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Introduction

This paper deals with appropriate computational methods for modal analysis of elastic structures containing an inviscid ¯uid (gas or liquid). These methods, based on Ritz±Galerkin projection using appropriate functional basis, allow us to construct reduced models expressed in terms of physical displacement vector ®eld u in the structure, and generalized coordinates vector r describing the behavior of the ¯uid. Those reduced models lead to symmetric generalized eigenvalue matrix system involving a reduced number of degrees of freedom for the ¯uid. More precisely, we construct symmetric matrix models of the ¯uid considered as a subsystem, by considering the response of the ¯uid to a prescribed normal displacement of the ¯uid±structure interface. Two distinct situations are analyzed, namely, linear vibrations of an elastic structure completely ®lled with a compressible gas or liquid and linear vibrations of an elastic structure containing an incompressible liquid with free surface eects due to gravity. The ®rst case is a structuralacoustic problem with modal interaction between structural modes in vacuo for structure containing a gas or incompressible hydroelastic modes for structure containing liquids, with acoustic modes in rigid motionless cavity. Wall impedance can also be easily introduced in order to take into account ¯uid±structure interface dissipation, for further forced response studies. The second case is a hydroelastic-sloshing problem with modal interaction between incompressible hydroelastic structural modes with incompressible liquid sloshing modes in rigid motionless cavity, involving an elastogravity operator elastogravity operator related to the wall normal displacement of the ¯uid±structure interface. For the construction of reduced models, the static behavior at zero frequency plays an important role. This is why we start from ``well-posed'' variational formulations of the problem, in the sense that zero-frequency behavior must be well retrieved in the equations. It should be noted that the so-called ``quasi-static correction'' term plays a fundamental role in the Ritz±Galerkin procedure (error truncation). The general methodology corresponds to dynamic 1 substructuring procedures adapted to ¯uid±structure modal analysis. For general presentations of computational methods using appropriate ®nite element and dynamic substructuring procedures applied to modal analysis of elastic structures containing inviscid ¯uids (sloshing, hydroelasticity and structuralacoustics), we refer the reader to [START_REF] -P. Morand | Fluid±Structure Interaction[END_REF], and for the case of various damping effects, we refer the reader to [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF].

Structural acoustic problem

We consider here the harmonic vibrations of an elastic structure completely ®lled with a homogeneous, inviscid and compressible ¯uid considered as weightless (linear acoustic ¯uid). Among the applications, we ®nd, for instance, the important problem of acoustic comfort of ``passengers'' related to the vibroacoustic environment such as in launcher payloads, aircraft, automobiles. The particular case of a compressible liquid with a free surface, negecting gravity eects, is also considered (for applications involving compressibility eects in huge cryogenic tanks).

After an original derivation of the linearized equations of the ¯uid±structure coupled system, introducing an appropriate linear constraint in order to obtain a well-posed problem at zero frequency, we discuss the basic ideas leading to a reduced model of the ``¯uid subsystem''. For this purpose, acoustic modes in rigid motionless cavity are introduced as Ritz projection vector basis, including mandatory zerofrequency (static) solution of the coupled system. Let us recall that the internal ¯uid±structure system is characterized by a strong resonant behavior. Therefore, a direct ®nite element description can be costly. That is why, starting from one of the possible variational formulations of the problem, reduced symmetric matrix models are constructed.

Structural acoustic equations

Structure subjected to a ¯uid pressure loading

We consider an elastic structure occupying the domain X S at equilibrium. The internal ¯uid±structure interface is denoted as R. The angular frequency is denoted as x. The chosen unknown ®eld in the structure domain X S is the displacement ®eld u. The linearized deformation tensor is denoted as ij u and the corresponding stress tensor is denoted as r ij u. We denote by q S the constant mass density at equilibrium and by n the unit normal, external to the structure domain X S . Let du be the test function, associated to u, belonging to the admissible space C u .

The weak variational formulation describing the response of the structure X S to given harmonic forces of amplitude F d on the external structure boundary oX S nR, and to ¯uid pressure ®eld p acting on the internal ¯uid±structure interface R is written as follows. For all real x and Vdu P C u , ®nd u P C u such that ku 

; duÀx 2 Z X S q S u du dx À Z R pn du dr Z oX S nR F d du
In Eqs. ( 4) and ( 5), k G u; du represents the classical structural prestress geometric symmetric bilinear form in which r 0 ij denotes the prestress tensor, and k P 0 u; du represents an additional prestress symmetric bilinear form due to rotation of normal n, in which P 0 denotes the initial pressure existing in the reference equilibrium con®guration. Finally, n 1 u represents the variation of normal n between the reference con-®guration and the actual con®guration.

Fluid subjected to a wall normal displacement

Since the ¯uid is inviscid, instead of describing the small motion of the ¯uid by a ¯uid displacement vector ®eld u F (see for instance [START_REF] Bermudez | Finite element computation of the vibration modes of a ¯uid±solid system[END_REF]), which requires an appropriate discretization of the ¯uid irrotationality constraint curl u F 0, we will use the pressure scalar ®eld p. It should be noted that the small movements corresponding to x T 0 are obviously irrotational, but in the static limit case, i.e. at zero frequency, we consider only ¯uids which exhibit a physical irrotational behavior.

Let us denote by c the (constant) sound speed in the ¯uid, and by q F , the (constant) mass density of the ¯uid at rest. We denote as X F the domain occupied by the ¯uid at rest (which is taken as the equilibrium state). The local equations describing the harmonic response of the ¯uid to a prescribed arbitrary normal displacement un of the ¯uid±structure interface R are such that

rp À q F x 2 u F 0j X F ; 5 p Àq F c 2 ru f j X F ; 6 u F n unj R ; 7 curl u F 0j X F : 8 
Eq. ( 5) corresponds to the linearized Euler equation in the ¯uid. Eq. ( 6) corresponds to the constitutive equation of the barotropic ¯uid. Eq. ( 7) corresponds to the wall slipping condition. Eq. ( 8) corresponds to the irrotationality condition, only necessary in order to ensure that when x 3 0, u F tends to static irrotational motion, which corresponds to the hypothesis that for x 0, we only consider irrotational motions (for simply connected ¯uid domain).

Relation between static pressure p s and un

For x 0, Eqs. ( 6) and ( 7) lead to the constant pressure static ®eld which is related to the normal wall displacement by the relation (see [START_REF] -P. Morand | Fluid±Structure Interaction[END_REF][START_REF] Ohayon | The eect of wall motion on the governing equations of structures containing ¯uids[END_REF], and for the dissipative case [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF])

p s À q F c 2 jX F j Z R undr; 9 
in which jX F j denotes the measure of the volume occupied by domain X F .

Equations in terms of p and un

The elimination of u F between Eqs. ( 5)±(8) leads to

Dp x 2 c 2 p 0j X F ; 10 op on q F x 2 unj R ; 11 with the constraint 1 q F c 2 Z X F p dx Z R undr 0: 12 
Eq. ( 10) is the classical Helmholtz equation expressed in terms of p. Eq. ( 11) corresponds to the kinematic condition de®ned by Eq. ( 7). The linear constraint de®ned by Eq. ( 12) corresponds to the global mass conservation which ensures that the boundary problem de®ned by Eqs. ( 10) and ( 11) is equivalent to the problem de®ned by Eqs. ( 5)± [START_REF] Ohayon | Symmetric formulations for modal analysis of internal ¯uid structure systems[END_REF]. In the absence of the condition de®ned by Eq. ( 12), we would obtain a boundary value problem in terms of p which is not valid for x 0 and which does not allow us to retrieve the value of p s given by Eq. ( 9). This condition is usually omitted in the literature.

Variational formulation in terms of u; p

Let dp be the test function, associated to p, belonging to the admissible space C p . The weak variational formulation corresponding to Eqs. (10)±( 12) is obtained by the usual test-function method using Green's formula. The weak variational formulation corresponding to the modal analysis of the structural-acoustic problem is then obtained by setting F d 0 in Eq. ( 1). The eigenvalue structural-acoustic variational formulation is then stated as follows. Find x 2 and u P C u and p P C p , such that for all du P C u and d p P C p ,we have

ku; duÀ Z R pn du dr x 2 Z X S q S u du dx; 13 1 q F Z X F rp rdp dx x 2 q F c 2 Z X F pdp dx x 2 Z R undp dr; 14 with the constraint 1 q F c 2 Z X F p dx Z R undr 0: 15 
The variational formulation de®ned by Eqs. (13)±( 15) is original due to the presence of the constraint de®ned by Eq. (15) which regularizes the u; p formulation for x 0 (see also [START_REF] Ohayon | Symmetric formulations for modal analysis of internal ¯uid structure systems[END_REF]). In eect, usually, only Eqs. ( 13) and ( 14) are written, and as pointed out above, are not valid for x 0. In the case of a direct ®nite element discretization of Eqs. (13)±(15), we obtain a matrix eigenvalue system of the type AY x 2 BY,i n which A and B are not symmetric. That is why various symmetric formulations using for the ¯uid pressure ®eld p and displacement potential u, de®ned up to an additive constant and such that u F ru, have been derived. The resulting symmetric formulations are then obtained by elimination of p or u (see [START_REF] Felippa | Mixed variational formulation of ®nite element analysis of acoustoelastic/slosh ¯uid±structure interaction[END_REF][START_REF] Liu | Variational approach to ¯uid±structure interaction with sloshing[END_REF]), or for detailed complete analysis, [START_REF] -P. Morand | Fluid±Structure Interaction[END_REF]. In the present case, we are not considering a direct ®nite element approach of the variational formulation de®ned by Eqs. (13)±(15).

Symmetric reduced model

Let us consider the following two basic problems. The ®rst one corresponds to the acoustic modes in rigid motionless cavity and is obtained by setting u 0 into Eqs. ( 14) and (15). The calculation of these acoustic modes is generally done by using a ®nite element procedure. If we introduce the admissible subspace

C Ã p of C p C Ã p p P C p ; Z X F p dx 0 ; 16 
the variational formulation of acoustic modes is stated as follows: ®nd x 2 > 0 and p P C Ã p such that, Vdp P C Ã p , we have

1 q F Z X F rp rdp dx x 2 1 q F c 2 Z X F pdp dx; 17 with the constraint Z X F p dx 0: 18 
It should be noted that, in practice, if the constraint condition (18) is ``omitted'', we only add a ®rst nonphysical zero-frequency constant pressure mode, the other modes corresponding to x T 0 remaining the same as those de®ned by Eqs. ( 17) and ( 18). This zero-frequency mode must not be retained in any Ritz± Galerkin projection analysis. In addition, we have the following orthogonality conditions

1 q F c 2 Z X F p a p b dx l a d ab ; 1 q F Z X F rp a rp b dx l a x 2 a d ab : 19 
The second basic problem corresponds to the static response of the ¯uid to a prescribed wall normal displacemnt un. The solution, denoted as p s un, is given by Eq. ( 9). For any deformation un of the ¯uid± structure interface, p s un belongs to a subset of C p , denoted as C un

C un p s P C p ; p s À q F c 2 jX F j Z R undr : 20 
In the variational formulation de®ned by Eqs. (13)±(15), p is searched under the form p p s un X Np a1 r a p a ; 21 in which N p denotes the number of retained acoustic modes. The decomposition (21) is unique. In addition, it should be noted that, since each eigenvector p a corresponding to x a T 0, veri®es the constraint de®ned by Eq. (18), then, using Eq. ( 9), we deduce that p and un satisfy the constraint de®ned by Eq. ( 15). The decomposition de®ned by Eq. ( 21) corresponds to a decomposition of the admissible class C p into the direct sum of the admissible classes de®ned, respectively, by Eqs. (20) and ( 16)

C p C un È C Ã p : 22 
Following Eq. ( 21), the test function dp is then searched under the following form:

dp p s dun X Np a1 dr a p a : 23 
The variational formulation in du de®ned by Eq. (13) becomes ku; duk s u; duÀ

X Np a1 r a Z R p a n du dr x 2 Z X S
q S u du dx; 24 in which ku; du is de®ned by Eq. (2) and k s u; du is such that

k s u; du q F c 2 jX F j Z R undr Z R dundr : 25 
If we consider a ®nite element discretization of the structure, the corresponding discretized form of Eq. ( 24) can be written as

K K s U À X n a1
C a r a x 2 MU; 26 in which symmetric matrices K and K s correspond to ®nite element discretization of stiness symmetric bilinear forms de®ned by Eqs. (2)±( 4) and (25), respectively. In Eq. ( 26), M denotes the structural-symmetric mass matrix and rectangular coupling matrix C a corresponds to the discretization of the coupling ¯uid±structure contribution R r pdundr. The discretized form of Eq. ( 14) in dp can be rewritten as x 2 a l a r a x 2 l a r a x 2 C T a U: 27

From Eqs. ( 26) and ( 27), we obtain the following symmetric matrix reduced model

K tot 0 0 Diagl a U r x 2 M tot D D T Diagl a =x 2 a U r ; 28 
in which r denotes the vector of N generalized coordinates r a , with 1 6 a 6 N p , and

K tot K K s ; 29 M tot M X Np a1 1 x 2 a l a C a C T a ; 30 
D a X Np a1 1 x 2 a C a : 31 
Further diagonalization of Eq. ( 28) implies a projection of U on the solutions of the following eigenvalue problem

K tot U b k b M tot U b : 32 Setting U X Nu b1 q b U b ; 33 
in which q b are the generalized coordinates describing the structure. Using the orthogonality conditions associated with the solutions of Eq. (32), i.e.

U T b H M tot U b l s b d bb H and U T b H K tot U b l s b k b d bb H , Eq. (28) be- comes Diag k b 0 0 Diag x 2 a q r x 2 I Nu C ba C ba T I Np q r : 34 
It should be noted that in vacuo structural modes can also be used (instead of those de®ned by Eq. ( 32)), but the resulting matrix system would not be diagonal with respect to U.

Wall impedance condition

Referring to [START_REF] Kehr-Candille | Elasto-acoustic damped vibrations. Finite element and modal reduction methods[END_REF] or for more detailed modeling, to [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF], wall impedance condition corresponds to a particular ¯uid±structure interface modeling. This interface is considered as a third medium with in®nitesimal thickness, without mass, and with the following constitutive equation p jxZxun À u F n; 35 in which Zx denotes a complex impedance. Eqs. ( 7) and ( 11) must be replaced by Eq. ( 35), using op=on q F x 2 u F n.

Case of a liquid with a free surface

Let us consider a liquid with a free surface at rest denoted as C. If we neglect gravity eects, the boundary condition on C is such that p 0j C : 36

In this case, constraint condition (12) or ( 15) is replaced by Eq. (36). Eq. ( 9) is replaced by p s 0. Admissible space de®ned by Eq. ( 16) becomes C Ã p fp P C p ; p 0g. In this case, the static problem de®ned in Section 3.3 leads to a zero-pressure ®eld. Let us remark that in this case, the ``structural'' modal basis may be constituted by the hydroelastic incompressible modes using the classical added mass operator.

The reduced modal matrix models has been extended to the dissipative case (dissipative internal ¯uid with nonhomogeneous local impedance wall condition) in [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF].

Incompressible hydroelastic-sloshing problem

We consider the harmonic vibrations of an elastic structure partially ®lled with an homogeneous, inviscid and incompressible liquid, taking into account gravity eects on the free surface C. After an original derivation of the linearized equations of the ¯uid±structure coupled problem, introducing an appropriate linear constraint in order to obtain a well-posed problem at zero frequency, we discuss the main ideas leading to a reduced model of the ``liquid subsystem''. For this purpose, sloshing modes in rigid motionless cavity are introduced as Ritz projection vector basis, including mandatory zero-frequency (static) solution of the coupled system. Let us recall that the internal ¯uid±structure system is characterized by a strong resonant behavior. Therefore, a direct ®nite element description can be costly. That is why, starting from one of the possible variational formulations of the problem, reduced symmetric matrix models of this system are constructed.

Hydroelastic-sloshing equations

Structure subjected to a ¯uid pressure loading

The notations are the same that those de®ned in Section 3.1. The weak variational formulation describing the response of the structure X S to given variation F d of the applied forces with respect to the equilibrium state on the external structure boundary oX S nR, and to ¯uid pressure ®eld p acting on the internal ¯uid±structure interface R is written as follows.

For all real x and Vdu P C u , ®nd u P C u such that

b ku; duÀx 2 Z X S q S u du dx À Z R pn du dr Z oX S nR F d du dr; 37 in which b k k k R : 38 
In Eq. (38), ku; du is de®ned by Eq. ( 2), and k R is the elastogravity symmetric bilinear form such that (see [START_REF] -P. Morand | Fluid±Structure Interaction[END_REF], chapter 6)

k R u; duÀ 1 2 q F g Z R zn 1 u du u z dun dr Z R
zn 1 duu du z un dr : 39

Fluid subjected to a wall normal displacement

We assume that the liquid is homogeneous, inviscid and incompressible. Free surface C is horizontal at equilibrium. We denote by z the external unit normal to C, and by g the gravity. The notations are similar to those of Section 3.2. The local equations describing the response of the ¯uid to a prescribed arbitrary normal displacement un of the ¯uid±structure interface R are such that

rp À q F x 2 u F 0j X F ; 40 ru f 0j X F ; 41 u F n unj R ; 42 p q F gu F nj C ; 43 curl u F 0j X F : 44 
Eq. ( 41) corresponds to the incompressibility condition. Eq. ( 43) is the constitutive equation on the free surface C due to gravity eects.

Relation between static pressure p s and un

For x 0, Eqs. (41)±(43) lead to the constant pressure static ®eld which is related to the normal wall displacement by the relation (see [START_REF] -P. Morand | Fluid±Structure Interaction[END_REF][START_REF] Ohayon | The eect of wall motion on the governing equations of structures containing ¯uids[END_REF])

p s À q F g jCj Z R
undr; 45 in which jCj denotes the measure of the area of free surface C.

Equations in terms of p and un

The elimination of u F between Eqs. ( 40 44) . This condition is usually omitted in the literature.

Variational formulation in terms of (u; p)

Let dp be the test function, associated to p, belonging to the admissible space C p . The weak variational formulation corresponding to Eqs. (46)±( 49) is obtained by the usual test-function method using Green's formula. Recalling Eq. (37), the variational formulation of the hydroelastic-sloshing problem is then stated as follows. Find u P C u and p P C p , such that for all du P C u and dp P C p ,w eh a v e b ku; duÀx 2

Z X S q S u du dx À Z R pn du dr Z oX S nR F d du dr; 50 1 q F Z X F rp rdp dx x 2 q F g Z C pdp dx x 2 Z R undp dr; 51 with the constraint 1 q F g Z C p dr Z R undr 0: 52 
The variational formulation de®ned by Eqs. (50)±( 52) is original due to the presence of the constraint de®ned by Eq. ( 49) which regularizes the (u; p) formulation for x 0 [START_REF] Ohayon | Symmetric formulations for modal analysis of internal ¯uid structure systems[END_REF].

Symmetric reduced matrix model

Let us consider the following two basic problems. The ®rst one corresponds to the sloshing modes in rigid motionless cavity and is obtained by setting u 0 into Eqs. ( 47) and (49). The calculation of these acoustic modes is generally done by using a ®nite element procedure. It should be noted that, in practice, if the constraint condition (55) is ``omitted'', we only add a ®rst nonphysical zero-frequency constant pressure mode, the other modes corresponding to x T 0 remaining the same as those de®ned by Eqs. (54) and (55). This zero-frequency mode must not be retained in any Ritz± Galerkin projection analysis. In addition, we have the following orthogonality conditions

1 q F g Z C p a p b dr l a d ab ; 1 q F Z X F rp a rp b dx l a x 2 a d ab : 56 
The second basic problem corresponds to the static response of the ¯uid to a prescribed wall normal displacement un. The solution, denoted as p s un, is given by Eq. (45). For any deformation un of the ¯uid± structure interface, p s un belongs to a subset of C p , denoted as C un

C un p s P C p ; p s À q F g jCj Z R undr : 57 
In the variational formulation de®ned by Eqs. ( 50 If we consider a ®nite element discretization of the structure, the corresponding discretized form of Eq. ( 60) can be written as

b K K s U À X n a1 C a r a À x 2 MU F d ; 61
in which symmetric matrices b K and K s correspond to ®nite element discretization of stiness symmetric bilinear forms de®ned by Eqs. ( 38) and (60), respectively. The discretized form of Eq. (51) in dp can then be written as

x 2
a l a r a x 2 l a r a x 2 C T a U: 62

From Eqs. ( 61) and (62), we obtain a symmetric matrix reduced model whose expression is similar to the one given by expression (28). Similarly to Section 3.6, further diagonalization can be obtained by setting

U X Nu b1 q b U b ; 63 
in which q b are the generalized coordinates describing the structure and U b are the eigenmodes of an eigenvalue problem similar to the one described by Eq. (32). We then obtain a similar matrix system than the one described by Eq. ( 34)

Diag k b 0 0 Diag x 2 a q r À x 2 I Nu C ba C ba T I Np q r F d 0 : 64 
It should be noted that we can also use the incompressible hydroelastic modes, i.e. the modes of the coupled system constituted by the elastic structure containing an incompressible liquid, with p 0o nC (through an added mass operator). In this case, the resulting matrix system is not completely diagonal with respect to U variables [START_REF] -P. Morand | Fluid±Structure Interaction[END_REF].

Conclusion

Using a new approach, we have presented convenient and versatile tools for low frequency modal analysis of elastic structures containing linear inviscid homogeneous ¯uids for structural-acoustics and incompressible hydroelastic-sloshing problems. Those formulations, together with dynamic substructuring techniques [START_REF] Ohayon | Dynamic substructuring of damped structures using singular value decomposition[END_REF], lead to symmetric reduced matrix systems expressed in terms of generalized coordinates for the ¯uid (and if necessary for the structure).
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