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Use of Piezoelectric Shear Response in Adaptive Sandwich
Shells of Revolution – Part 2: Finite Element Implementation

A.BENJEDDOU, V.GORGE AND R.OHAYON*

Structural Mechanics and coupled systems laboratory, Conservatoire

National des Arts et Métiers, 2 rue Conté, 75003 Paris, France

ABSTRACT: A theoretical model has been presented in Part 1 of this paper for the use of
piezoelectric shear response in adaptive sandwich shells of revolution. This second part
presents its corresponding finite element implementation. For this, an isoparametric finite
element discretization is retained for the cylindrical coordinates and independent mechanical
and electric variables. These are interpolated with linear Lagrange polynomials along the
meridian, but expanded with Fourier series along the shell circumference. This leads to a
simple two-nodes conical finite element with 22 degrees of freedom. Straight meridian has
been assumed to reduce eventual membrane locking, whereas the selective reduced integration
has been used to avoid eventual shear locking. Therefore, prior to the element assembly, a
geometric transformation from local curvilinear to global cylindrical coordinate system was
made to take into account the shell meridian curvature and to handle its eventual
discontinuities. After its validation, the present finite element has been used for vibration
analysis of adaptive sandwich cylindrical shells and circular plates with open- and short-
circuited embedded piezoelectric shear actuators. It was found that, contrary to extension
actuators, shear ones are insensitive to the electric boundary conditions for axisymmetric
modes. For non-axisymmetric ones, it was also found that bending modes dependence varies
more than other radial, torsion and extension ones.

INTRODUCTION

A
LTHOUGH several theoretical analyses have been

conducted on the shear response of piezoceramics

(Benjeddou et al., 2001), recent bibliography (Mackerle,

1998), literature review (Saravanos and Heyliger, 1999)

and survey (Benjeddou, 2000a) have indicated that there

are no piezoelectric shell finite elements treating with

this feature. Therefore, it is the aim of this part of

the paper to present the finite element formulation

corresponding to the theoretical one (Benjeddou et al.

2001). For this, a simple conical finite element is

proposed. It uses a Fourier series decomposition along

the shell circumference and linear Lagrange polynomials

along the meridian for all mechanical and electric model

variables. Hence, in the following, the stiffness, mass

and load element matrices of the axisymmetric sandwich

shell element are derived from the discretization of the

internal, inertia and external virtual works presented in

Part 1 (Benjeddou et al. 2001) of this paper. Then,

the vibration problem is derived for validation and

applications purpose.

FINITE ELEMENT DISCRETIZATION

Consider the conical finite element presented in

Figure 1. The shell meridian is assumed straight in

order to attenuate any eventual membrane locking. It is

defined using its radial, r, and axial, Z, cylindrical

coordinates discretized linearly as

XðsÞ ¼ N1ðsÞX1 þN2ðsÞX2 ð1Þ

with

N1ðsÞ ¼ 1� s=L, N2ðsÞ ¼ s=L

s is the curvilinear meridian coordinate and L is the

element length. X is either of r or Z. X1, X2 are their

corresponding nodal values.

Mean and relative faces displacements and rotations,

core electric potentials and the shell deflection are

expanded along the shell circumference using Fourier

series as

dðs,�Þ
� �

¼ d0ðsÞ
� �

þ
X

1

j¼1

½tSð j�Þ� dS
j ðsÞ

n o

þ½tAð j�Þ� dA
j ðsÞ

n o� �

ð2Þ

with

hdi ¼ h �uu �vv w ��� ���� �’’ ~uu ~vv ~�� ~��� ~’’ i*Author to whom correspondence should be addressed.
E-mail: ohayon@cnam.fr
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½tsð j�Þ ¼ diagðcosð j�Þ sinð j�Þ cosð j�Þ cosð j�Þ sinð j�Þ

cosð j�Þ . . . cosð j�Þ sinð j�Þ cosð j�Þ sinð j�Þ cosð j�ÞÞ

½tAð j�Þ ¼ diagðsinð j�Þ � cosð j�Þ sinð j�Þ sinð j�Þ

� cosð j�Þ sinð j�Þ . . . sinð j�Þ � cosð j�Þ sinð j�Þ

� cosð j�Þ sinð j�ÞÞ

{d0(s)}, fd
s
j ðsÞg and fdA

j ðsÞg have the same components as

{d}, above, but representing its axisymmetric ( j¼ 0),

symmetric (S) and anti-symmetric (A) Fourier compo-

nents. It is well known (Benjeddou and Hamdi, 1996)

that for free vibrations, symmetric and antisymmetric

resulting problems have similar eigenvalues, but oppo-

site sign eigen vectors. Also, for static analyses, a unique

problem can be solved, but with symmetric and anti-

symmetric load vectors. Hence, from now on, only

symmetric Fourier series components of the indepen-

dent variables vector are retained. Also, for simplicity,

the Fourier series index j and symmetric S superscript

are omitted.

After the Fourier series decomposition along the shell

circumference, the model independent variables are

interpolated using linear Lagrange polynomials accord-

ing to Equation (1), where the X variable is either of

the components of the vector fds
j ðsÞg and X1, X2 are

their corresponding nodal degrees of freedom (DOF).

Since all quantities are decomposed into mean and

relative contributions, these are discretized separately

using reduced DOF vectors. Hence, the jth harmonic

order symmetric components of mean and relative

displacements and rotations are discretized along the

meridian as

�ddtðsÞ
� �

¼ ½N3ðsÞ� �dde
t

� �

, �ddpðsÞ
� �

¼ ½N2ðsÞ� �dde
p

n o

,

~ddpðsÞ
n o

¼ ½N2ðsÞ� ~dde
p

n o

,

�ddrðsÞ
� �

¼ ½N2ðsÞ� �dde
r

� �

,

~ddrðsÞ
n o

¼ ½N2ðsÞ� ~dde
r

n o

ð3Þ

with

h �ddti ¼ h �uu �vv w i, h �dde
t i ¼ h �uu1 �vv1 w1 �uu2 �vv2 w2 i

h �ddpi ¼ h �uu �vv i, h �dde
pi ¼ h �uu1 �vv1 �uu2 �vv2 i

h ~ddpi ¼ h ~uu ~vv i, h ~dde
pi ¼ h ~uu1 ~vv1 ~uu2 ~vv2 i

h �ddri ¼ h ��� ���� i, h
�dde
r i ¼ h ���1 ����1 ���2 ����2 i

h ~ddri ¼ h ~�� ~��� i, h
~dde
r i ¼ h ~��1 ~���1 ~��2 ~���2 i

½N3ðsÞ� ¼

N1ðsÞ 0 0 N2ðsÞ 0 0

0 N1ðsÞ 0 0 N2ðsÞ 0

0 0 N1ðsÞ 0 0 N2ðsÞ

2

6

4

3

7

5

½N2ðsÞ� ¼
N1ðsÞ 0 N2ðsÞ 0

0 N1ðsÞ 0 N2ðsÞ

� �

Substituting these expressions in those of the jth

harmonic order symmetric components of the corre-

sponding extension (e), bending (�) and shear (�) strains

(Benjeddou et al., 2001), provides

�eef g ¼ ½B3� �dde
t

� �

, ~eef g ¼ ½B2� ~dde
p

n o

���f g ¼ ½B2� �dde
r

� �

, ~��f g ¼ ½B2� ~dde
r

n o

���
� �

¼ ½ �BBs� �dde
� �

, ~��
� �

¼ ½ ~BBs� ~dde
n o

���c
� �

¼ ½ �BBc
s �

�dde
� �

, ~��c
� �

¼ ½ ~BBc
s �

~dde
n o

ð4Þ

with

h �ddei ¼ h �uu1 �vv1 w1
���1 ����1 �uu2 �vv2 w2

���2 ����2 i

h ~ddei ¼ h ~uu1 ~vv1 ~��1 ~���1 ~uu2 ~vv2 ~��2 ~���2 i

All strain matrices are detailed in Appendix A.

The jth harmonic order symmetric components of

the mean and relative electric potentials are also inter-

polated linearly along the meridian

’ðsÞ
� �

¼ N2ðsÞ½ � ’e
� �

ð5Þ

where

h’i ¼ h �’’ ~’’ i, h’ei ¼ h �’’1 ~’’1 �’’2 ~’’2 i

Substituting this expression in those of the in-plane

mean and relative, and transverse electric field compo-

nents (Benjeddou et al., 2001), leads to

�EE
� �

¼ ½ �BB’� �’’e
� �

, ~EE
� �

¼ ½ ~BB’� ~’’e
� �

, Ez ¼ hB̂B’i ~’’e
� �

ð6Þ

with

h �EEi ¼ h �EEs
�EE� i, h ~EEi ¼ h ~EEs

~EE� i

h’ei ¼ h �’’1 �’’2 i, h ~’’
ei ¼ h ~’’1 ~’’2 i

The electric field matrices are also given in Appendix A.

    Z   U   ,v          s,u 

 22            2 (r2, Z2) 

       z, w 

    0 

           1        

 1(r1, Z1)      r,W 

ψ

θ

Figure 1. The conical element: geometry and notations.
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DISCRETIZED EQUATIONS OF MOTION

Using discretized strains (4) and electric field (6)

expressions, the internal mechanical, piezoelectric and

electric virtual works are discretized in order to derive

the sandwich shell stiffness matrix. Next, the inertia and

external virtual works are also discretized in order to

derive the mass matrix and load vector of the shell

element. These discretized works are then substituted in

the variational equation, described in Part 1 (Benjeddou

et al., 2001) of the paper, in order to formulate the

discretized equations of motion. The vibration problem

is then derived for validation and application purpose.

Sandwich Shell Element Stiffness Matrix

The element stiffness matrix [k] of the adaptive

sandwich shell is obtained from the discretization of

the internal virtual work

�Wint ¼ h�dei½k� def g ð7Þ

where

hdei ¼ h �uu1 �vv1 w1
���1 ����1 �’’1 ~uu1 ~vv1 ~��1 ~���1 ~’’1

. . . �uu2 �vv2 w2
���2 ����2 �’’2 ~uu2 ~vv2 ~��2 ~���2 ~’’2 i

Following the decomposition, made in part 1

(Benjeddou et al. 2001), of the internal virtual work

into mechanical (m), piezoelectric ( p) and electric (e)

contributions, the element stiffness matrix of Equation

(7) can be written in the form

½k� ¼ ½km� � ½kp� � ½ke� ð8Þ

where, the mechanical, piezoelectric and electric stiffness

matrices are obtained from the following separate

discretizations of the corresponding virtual works.

MECHANICAL STIFFNESS MATRIX

According to the decomposition, made in part 1

(Benjeddou et al. 2001) of the mechanical internal

virtual work into extension (e), extension-bending (e�),

bending (�) and shear (�) contributions, the mechanical

stiffness matrix can be written as

½km� ¼ ½kme � þ ½kme�� þ ½km� � þ ½km� � ð9Þ

where the extension, extension-bending, bending and

shear stiffness matrices are derived from the following

separate discretizations of the corresponding mechanical

internal virtual works. Hence, substitution of the

discretized extension strains (4) in the expression of

the extension mechanical virtual work (Benjeddou et al.

2001), leads to

�Wm
e ¼h� �dde

t i½
�kke� �dde

t

� �

þ h� �dde
t i½

~�kk�kke� ~dde
p

n o

h� ~dde
pi½

~�kk�kke�
T �dde

t

� �

þ h� ~dde
pi½

~kke� ~dde
p

n o ð10Þ

The mean, mean-relative and relative extension mechan-

ical stiffness matrices are detailed in Appendix B. Their

assembly, according to the whole element DOF vector

hd ei of Equation (7) provides the extension mechanical

stiffness matrix of Equation (9). Similarly, using the dis-

cretized expressions of the extension and bending strains

(4) in the extension-bending mechanical virtual work

equation (Benjeddou et al., 2001) gives

�Wm
e� ¼h� �dde

t i½
�kke�� �dde

r

� �

þ h� �dde
r i½

�kke��
T �dde

t

� �

h� �dde
t i½

~�kk�kke�� ~dde
r

n o

þ h� ~dde
r i½

~�kk�kke��
T �dde

t

� �

h� ~dde
pi½

~�kk�kk�e� �dde
r

� �

þ h� �dde
r i½

~�kk�kk�e�
T ~dde

p

n o

h� ~dde
pi½

~kke�� ~dde
r

n o

þ h� ~dde
r i½

~kke��
T ~dde

p

n o

ð11Þ

The mean, mean-relative and relative extension-bending

stiffness matrices are provided in Appendix B. Their

assembly according to the element DOF vector hd ei

gives the extension-bending stiffness matrix in Equation

(9). Also, combining the discretized equations of the

bending strains (4) and the mechanical bending virtual

work (Benjeddou et al., 2001), leads to

�Wm
� ¼h� �dde

r i½
�kkr� �dde

r

� �

þ h� �dde
r i½

~�kk�kk�� ~dde
r

n o

h� ~dde
r i½

~�kk�kk�� �dde
r

� �

þ h� ~dde
r i½

~kk�� ~dde
r

n o ð12Þ

where the mean, mean-relative and relative bending

stiffness matrices are detailed in Appendix B. Again,

their assembly according to the whole element DOF

vector hd ei provides the bending mechanical stiffness

matrix in Equation (9). The discretization of the shear

mechanical internal virtual work (Benjeddou et al.,

2001) using the discretized shear strains (4), gives

�Wm
� ¼h� �ddei½ �kk� � �dde

� �

þ h� �ddei½
~�kk�kk� � ~dde

n o

h� ~ddei½
~�kk�kk� �

T �dde
� �

þ h� ~ddei½ ~kk� � ~dde
n o

h� �ddei½ �kkc� �
�dde

� �

þ h� �ddei½
~�kk�kk
c

� �
~dde

n o

h� ~ddei½
~�kk�kk
c

� �
T �dde
� �

þ h� ~ddei½ ~kkc� �
~dde

n o

ð13Þ

where the mean, mean-relative and relative shear

stiffness matrices of the faces and the core are given in

Appendix B. Their assembly in accordance to the

element DOF vector hd ei provides the shear mechanical

stiffness matrix of Equation (9).
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PIEZOELECTRIC STIFFNESS MATRIX

Following the decomposition, made in part 1

(Benjeddou et al., 2001), of the piezoelectric internal

virtual work into extension, bending and shear con-

tributions, the piezoelectric stiffness matrix is

½kp� ¼ ½kpe � þ ½kp�� þ ½kp� � ð14Þ

where the extension, bending and shear piezoelectric

stiffness matrices are derived from the following

separate discretization of the corresponding contribu-

tions to the piezoelectric internal virtual work. Hence,

substituting the discretized extension strains (4) and in-

plane electric field components (6) into the extension

piezoelectric virtual work (Benjeddou et al., 2001)

leads to

�Wp
e ¼h� �dde

t i½
�kkpe � �’’e
� �

þ h� �’’ei½ �kkpe �
T �dde

t

� �

h� ~dde
pi½

~kkpe � ~’’e
� �

þ h� ~’’ei½ ~kkpe �
T ~dde

p

n o ð15Þ

where the mean and relative extension piezoelectric

stiffness matrices are given in Appendix B. Their

assembly according to the element DOF vector hd ei

provides the extension piezoelectric stiffness matrix of

Equation (14). In the same way, using the discretized

bending strains and in-plane electric field components in

the expression of the bending piezoelectric virtual work

(Benjeddou et al., 2001) gives

�Wp
� ¼h� �dde

r i½
�kkp�� �’’e

� �

þ h� �’’ei½ �kkp��
T �dde

r

� �

h� �dde
r i½

~�kk�kk
p

�� ~’’e
� �

þ h� ~’’ei½
~�kk�kk
p

��
T �dde

r

� �

h� ~dde
r i½

�~kk~kk
p

�� �’’e
� �

þ h� �’’ei½
�~kk~kk
p

��
T ~dde

r

n o

h� ~dde
r i½

~kkp�� ~’’e
� �

þ h� ~’’ei½ ~kkp��
T ~dde

r

n o

ð16Þ

where the mean, mean-relative, relative-mean and

relative bending piezoelectric stiffness matrices are

given in Appendix B. Their assembly using the element

DOF vector hd ei provides the bending piezoelectric

matrix of Equation (14). Also, using the core shear

strains (4), the shear contribution to the piezoelectric

virtual work (Benjeddou et al., 2001) can be discretized as

�Wp
� ¼h� �ddei½ �kkp� � ~’’e

� �

þ h� ~’’ei½ �kkp� �
T �dde
� �

h� ~ddei½ ~kkp� � ~’’e
� �

þ h� ~’’ei½ ~kkp� �
T ~dde
n o ð17Þ

where, the mean and relative shear piezoelectric stiff-

ness matrices are detailed in Appendix B. Their assembly

using the element DOF vector hd ei gives the shear

contribution to the piezoelectric matrix of Equation (14).

ELECTRIC STIFFNESS MATRIX

Substituting the discretized electric field (6) into the

electric internal virtual work gives

�W e
int ¼ h� �’’ei½ �kke� �’’e

� �

þ h� ~’’ei½ ~kke� ~’’e
� �

þ h� ~’’ei½k̂ke� ~’’e
� �

ð18Þ

mean and relative electric stiffness matrices are given in

Appendix B. Their assembly, using the element DOF

vector hd ei, provides the electric stiffness matrix of

Equation (8).

Sandwich Shell Element Mass Matrix

The element mass matrix [m] is derived from the

discretization of the inertia virtual work

�Win ¼ h�dei½m� def g ð19Þ

Following the decomposition, made in Part 1

(Benjeddou et al. 2001), of the inertia virtual work

into translation (u) translation-rotary (u�) and rotary

(�) contributions, the element mass matrix is

½m� ¼ ½mu� þ ½mu�� þ ½m�� ð20Þ

where translation, translation-rotary and rotary mass

matrices are derived from the following separate

discretization of the corresponding contributions of

the inertia virtual work. Hence, the translation inertia

virtual work can be discretized, using the displacement

interpolations (3), as

�Wu ¼h� �dde
t i½ �mmu�

€�dd�dd
e

t

n o

þ h� �dde
pi½

~�mm�mmu�
€~dd~dd
e

p

n o

h� ~dde
pi½

~�mm�mmu�
T €�dd�dd

e

p

n o

þ h� ~dde
pi½ ~mmu�

€~dd~dd
e

p

n o

ð21Þ

where, the mean, mean-relative and relative translation

mass matrices are given in Appendix C. Their assembly

according to the element DOF vector hd ei, provides the

translation mass matrix of Equation (20). Substituting

the displacement and rotation interpolations (3) into the

translation-rotary inertia virtual work (Benjeddou et al.,

2001) leads to

�Wu� ¼h� �dde
pi½ �mmu��

€�dd�dd
e

r

n o

þ h� �dde
r i½ �mmu��

T €�dd�dd
e

p

n o

h� �dde
pi½

~�mm�mmu��
€~dd~dd
e

r

n o

þ h� ~dde
r i½

~�mm�mmu��
T €�dd�dd

e

p

n o

h� ~dde
pi½

~�mm�mm�u�
€�dd�dd
e

r

n o

þ h� �dde
r i½

~�mm�mm�u�
T €~dd~dd

e

p

n o

h� ~dde
pi½ ~mmu��

€~dd~dd
e

r

n o

þ h� ~dde
r i½ ~mmu��

T €~dd~dd
e

p

n o

ð22Þ
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where the mean, mean-relative and relative translation-

rotary mass matrices are detailed in Appendix C. Their

assembly, using the element DOF hd ei gives the

translation-rotary mass matrix of Equation (20). The

use of the rotations interpolations (3) into the rotary

inertia virtual work (Benjeddou et al., 2001) gives

�W� ¼h� �dde
r i½ �mm��

€�dd�dd
e

r

n o

þ h� �dde
r i½

~�mm�mm��
€~dd~dd
e

r

n o

h� ~dde
r i½

~�mm�mm��
T €�dd�dd

e

r

n o

þ h� ~dde
r i½ ~mm��

€~dd~dd
e

r

n o

ð23Þ

where, the mean, mean-relative and relative rotary mass

matrices are given in Appendix C. Their assembly using

the element DOF vector hd ei leads to the rotary mass

matrix in (20).

Sandwich Shell Element Mechanical Load Vector

The adaptive sandwich shell is assumed to be

subjected to mechanical distributed (surface) and con-

centrated (line) loads, as detailed in part 1 (Benjeddou et

al., 2001). Hence, the element load vector is obtained

from the discretization of the mechanical external

virtual work as

�Wext ¼ h�deif f g ð24Þ

where { f} is the sum of the distributed, { fd}, and

concentrated, { fc}, load contributions,

f f g ¼ f fdg þ f fcg ð25Þ

These are deduced from the following discretization

of the corresponding virtual works. Hence, the dis-

tributed external virtual work (Benjeddou et al., 2001)

can be discretized, using the displacement interpolations

(3), as

�Wd
ext ¼h� �dde

t i
�ff ed

� �

þ h� �dde
r i �mme

d

� �

h� ~dde
pi

~ff ed

n o

þ h� ~dde
r i ~mme

d

� �

ð26Þ

where the mean and relative distributed element forces

and moments are detailed in Appendix D. The element

nodal distributed load vector { fd} of Equation (25) is

obtained by assembling these load vectors in accordance

with the element DOF vectors hd ei. Similarly, the

concentrated external virtual work (Benjeddou et al.,

2001) can be discretized as

�W c
ext ¼h� �dde

t i
�FF e

� �

þ h� �dde
r i

�MMe
� �

h� ~dde
pi

~FF e
� �

þ h� ~dde
r i

~MMe
� �

ð27Þ

where the mean and relative concentrated element

forces and moments are given in Appendix D. Their

assembly according to the element nodal DOF vector

hd ei leads to the concentrated element load vector { fc}

of Equation (25).

Discretized Equations of Motion

All stiffness matrices are evaluated numerically using

2-point Gauss numerical integration rule. In fact, most

functions to be integrated are rational with polynomial

numerators and denominators of degrees 3 and 2,

respectively. However, to avoid shear locking phenom-

enon, 1-point Gauss rule was used for the shear

contributions. Thus, a maximum error of 2% has been

obtained using 2-point Gauss integration for the

membrane and bending contribution and 1-point rule

for the shear ones. The mass matrices have been

evaluated analytically as indicated in Appendix C.

Prior to their assembly, all above stiffness and mass

matrices and load vectors, which were written in the

local curvilinear coordinate system, should be trans-

formed to the global cylindrical one in order to take into

account the meridian curvature and its eventual

geometric discontinuities. Hence, using the following

relation, with [P] the transformation matrix from the

local curvilinear to the global cylindrical coordinate

system

fdeg ¼ ½P�fDeg ð28Þ

the global element stiffness and mass matrices, and load

vector can be obtained from the local ones by

½Ke� ¼ ½P�T ½k�½P�, ½Me� ¼ ½P�T ½m�½P�

fF eg ¼ ½P�T f f g
ð29Þ

It is worthy to notice that the geometric transformation

(28) augments the order of the matrices of Equation

(29). Therefore, to avoid their singularities and in

conformity with the through-thickness constant deflec-

tion assumption, the transformation-resulting relative

deflection is constrained to vanish prior to their

assembly.

Now, assembling these matrices in the frame of the

d’Alembert variational Equation (Benjeddou et al.,

2001), the discretized equations of motion can be

written in the usual form

½M� €DD
� �

þ ½K� Df g ¼ Ff g ð30Þ

where {D} is the global DOF vector including mechan-

ical and electric DOF.

For validation purpose, the following harmonic

eigenvalue problem with circular frequency ! is to be

solved

Kuu Ku’

KT
u’ K’’

� �

� !2 M 0

0 0

� �� �

q

’

	 


¼
0

0

	 


ð31Þ
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where, the DOF vector {D} of Equation (30) has been

split into mechanical {q} and electric{’} DOF sub-

vectors. Prior to the solution of the previous system, the

electric DOF are first condensed so that only the

following reduced system is solved

½Kuu � Ku’K
�1
’’ K

T
u’� � !

2½M�
� �

q
� �

¼ 0f g ð32Þ

The condensed electric DOF can then be computed,

a posteriori, using the relation

f’g ¼ �½K’’K ��1½Ku’�
T fqg ð33Þ

NUMERICAL VALIDATION

The present piezoelectric sandwich finite element has

been first validated through comparison of its results

with those obtained using an elastic sandwich one

(Benjeddou and Hamdi, 1996). However, since the shear

piezoelectric actuation mechanism is explored for the

first time here, numerical reference values were not

found in the open literature. Therefore, vibration of a

short-circuited PZT-4 spherical shell is considered to

check the validity of the present finite element imple-

mentation. The spherical symmetry involves well-known

eigen frequencies multiplicity (Silbiger, 1962). That is,

multiplicity is equal to the number of node lines on the

sphere. Using a cylindrical coordinate system and

Fourier series decomposition is expected to repeat

fixed meridian index-frequencies (m) from the circum-

ference index j¼ 0 to the number of frequency multi-

plicity (Ohayon and Nicolas-Vullierme, 1981).

A PZT-4 piezoceramic spherical shell is now con-

sidered. Its material properties are: mass density �¼

7500Kgm�3; elastic constants C11¼ 115�109Nm�2,¼

C33¼ 139� 109Nm�2, C12¼C13¼ 74.3� 109Nm�2,

C23¼ 77.8� 109Nm�2, C44¼ 30.6� 109Nm�2, C55¼

C66¼ 25.6� 109Nm�2; piezoelectric constants e11¼

15.1Cm�2, e12¼ e13¼�5.2Cm�2, e35¼ e26¼ 12.7 Cm�2;

dielectric constants "11¼ "12¼ 1475"0, "33¼ 1300"0,

where the vacuum permittivity is "0¼ 8.854� 10�12

Fm�1. The shell is 0.5mm thick and has a radius of

5 cm. The multiplicity repetitiveness of the eigen

frequencies is checked through the error (relative

difference) evaluation with respect to the axisymmetric

ones ( j¼ 0). Results are presented in Table 1 for short-

circuited (’¼ 0) electric boundary conditions on the

inner and outer surfaces of the piezoceramic spherical

shell.

It is clear from these results, that the above-

mentioned spherical symmetry feature is well repre-

sented by the present simple conical piezoelectric

sandwich finite element.

APPLICATIONS

After its validation, the present adaptive finite

element is now used for vibrations analysis of some

common axisymmetric shells. Hence, in the following,

the modal characteristics are presented and electric

boundary conditions effects are analyzed for hybrid

sandwich simply supported (SS) cylinder and SS or

clamped (C) circular plate with either short (SC)- or

open (OC)-circuited shear actuators.

Vibrations of a Simply Supported Hybrid Sandwich

Cylinder

Consider a SS sandwich cylinder with steel faces

and piezoceramic (PZT-4) core. The latter is axially

polarized and either SC or OC. The cylinder is relatively

thick (L/h¼ 10) and short (L/Rout¼ 1). Each face

thickness is twice that of the core (hf/hc¼ 2). Figure 2

shows the first six axisymmetric ( j¼ 0) modes of the

hybrid sandwich cylinder.

This cylinder has been also analyzed for its conven-

tional extension actuation mechanism (EAM) config-

uration. That is, with steel core and through-thickness

polarized piezoceramic (PZT-4) faces (Gorge et al.,

2001). Here the core thickness is twice that of each face

in order to keep the same mass. Table 2 compares the

first nine modes for both EAM and shear actuation

mechanism (SAM) configurations. The piezoceramic

layers are either SC or OC.

Table 1. Eigen frequencies (Hz) of a short-circuited PZT-4 spherical shell polarized along its meridian. Values in
parentheses indicate errors (%) with respect to the axisymmetric values ( j¼0).

j 0 1 2 3 4 5 6 7

m

1 3594 3597 (0.07) 3471 (�3.4)

2 4327 4360 (0.8) 4241 (�2.0) 4115 (�4.9)

3 4644 4700 (1.2) 4614 (�0.7) 4502 (�3.1) 4386 (�5.6)

4 4843 4899 (1.2) 4849 (0.1) 4759 (�1.7) 4654 (�3.9) 4543 (�6.2)

5 4999 5045 (0.9) 5025 (0.52) 4961 (�0.8) 4876 (�2.5) 4775 (�4.5) 4662 (�6.7)

6 5133 5172 (0.8) 5180 (0.9) 5136 (0.05) 5077 (�1.1) 4996 (�2.7) 4891 (�4.7) 4773 (�7.0)
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From Table 2, it is clear that shear actuators are

insensitive to electric boundary conditions for their

axisymmetric modes. This is also true for torsion modes

with extension actuators, but not for their remaining

axisymmetric modes. Table 2 also indicates that SAM

leads to higher SC frequencies than EAM for all modes.

This is due to the higher electromechanical coupling

constants of the shear actuators (Benjeddou 2000b).

Table 3 shows, for both electric boundary conditions,

the first nine frequencies for j¼ 1–3.

In contrast to axisymmetric modes, Table 3 indicates

that, for shear actuators, the non-axisymmetric bending

modes depend on the electric boundary conditions and

this dependence increases for higher modes. This is

normal since for the latter, the transverse shear effect

becomes more important. Therefore, for torsion and

extension modes this dependence remains small. This

can be explained by the fact that these modes are not

electromechanically coupled for the shear actuation

mechanism.

Vibrations of a Hybrid Sandwich Circular Plate

The modal characteristics of a SS or C hybrid

sandwich circular plate of radius 0.6m were analyzed

by Wang et al. (2001) with EAM configuration. That is,

with 1mm-thick PZT-4 faces and 2 cm-thick steel core.

Here, its equivalent SAM configuration is considered.

The plate is then composed of a 2mm-thick PZT-4 shear

actuator sandwiched between two 1 cm-thick steel faces.

The material properties are those used by Wang et al.

(2001). The shear actuator is either short- or open-

circuited in order to study the influence of the electric

716.8 Hz 746.2 Hz

1st  bending mode 1st  radial mode 

846.6 Hz 1357.6 Hz

2nd bending mode 1st  torsion mode 

1390.2 Hz 2208.4 Hz

3rd  bending mode 1st  extension(-radial) mode 

Figure 2. First six axisymmetric modes of a SS, relatively thick and
short hybrid sandwich cylinder.

Table 3. First nine frequencies for j¼1,2,3 of SAM sandwich cylinder with OC and SC configurations.

j m 1 2 3 4 5 6 7 8 9

1 OC 646.48 710.43 853.23 1406.81 1583.06 2194.59 2318.49 2862.61 3448.00

SC 646.48 710.35 852.65 1405.7 1583.03 2194.59 2317.11 2862.57 3446.52

(O-S)/S, % 0 0.012 0.065 0.079 0.002 0 0.06 0.001 0.043

2 OC 513.88 697.77 892.99 1459.36 2047.63 2231.95 2370.59 3186.65 3493.44

SC 513.76 697.38 890.73 1454.92 2047.60 2231.92 2365.07 3186.61 3487.51

(O-S)/S, % 0.02 0.05 0.25 0.30 0.002 0.001 0.23 0.001 0.17

3 OC 455.62 700.92 969.08 1552.82 2371.37 2457.76 2598.18 3568.04 3602.66

SC 454.95 699.66 963.76 1542.89 2371.29 2445.40 2598.15 3555.02 3602.34

(O-S)/S, % 0.15 0.18 0.55 0.64 0.003 0.5 0.002 0.36 0.01

Table 2. First nine axisymmetric frequencies of both EAM and SAM sandwich cylinder configurations.

Mode 1 2 3 4 5 6 7 8 9

Type of mode bending radial bending torsion bending extension bending torsion bending

EAM OC 733.4 777 857.7 1266.4 1370.6 2160.8 2338.6 2541.1 3568.1

SC 716.1 742.1 817 1266.4 1284.2 1991.8 2129.7 2541.1 3233.3

(O-S)/S, % 2.42 4.03 4.98 0 6.73 8.48 9.81 0 10.35

SAM S/OC 716.8 746.2 846.6 1357.6 1390.2 2208.4 2301.1 2723.4 3432.8

(SAM-EAM)/EAM 0.10 0.55 3.62 7.20 8.25 10.87 8.05 7.17 6.17
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boundary conditions on the vibration behavior of the

plate. The lowest four modes of the plate are given for

both electric boundary conditions in Table 4 and in

Figure 3 for the SS plate with OC shear actuator.

Table 4 confirms for both mechanical boundary

conditions that with shear actuation, the OC frequencies

are higher than SC ones, with nearly the same percent

differences, and that the axisymmetric frequencies are

insensitive to the electric boundary conditions.

A parametric analysis for various core (actuator) to

faces thickness ratio (hc/2hf) was also made (Table 5) for

the SS hybrid sandwich plate with OC shear actuator

core. The core thickness was varied whereas that of the

faces was kept constant. Notice that previous results

correspond to the ratio 1/10 in Table 5. The latter

indicates that the frequencies increase with increasing

the core to faces thickness ratio. This tendency is similar

to that obtained by Wang et al. (2001) for the same plate

but with extension actuator.

CONCLUSION

A piezoelectric sandwich axisymmetric shell element

has been implemented and validated in this second part

of the paper (Benjeddou et al. 2001). It has the

originality of using the shear mode of a piezoelectric

core sandwiched between two elastic layers. The

transverse shear response was explicitly represented

through the faces relative tangential displacements

DOF. Besides, the element has no derivative DOF

since layer-wise shear deformation theory was retained

for its formulation and linear Lagrange interpolations of

all its independent variables were used for its imple-

mentation. This nice feature is particularly suitable for

fluid-structure coupling analyses. Hence, the element

formulation and implementation are being extended to

axisymmetric shells filled with gas for structural-

acoustic problems (interior noise reduction).

Viscoelastic damping has also been considered for the

core so that hybrid active-passive vibration control

would be possible using the present finite element.

APPENDIX

A. Strain Matrices

The mean membrane strain matrix is

½B3� ¼

�
1

L
0 0

1

L
0 0

C

r
N1

j

r
N1 �

S

r
N1

C

r
N2

j

r
N2 �

S

r
N2

�
j

r
N1 �

1

L
�
C

r
N1 0 �

j

r
N2

1

L
�
C

r
N2 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ðA1Þ

where C¼ cos 0, S¼ sin 0,  0 is defined in Figure 1.

j is the circumference Fourier series index. N1, N2 are

the linear shape functions defined in Equation (1).

The relative membrane and bending strain matrix

[B2] is obtained from [B3] by eliminating its 3rd

and 6th columns.

The mean shear strain matrix of the faces has the

following expression

½ �BBs� ¼

0 0 �
1

L
N1 0 0 0

1

L
N2 0

0
S

r
N1 �

j

r
N1 0 N1 0

S

r
N2 �

j

r
N2 0 N2

2

6

4

3

7

5

ðA2Þ

The corresponding relative shear strain matrix is

obtained from this matrix by suppressing its 3rd and

8th columns.

Mode (1,0) Mode (1,1) 

Mode (1,2) Mode (2,0) 

Figure 3. The lowest four mode shapes of a SS circular plate ith OC
shear actuator.

Table 4. The lowest four frequencies of a SS or C plate
with SC or OC shear actuator.

Mode (m,j) (1,0) (1,1) (1,2) (2,0)

SS OC 462.6 1298.9 2386.3 2783.4

SC 462.6 1298.5 2384.3 2783.4

100(O–S)/S, % 0 0.03 0.08 0

C OC 952.18 1976.82 3233.71 3699.00

SC 952.18 1976.30 3231.65 3699

100(O–S)/S, % 0 0.026 0.06 0

Table 5. The lowest four frequencies of a SS plate with
variable thickness OC shear actuator.

Mode (m, j)hc/2hf (1,0) (1,1) (1,2) (2,0)

1/12 455.5 1297.3 2350.7 2742.1

1/10 462.6 1298.9 2384.6 2783.4

1/8 473.2 1328.3 2439.5 2845.2

1/5 504.6 1415.4 2597.2 3028.3
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For the core, the above matrix can be written as

½ �BBc
s � ¼

0 0 �
1

L
�

�hh

hc
N1 0 0 0

1

L
�

�hh

hc
N2 0

0
S

r
N1 �

j

r
N1 0 �

�hh

hc
þ

~hh

4

S

r

!

N1 0
S

r
N2 �

j

r
N2 0 �

�hh

hc
þ

~hh

4

S

r

!

N2

2

6

6

6

4

3

7

7

7

5

ðA3Þ

The corresponding relative shear strain matrix is

½ ~BBc
s � ¼

N1

hc
0 �

~hh

4

N1

hc
0

N2

hc
0 �

~hh

4

N2

hc
0

0
N1

hc
0 �

1

4

~hh

hc
þ �hh

S

r

!

N1 0
N2

hc
0 �

1

4

~hh

hc
þ �hh

S

r

!

N2

2

6

6

6

4

3

7

7

7

5

ðA4Þ

The mean and relative in-plane electric field matrix are,

respectively

½ �BB’� ¼

1

L
�

1

L
j

r
N1

j

r
N2

2

6

4

3

7

5
, ½ ~BB’� ¼

1

hc
½ �BB’� ðA5Þ

whereas, the transverse electric field line-vector is

hB̂B’i ¼ �
1

hc
hN1 N2 i ðA6Þ

B. Stiffness Matrices

The mean, mean-relative and relative extension

mechanical stiffness matrices are

½ �kke� ¼ ��

Z L

0

½B3�T ½ �DDe�½B3�rds

½
~�kk�kke� ¼ ��

Z L

0

½B3�T ½ ~�DD�DDe�½B2�rds ðB1Þ

½ ~kke� ¼ ��

Z L

0

½B2�T ½ ~DDe�½B2�rds

where �¼ 1 for j¼ 0 and �¼ 2 otherwise.

The mean, mean-relative and relative extension-bending

stiffness matrices are

½ �kke�� ¼ ��

Z L

0

½B3�T ½ �DDe��½B2�rds

½
~�kk�kke�� ¼ ��

Z L

0

½B3�T ½ ~�DD�DDe��½B2�rds ðB2Þ

½
~�kk�kk�e� ¼ ��

Z L

0

½B2�T ½ ~�DD�DD�e�½B2�rds

½ ~kke�� ¼ ��

Z L

0

½B2�T ½ ~DDe��½B2�rds

The mean, mean-relative and relative bending mechan-

ical stiffness matrices are

½ �kk�� ¼ ��

Z L

0

½B2�T ½ �DD��½B2�rds

½k
’

�� ¼ ��

Z L

0

½B2�T ½D
’

��½B2�rds ðB3Þ

½ ~kk�� ¼ ��

Z L

0

½B2�T ½ ~DD��½B2�rds

The mean, mean-relative and relative shear mechanical

stiffness matrices of the faces are defined by

½ �kk� � ¼ ��

Z L

0

½ �BBs�
T ½ �DD� �½ �BBs�rds

½k
’

� � ¼ ��

Z L

0

½ �BBs�
T ½D

’

� �½ ~BBs�rds ðB4Þ

½ ~kk� � ¼ ��

Z L

0

½ ~BBs�
T ½ ~DD� �½ ~BBs�rds

whereas, those of the core are

½ �kkc� � ¼ ��

Z L

0

½ �BBc
s �
T ½ �DDc

� �½
�BBc
s �rds

½k
’c

� � ¼ ��

Z L

0

½ �BBc
s �
T ½D

’ c

� �½
~BBc
s �rds ðB5Þ

½ ~kkc� � ¼ ��

Z L

0

½ ~BBc
s �
T ½ ~DDc

� �½
~BBc
s �rds

The mean and relative extension piezoelectric stiffness

matrices are given by

½ �kkpe � ¼ ��

Z L

0

½ �BB’�
T ½ �DDp

e �½B3�rds

½ ~kkpe � ¼ ��

Z L

0

½ ~BB’�
T ½ ~DDp

e �½B2�rds ðB6Þ
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The mean, mean-relative, relative-mean and relative

bending piezoelectric stiffness matrices are

½ �kkp�� ¼ ��

Z L

0

½B2�T ½ �DDp
��½

�BB’�rds

½
~�kk�kk
p

�� ¼ ��

Z L

0

½B2�T ½ ~�DD�DD
p

��½
~BB’�rds ðB7Þ

½
�~kk~kk
p

�� ¼ ��

Z L

0

½B2�T ½
�~DD~DD
p

��½
�BB’�rds

½ ~kkp�� ¼ ��

Z L

0

½B2�T ½ ~DDp
��½

~BB’�rds

The mean and relative shear piezoelectric stiffness

matrices have the form

½ �kkp� � ¼ ��

Z L

0

½ �BBc
s �
T �DDp

�

n o

hB̂B’irds

½ ~kkp� � ¼ ��

Z L

0

½ ~BBc
s �
T ~DDp

�

n o

hB̂B’irds ðB8Þ

The in-plane mean and relative, and transverse electric

stiffness matrix are defined as

½ �kke� ¼ ��

Z L

0

½ �BB’�
T ½ �22p�½ �BB’�rds

½ ~kke� ¼ ��

Z L

0

½ ~BB’�
T ½ ~22p�½ ~BB’�rds ðB9Þ

½k̂ke� ¼ ��

Z L

0

B̂B’

n o

�22zzhB̂B’irds

C. Mass Matrices

The mean, mean-relative and relative translation mass

matrices are defined by

½ �mmu� ¼ ��

Z L

0

½N3�T ���u½N3�rds

½ ~�mm�mmu� ¼ ��

Z L

0

½N2�T ~������u½N2�rds ðC1Þ

½ ~mmu� ¼ ��

Z L

0

½N2�T ~��u½N2�rds

where, �¼ 1 for j¼ 0 and �¼ 2 otherwise.

The mean, mean-relative, relative-mean and relative

translation-rotary mass matrices are written as

½ �mmu�� ¼ ��

Z L

0

½N2�T ���u�½N2�rds

½ ~�mm�mmu�� ¼ ��

Z L

0

½N2�T ~������u�½N2�rds

½ ~�mm�mm�u� ¼ ��

Z L

0

½N2�T ~�������u½N2�rds

½ ~mmu�� ¼ ��

Z L

0

½N2�T ~��u�½N2�rds

ðC2Þ

The mean, mean-relative and relative mass rotary

matrices are given by

½ �mm�� ¼ ��

Z L

0

½N2�T ����½N2�rds

½ ~�mm�mm�� ¼ ��

Z L

0

½N2�T ~�������½N2�rds ðC3Þ

½ ~mm�� ¼ ��

Z L

0

½N2�T ~���½N2�rds

From Equations (C1–C3), notice that above mass

matrices need computations of only two matrices

which are

Z L

0

½N3�T ½N3�rds

¼
L

6

r1þ �rr 0 0 �rr 0 0

0 r1þ �rr 0 0 �rr 0

0 0 r1þ �rr 0 0 �rr

�rr 0 0 r2þ �rr 0 0

0 �rr 0 0 r2þ �rr 0

0 0 �rr 0 0 r2þ �rr

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ðC4Þ

and
R L

0
½N2�T ½N2�rds, which can be obtained from the

previous matrix by omitting the 3rd and 6th lines and

columns. �rr ¼ ðr1 þ r2Þ=2 is the mean radius of the

element, where, r1, r2 are the polar radii of its two nodes.

D. Mechanical Load Vectors

The mean and relative applied distributed force and

moment load vectors are

�ff ed
� �

¼ ��

Z L

0

½N3�T �ff
� �

rds, ~ff ed

n o

¼ ��

Z L

0

½N2�T ~ff
n o

rds

�mme
d

� �

¼ ��

Z L

0

½N2�T �mmf grds, ~mme
d

� �

¼ ��

Z L

0

½N2�T ~mmf grds

ðD1Þ

At a point A with radial and axial coordinates (rA, ZA),

the mean and relative applied concentrated force and

moment load vectors can be written as

�FFe
� �

¼ ��½N3ðsAÞ�
T �FF
� �

rA, ~FFe
� �

¼ ��½N2ðsAÞ�
T ~FF
� �

rA

�MMe
� �

¼ ��½N2ðsAÞ�
T �MM
� �

rA, ~MMe
� �

¼ ��½N2�T ~MM
� �

rA

ðD2Þ

Where the applied loads in Equations (D1, D2) are

either the symmetric or antisymmetric Fourier series

components. Also, notice that sA, in Equation (D2), is

computed from the given coordinates (rA, ZA).

Therefore, in practice, it is more easier to consider that

10



the concentrated loads are applied at the last node

(sA¼L). Moreover, Equation (D2) can also be dropped

in the implementation and the concentrated loads can

simply be added, after the elements assembly, at the

corresponding DOF of the nodes where they are

applied.
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