects on the free surface I'. After an original
derivation of the linearized equations of the fluid—structure coupled problem, introducing an appropriate
linear constraint in order to obtain a well-posed problem at zero frequency, we discuss the main ideas
leading to a reduced model of the “liquid subsystem™. For this purpose, sloshing modes in rigid motionless
cavity are introduced as Ritz projection vector basis, including mandatory zero-frequency (static) solution
of the coupled system. Let us recall that the internal fluid-structure system is characterized by a strong
resonant behavior. Therefore, a direct finite element description can be costly. That is why, starting from
one of the possible variational formulations of the problem, reduced symmetric matrix models of this
system are constructed.

5. Hydroelastic-sloshing equations
5.1. Structure subjected to a fluid pressure loading

The notations are the same that those defined in Section 3.1. The weak variational formulation de-
scribing the response of the structure Qg to given variation F¢ of the applied forces with respect to the
equilibrium state on the external structure boundary 0Qs\ X, and to fluid pressure field p acting on the
internal fluid-structure interface X is written as follows.

For all real w and Véu € €, find u € €, such that

k (u, ou) —wz/ psuoudx — /pnéudo :/ Fouda, (37)
Qs z 0Qs\2
in which
k=k+ks. (38)

In Eq. (38), k(u, ou) is defined by Eq. (2), and ks is the elastogravity symmetric bilinear form such that (see
[5], chapter 6)

ks (u, ou) = —%ng{/[znl(u)5u+u25un]d6+/
b

z

[z (Ou)u + Su.un] da}. (39)



5.2. Fluid subjected to a wall normal displacement

We assume that the liquid is homogeneous, inviscid and incompressible. Free surface I' is horizontal at
equilibrium. We denote by z the external unit normal to I', and by g the gravity. The notations are similar
to those of Section 3.2. The local equations describing the response of the fluid to a prescribed arbitrary
normal displacement un of the fluid—structure interface X are such that

Vp — ppo’up = 0, , (40)
Vuy =0|,,, (41)
upn = unls, (42)
P = prgurn|p, *3)
curl up = O|QF. (44)

Eq. (41) corresponds to the incompressibility condition. Eq. (43) is the constitutive equation on the free
surface I" due to gravity effects.

5.3. Relation between static pressure p* and un

For w = 0, Egs. (41)—(43) lead to the constant pressure static field which is related to the normal wall
displacement by the relation (see [5,6])

P = —% Zunda, (45)

in which |I'| denotes the measure of the area of free surface I.

5.4. Equations in terms of p and un

The elimination of ug between Egs. (40)—(44) leads to

Ap =0lg,, (46)
op

3 pro’un|y, (47)
op o’

o _ 4
Z-Z . (48)

with the constraint

1

— pda—l—/unda:O. 49

P8 Jr b “9)

The linear constraint defined by Eq. (49) ensures that the boundary problem defined by Egs. (46)—-(49) is
equivalent to the problem defined by Egs. (40)—(44) . This condition is usually omitted in the literature.

5.5. Variational formulation in terms of (u,p)

Let Jp be the test function, associated to p, belonging to the admissible space %,. The weak variational
formulation corresponding to Egs. (46)—(49) is obtained by the usual test-function method using Green’s



formula. Recalling Eq. (37), the variational formulation of the Ahydroelastic-sloshing problem is then stated
as follows. Find u € %, and p € %, such that for all éu € €, and Jp € %,, we have

;(u, ou) — wz/ pguoudx — /pn oudo = / FY6udo, (50)
Qs b 005\ 2
1 o’ )
— VpVopdx =— [ popdx + o | undpdo, (51)
PF Jar Pr§ Jr b

with the constraint

1
—_ daJr/undO':O. 52
prg Ji? . (52)

The variational formulation defined by Eqs. (50)—(52) is original due to the presence of the constraint
defined by Eq. (49) which regularizes the (u, p) formulation for w = 0 [8].

5.6. Symmetric reduced matrix model

Let us consider the following two basic problems. The first one corresponds to the sloshing modes in
rigid motionless cavity and is obtained by setting u = 0 into Egs. (47) and (49). The calculation of these
acoustic modes is generally done by using a finite element procedure. If we introduce the admissible sub-
space ¢, of %,

%;:{pe%; /deazo}, (53)

the variational formulation of acoustic modes is stated as follows: find w?> > 0 and p € %, such that, for all
dp € ¢, we have

1 1
— VpV(Spdx:wz—/pépda, (54)
PE& Jr

pF Qp

with the constraint

/F pdo = 0. (55)

It should be noted that, in practice, if the constraint condition (55) is “omitted”, we only add a first
nonphysical zero-frequency constant pressure mode, the other modes corresponding to w # 0 remaining the
same as those defined by Eqs. (54) and (55). This zero-frequency mode must not be retained in any Ritz—
Galerkin projection analysis. In addition, we have the following orthogonality conditions

1 1
— | pppdo = 1,05, — | Vp,Vppdx = 1,00, (56)
Pe8 Jr Pr Jog

The second basic problem corresponds to the static response of the fluid to a prescribed wall normal
displacement un. The solution, denoted as p*(un), is given by Eq. (45). For any deformation un of the fluid—
structure interface, p*(un) belongs to a subset of %, denoted as ¢""

""" = {ps €6, pP’'= —% unda}. (57)
z

In the variational formulation defined by Eqs. (50)—(52), p is searched under the form

Ny

p:ps(un) +Zrapoca (58)

=1



in which N, denotes the number of retained sloshing modes. The decomposition (58) is unique. In addition,
it should be noted that, since each eigenvector p, corresponding to w, # 0, verifies the constraint defined by
Eq. (55), then, using Eq. (45), we deduce that p and un satisfy the constraint defined by Eq. (52). The
decomposition defined by Eq. (58) corresponds to a decomposition of the admissible class %), into the direct
sum of the admissible classes defined, respectively, by Egs. (56) and (57), €, = ¢"" © €.

The variational formulation in u defined by Eq. (50) becomes

Np
K (u, ou) + k*(u, ou) — er/pxn oudo = a)z/ psu oudx, (59)
=1 P Qs

in which %(u, ou) is defined by Eq. (38) and k°(u, du) is such that

K (u, 0u) = ’ﬁ ( / unda) ( / 5undo’> (60)

If we consider a finite element discretization of the structure, the corresponding discretized form of
Eq. (60) can be written as

K+KJU-Y Cr, — ’MU = F, (61)

o=1

in which symmetric matrices K and K° correspond to finite element discretization of stiffness symmetric
bilinear forms defined by Egs. (38) and (60), respectively. The discretized form of Eq. (51) in dp can then be
written as

W2y = 0’ r, + 0’ CrU. (62)

From Egs. (61) and (62), we obtain a symmetric matrix reduced model whose expression is similar to the one
given by expression (28).
Similarly to Section 3.6, further diagonalization can be obtained by setting

Nu
U= qugU/g, (63)
p=1

in which ¢g are the generalized coordinates describing the structure and Uy are the eigenmodes of an ei-
genvalue problem similar to the one described by Eq. (32). We then obtain a similar matrix system than the
one described by Eq. (34)

(5 k) (0)(dor )0 -(%)

It should be noted that we can also use the incompressible hydroelastic modes, i.e. the modes of the
coupled system constituted by the elastic structure containing an incompressible liquid, with p =0 on I
(through an added mass operator). In this case, the resulting matrix system is not completely diagonal with
respect to U variables [3].

6. Conclusion

Using a new approach, we have presented convenient and versatile tools for low frequency modal
analysis of elastic structures containing linear inviscid homogeneous fluids for structural-acoustics and
incompressible hydroelastic-sloshing problems. Those formulations, together with dynamic substructuring
techniques [9], lead to symmetric reduced matrix systems expressed in terms of generalized coordinates for
the fluid (and if necessary for the structure).
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