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Introduction

Piezoelectric materials used to control noise and vibration, either surface-mounted or embedded in host structures, are commonly poled parallel to the applied electric field. Hence, they act through their conventional extension mechanism. This was extensively used and studied in the literature either in purely active [START_REF] Crawley | Detailed models of piezoceramic actuation beams[END_REF][START_REF] Hagood | Improving transverse actuation of piezoceramics using interdigitated surface electrodes North American[END_REF] or hybrid passive-active systems [START_REF] Baz | Boundary control of beams using active constrained layer damping[END_REF][START_REF] Huang | Some design considerations for active and passive constrained layer damping treatments Smart[END_REF][START_REF] Tomlinson | An overview of active/passive damping techniques employing viscoelastic materials 3rd[END_REF][START_REF] Varadan | Closed loop finite-element modeling of active/passive damping in structural vibration control Smart[END_REF]. A review of recent advances in modeling and applications of piezoelectric materials in active and hybrid active-passive vibration control of flexible structures can also be found in [START_REF] Benjeddou | Recent advances in hybrid active-passive vibration control[END_REF][START_REF] Cheecyk | A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures[END_REF][START_REF] Sunar | Recent advances in sensing and control of flexible structures via piezoelectric materials technology[END_REF]. Using interdigitated electrodes (IDE), transverse actuation, through e 33 or d 33 piezoelectric constant can also be introduced [START_REF] Hagood | Improving transverse actuation of piezoceramics using interdigitated surface electrodes North American[END_REF]. However, constrained piezoelectric materials, poled perpendicular to the imposed electric field, use their thickness shear mode, leading to the less known shear actuators. Although mentioned by Soong and Hanson [START_REF] Soong | Recent development in active and hybrid control research in the US Int[END_REF], shear-based actuators were proposed only recently by Sun and Zhang [START_REF] Sun | Use of thickness shear mode in adaptive sandwich structures Smart[END_REF][START_REF] Zhang | Formulation of an adaptive sandwich beam Smart[END_REF], through a preliminary study with a commercial finite-element (FE) analysis code [START_REF] Sun | Use of thickness shear mode in adaptive sandwich structures Smart[END_REF] and a theoretical model [START_REF] Zhang | Formulation of an adaptive sandwich beam Smart[END_REF]. Mechanical and FE models were also proposed by Benjeddou et al [START_REF] Benjeddou | A finite element model for shear actuated adaptive structures[END_REF][START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF][START_REF] Benjeddou | New shear actuated smart structure beam finite element[END_REF]. They used the stress-induced piezoelectric coupling constant e 15 of an axially poled lead zirconate-titanate (PZT) layer or patch sandwiched between thin elastic layers. Detailed comparisons of their results to those in [START_REF] Sun | Use of thickness shear mode in adaptive sandwich structures Smart[END_REF][START_REF] Zhang | Formulation of an adaptive sandwich beam Smart[END_REF] can be found in [START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF]. d 15 -based torsional actuators were also proposed recently for the production of large angular displacement and torque [START_REF] Kim | Composite piezoelectric assemblies for torsional actuators[END_REF]. Actuator designs and assembly methods, materials preparation, poling procedures, test results for joint strengths, and actuator output capabilities are discussed. The above report [START_REF] Kim | Composite piezoelectric assemblies for torsional actuators[END_REF] pointed out that current (insulated layer). All layers are assumed perfectly bonded and in plane deformation state. Moreover, the transverse stress component is neglected compared to other components, and the transverse deflection is considered to be constant in the beam thickness. Sandwich beam surface layers are supposed to behave as Bernoulli-Euler beams while the core is assumed to be a Timoshenko beam. A local frame is attached to each layer at its left-end center, whereas the global frame is located at the left-end center of the beam, so that beam centroidal and elastic axes coincide with the x-axis. The length, width and thickness of the beam are denoted by L, b and h, respectively. The indices a, b, c indicate the top, bottom and core layer quantities and f index is used for surface layer parameters.

Displacement field equations

Starting with linear longitudinal displacements for each layer, and enforcing the interface displacement continuity conditions, axial displacement for the ith layer can be written in the form,

u α =ū α + (z -z α )β ūα =ū ± ũ 2 ± h α 2 β β =-w ′ α = a, b u c =ū c + zβ c . (1) 
The prime denotes the first derivative in x, '+' for α = a,'-' for α = b. z α defines the position of the elastic axes of the layer α in the global z-axis. ū and ũ are mean and relative axial displacements of upper and lower core skins, i.e.,

ū =ū c = u + + u - 2 ũ = h c β c = u + -u - (2) 
where ūc , β c , h c , u + and u -are, respectively, mean displacement, bending rotation, core thickness and axial displacements of upper and lower core skins.

Reduced piezoelectric constitutive equations

A linear orthotropic piezoelectric material with symmetry axes parallel to the beam axes is considered here. c ij , e kj and ǫ kk (i, j = 1,...,6; k = 1, 2, 3) denote its elastic, piezoelectric and dielectric material constants.

For extension actuation mechanism, the piezoelectric beam surface layers are poled transversely and only the transverse electric field is important.

Hence, threedimensional linear constitutive equations of an orthotropic piezoelectric surface layer can be reduced [START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF] to (σ 3 = 0). Notice that the electromechanical coupling is between axial strain and transverse electric field only. This is the basic foundation of the extension actuation mechanism.

σ 1 D 3 = c * 11 -e *
For the shear actuation mechanism, the piezoelectric core layer is poled in the axial direction. Its constitutive equations can be obtained from those of the surface layers, through a 90 • rotation around out of plane direction followed by a 180 • rotation around the transverse direction, so that axial and transverse indices interchange. Therefore, threedimensional linear constitutive equations of the orthotropic piezoelectric core are [START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF] c 11 (4) where σ 5 and ε 5 are transverse shear stress and strain. This modification is also due to the plane stress assumption for the core (σ 3 = 0). Notice that the electromechanical coupling is between shear strain and transverse electric field only. This is the origin of the newly defined concept of shear actuation mechanism.

Electric potential forms

This section defines electric potential equations for each actuation mechanism using strain-displacement relations, computed from the displacement field (1), and the electric field obtained from the reduced constitutive equations (3), (4) and substituted in the electrostatic equilibrium equation under free volumic charge density assumption.

For the extension actuation mechanism, integration of the following electrostatic equilibrium equation for the ith surface layer, D α3,3 = 0 [START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF] leads to a quadratic electric potential in the surface layers,

ϕ α =φ α + (z -z α ) φα h α + 1 - 4(z -z α ) 2 h 2 α h 2 α 8 e α * 31 ǫ α * 33 w ′′ (6)
where,

φα = ϕ + α -ϕ - α φα = ϕ + α + ϕ - α 2
ϕ + α and ϕ - α are given electric potentials on upper and lower skins of the ith surface layer. Notice that the electric potential is the sum of a linear part, known from the given potentials ϕ ± α , and a quadratic part, proportional to the beam curvature. The latter represents the induced potential, often neglected in the literature [START_REF] Benjeddou | Advances in piezoelectric finite elements modeling of adaptive structural elements: a survey[END_REF][START_REF] Rahmoune | Finite element modeling of a smart structure plate system[END_REF].

For shear actuation mechanism, D c1,1 is neglected compared to D c3,3 , hence equation ( 5) still holds and its integration provides a linear potential in the core,

ϕ c =φ c + z φc h c (7) 
where φc and φc are now mean and relative potentials of the core.

Variational formulation of the actuation problem

For the actuation problem, ϕ˜ are known (imposed), hence i their virtual variations δϕ˜i vanish, and the variational actuation problem can be written [START_REF] Benjeddou | A finite element model for shear actuated adaptive structures[END_REF][START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF] as δH m -δT = δW + δH me [START_REF] Crawley | Detailed models of piezoceramic actuation beams[END_REF] δT and δW are virtual variations of the kinetic energy and work done by external forces. They are similar for both mechanisms and were detailed in [START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF], but not repeated here. However, δH m and δH me are mechanical and mechanicalelectric coupling contributions in the total virtual variation of the electromechanical energy δH.

Extension actuation mechanism.

For identical surface layers, δH m can be written as,

δH m = δH cm + δ Hfm (9) 
where,

δH cm = L 0 c c * 33 A c ū′ δ ū′ + c c * 33 I c h 2 c ũ′ δ ũ′ +c c 55 A c h c ũ h c + w ′ δ ũ + c c 55 A c ũ h c + w ′ δw ′ dx (10) δ Hfm = L 0 2c f * 11 A f ū′ δ ū′ + 1 2 c f * 11 A f ( ũ′ -h f w ′′ )δ ũ′ - 1 2 c f * 11 A f h f ũ′ -(c f * 11 A f h 2 f +4c f 11 I f )w ′′ δw ′′ dx (11) 
and

cf 11 = c f * 11 + (e f * 31 ) 2 ǫ f * 33 (12) 
I i and A i are moment area, and area of the ith layer. Notice that the induced potential present in ( 6) has a passive effect on the surface layers through augmentation of their bending stiffness [START_REF] Lin | Application of commercial finite element codes for the analysis of induced strain-actuated structures 2nd[END_REF]. For active surface layers, the induced electric work δH me is only due to the imposed potentials on the surface layers and can be seen as an 'initial' stress vector,

δH fme =- L 0 e f * 31 A f h f ( φa + φb )δ ū′ + 1 2 e f * 31 A f h f ( φa -φ b )δ ũ′ - 1 2 e f * 31 A f ( φa -φ b )δw ′′ dx. ( 13 
)
Two particular cases could be distinguished, depending on the imposed potentials.

(a) φa =φ b =φ f , δH fme reduces to

δ Hfme =- L 0 2e f * 31 A f φf h f δ ū′ dx. ( 14 
)
For homogeneous material properties in axial direction and uniform applied potentials, ( 14) reduces to

δ Hfme =-2e f * 31 A f φf h f δ ū L 0 . (15) 
In this form, δ Hfme is interpreted as virtual work of boundary tractions 2e f * 31 A f φf /h f induced by the applied potentials. ū is here the dual displacement parameter. Axial mean strain is then induced in this case. (b) φa =-φ b =φ f , here, δH fme reduces to

δ Hfme =- L 0 e f * 31 A f φf δ ũ′ h f -δw ′′ dx ( 16 
)
For homogeneous material properties in the axial direction and uniform applied potentials, [START_REF] Sunar | Recent advances in sensing and control of flexible structures via piezoelectric materials technology[END_REF] becomes

δ Hfme =-e f * 31 A f φf δ ũ h f -δw ′ L 0 . (17) 
Now, δ Hfme can be interpreted as virtual work of boundary tractions e f * 31 A f φf /h f and moments e f * 31 A f φf induced by the applied potentials. ũ and -w ′ are the dual relative displacement and bending rotation. The relative membrane strain and mean curvature are induced here. The first term of ( 17) can also be seen as virtual shear work of the interface shear forces e f * 31 A f φf /h f . Using equations ( 8)-( 13), the extension actuation problem takes the form

δ Hfm + δH cm -δT = δW + δH fme . (18) 
From this, it can be concluded that piezoelectric material has a passive effect through the augmentation (12) of the bending stiffness due to the induced potential (quadratic term in ( 6)), and an active effect through an induced electric work [START_REF] Rahmoune | Finite element modeling of a smart structure plate system[END_REF]. The latter can be due to boundary induced point tractions [START_REF] Sun | Use of thickness shear mode in adaptive sandwich structures Smart[END_REF] or moments [START_REF] Tomlinson | An overview of active/passive damping techniques employing viscoelastic materials 3rd[END_REF].

Shear actuation mechanism.

Here, identical surface layers are not piezoelectric. Hence, equation ( 9) holds, but with cf 11 = c f * 11 . However, the induced electric work, seen as an initial stress work becomes

δ Hcme =- L 0 e c 15 A c φc h c δ ũ h c + δw ′ dx. (19) 
Therefore, δH cme can be interpreted as virtual work of distributed shear moments e c 15 A c φc /h c induced by the applied electric potentials. Dual parameters are relative displacement ũ and bending rotations -w ′ . The first term of [START_REF] Trindade | Parametric analysis of the vibration control of sandwich beams through shear-based piezoelectric actuation[END_REF] can also be seen as virtual work of interface shear forces e c

15 A c φc /h 2 c , where the dual displacement variable should be the relative displacement ũ.

Using equations ( 8), ( 9) and ( 19), the shear actuation variational equation is

δH fm + δH cm -δT = δW + δ Hcme . ( 20 
)
Since there is no induced potential in this case, the piezoelectric effect induces an equivalent electric work only.

It is worthwhile to emphasize that, for the bending problem, the shear actuation mechanism induces distributed shear moments [START_REF] Trindade | Parametric analysis of the vibration control of sandwich beams through shear-based piezoelectric actuation[END_REF] whereas the extension actuation mechanism induces boundary point moments [START_REF] Tomlinson | An overview of active/passive damping techniques employing viscoelastic materials 3rd[END_REF]. Note also that there is no equivalent equation to the membrane problem using [START_REF] Sun | Use of thickness shear mode in adaptive sandwich structures Smart[END_REF]. Hence, the shear actuation mechanism is not useful for membrane problems.

FE discretization

Since ū and ũ are C 0 -continuous and w is C 1 -continuous, they are interpolated by Lagrange linear and Hermite cubic shape functions, respectively. Only electric potentials are imposed here, i.e. δW = 0. A classical FE procedure is followed to discretize the variational actuation problem (8) which leads to the following linear system for each actuation mechanism:

M q + (K f + K c )q = F e (21) 
where

q = [ ū1 , ũ1 ,w 1 ,w ′ 1 , ū2 , ũ2 ,w 2 ,w ′ 2 ]
T is the degrees of freedom (dof) vector. M is the mass matrix of the sandwich beam. Its expression was given in [START_REF] Benjeddou | A finite element model for shear actuated adaptive structures[END_REF][START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF]. K f , K c and F e are the surface layers and core stiffness matrices, and induced electric force/moment vector. Their expressions are now detailed for each actuation mechanism.

Extension actuation mechanism

The stiffness matrix of the piezoelectric surface layers has the expression

Kf = 2 L 0 (c f * 11 A f B T fm B fm + cf 11 I f B T fb B fb ) dx (22) 
where, T states for transpose operation and B fj (j = m, b) are membrane and bending deformation matrices. The stiffness matrix of the passive core is,

K c = L 0 (c c * 33 A c B T cm B cm + c c * 33 I c B T cb B cb + c c 55 A c B T cs B cs ) dx (23
) where B cs is the shear deformation matrix of the core. The electric force vector is, for

φa =φ b =φ f Ffe =-2 L 0 e f * 31 A f φf h f N ′ ū dx (24) 
and

Ffe =- L 0 e f * 31 A f φf 1 h f N ′ ũ -N ′ w ′ dx (25) 
when φa =-φb =φ f . N ′ i (i =ū, ũ, w ′ ) are the interpolation matrices derivatives of ū, ũ and w ′ .

The linear system (21) becomes, for a membrane actuation problem,

M q + ( Kf + K c )q = Ffe (26) and M q + ( Kf + K c )q = Ffe (27)
for a bending problem.

It is worth noticing that when the induced potential is also neglected in the surface layers, there is no passive effect of the piezoelectric material; only an extra electric force vector is induced. Hence, the left-hand side of (26) and ( 27) are identical, but the piezoelectric material stiffness and mass are taken into account.

Shear actuation mechanism

In this case the bending actuation problem can be written as,

M q + (K f + K c )q = Fce (28)
where the stiffness matrix K f is given by ( 22) but with c f * 11 instead of cf 11 since the surface layers are passive here. The induced electric force vector is given by

Fce =- L 0 e c 15 A c φc h c B T cs dx. ( 29 
)
This expression is the discretization of ( 19) since the shear strain is ε cs = ( ũ/ h c ) + w ′ . A new interpretation of Fce is obtained here. The induced electric work vector is only due to the thickness shear of the piezoelectric core.

Numerical comparisons

A sandwich beam finite element capable of treating both shear and extension actuation mechanisms,w a s implemented. It was validated in [START_REF] Benjeddou | A finite element model for shear actuated adaptive structures[END_REF][START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF]. Here, the emphasis is put on static and dynamic comparisons of both mechanisms.

For the extension actuation mechanism, the top and bottom layers are supposed to be PZT5H piezoelectric material and the central core to be aluminum. The materials properties were given in [START_REF] Benjeddou | A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[END_REF]. For the shear actuation mechanism, top and bottom layers are assumed to be aluminum and the central core to be composed of a small patch of PZT5H piezoelectric material and, covering the rest of the core, a rigid foam material. The rigid foam has a density of 32 kg m -3 , a Young's modulus of 35.3 MPa and a shear modulus of 12.76 MPa.

Static analysis

The geometric configurations of both actuation mechanisms are presented in figure 1. Beams are clamped at x = 0 and free at x = L. Geometrical parameters, according to figure 1, are L = 100 mm, h = 16 mm and t = 1 mm. In order to bend the beam, voltages are applied at the top and bottom surfaces of piezoelectric layers, inducing bending electric forces. For the shear actuation mechanism, the voltage applied to the piezoelectric core has a value of φc =-20 V, and for the extension actuation mechanism, voltages applied to surface actuators are φf =-10 V. Different arguments were used to compare both actuation mechanisms. First of all, a numerical analysis of the influence of actuator position and length in beam tip displacement is presented. Then, the longitudinal stress and shear strain in the core layer induced by the beam deflection are evaluated for both actuation mechanisms. Finally, variations of beam tip displacement with structure/actuator stiffness and thickness ratios are considered.

For the first analysis, the actuator's position and length vary in the range 15-60 mm and 5-15 mm, respectively. In each case, the beam tip displacement induced by the applied electric forces is evaluated. Figure 2 mechanism is strongly dependent on position and length of the actuator, whereas shear actuation mechanism has almost the same effectiveness in all the range. Figure 2 also confirms that surface-mounted actuators are only efficient when they are long and near the clamped end. In contrast, shear actuators can retain their efficiency even with very short lengths and in a quite large position range.

Furthermore, as can be seen in figure 3, the longitudinal stress in the piezoelectric actuator is much lower for shear actuation mechanism than for the extension mechanism. However, the induced longitudinal stress in the structure is almost the same for both mechanisms. It is worth noticing also that the axial stresses in the structure and in the actuator are of the same order for the shear actuation mechanism, whereas for the extension, stresses in the actuator are approximatively ten times larger than those in the structure. Figure 4 presents shear strains in the core layer for both mechanisms. It shows the shear strain induced by the piezoelectric shear actuator (figure 4(a)) and confirms the theoretical prediction that out-of-phase extension actuators induce only pure bending (figure 4(b)).

As piezoelectric actuation is applied, in practice, to different kinds of structures, it is worthwhile to investigate the effect of structure stiffness in the effectiveness of the actuator. Therefore, an analysis of this effect was achieved by the evaluation of the beam tip displacement through piezoelectric actuation for several structure stiffness ratios. These are defined as c * 11 /c * 33 for the shear actuation mechanism and c * 33 /c * 11 for the extension actuation mechanism. As can be seen in figure 5, surface-mounted actuators are more efficient when their stiffness is greater than that of the structure. Nevertheless, although sandwich actuators are not so efficient in this case, they preserve their effectiveness in all of the range, especially in the most common structure/actuator stiffness ratio range between one and 10. This is a great advantage for the shear actuation mechanism since, in contrast to the extension mechanism, its performance is preserved for stiffer structures. Figure 5 shows also that there is an optimal stiffness ratio range for which the shear actuation mechanism is always better than the extension mechanism. This is the case for PZT5H case and a stiffer elastic material in the faces.

The variation of the beam tip deflection with the actuator thickness was also evaluated. It can be seen in figure 6 that the shear actuation mechanism performs better than the extension mechanism for thicker actuators, as can be expected. Also, for the case presented, the shear actuation mechanism is more efficient in a medium range t = 0.5-5 mm, whereas the extension actuation mechanism is more efficient in a low range (t<1 mm). It can also be noticed from figure 6 that for t>1 mm, the shear actuation mechanism is always more efficient than the extension mechanism. 

Dynamic analysis

Natural modes and frequencies were evaluated for both shear and extension actuation mechanisms. Material data are the same as presented in [START_REF] Lin | Application of commercial finite element codes for the analysis of induced strain-actuated structures 2nd[END_REF] and the geometric representation of the beam is presented in figure 1 Since an evaluation of eigenfrequencies for the shear actuation mechanism was not found in the literature, only the extension actuation mechanism numerical eigenfrequencies were compared to analytical [START_REF] Lin | Application of commercial finite element codes for the analysis of induced strain-actuated structures 2nd[END_REF] eigenfrequencies. Equivalent natural frequencies were, then, evaluated for the shear actuation mechanism.

From table 1 it is clear that the FE results for the natural bending frequencies showed good agreement with analytical results. A graphical representation of the first three bending modes is shown in figure 7. It can be seen that in all three bending modes, the actuator deformation is lower for the shear actuation mechanism. 

Conclusions

Theoretical and numerical comparisons of shear and extension actuation mechanisms for statics and dynamics of smart beams were presented. It was shown that surfacemounted actuators, acting through the e 31 piezoelectric constant, induce boundary concentrated forces and moments in the structure. Whereas, sandwich shear actuators, acting through the e 15 piezoelectric constant, induce distributed moments in the structure. Therefore, less debonding and singularity problems are expected for shear actuators.

Comparisons between both actuation mechanisms in static piezoelectric actuation were analyzed for several parameter variations, such as actuator location and length and structure/actuator stiffness and thickness ratios. It was found that extension actuators are efficient when they are long and placed near the clamped end of the beam. Shear actuators, however, retain their effectiveness, even for very short lengths, over a larger range of positions. Longitudinal stress evaluation showed advantages for the shear actuation mechanism, since levels of stress in the actuator are smaller. Also, longitudinal stress discontinuities at layer interfaces are smaller, leading to the best protection against interface debonding problems. It was also shown that shear actuator performance is less dependent of structure stiffness. Moreover, for stiffer structures, the shear actuation mechanism performs better than extension mechanism. It was also found that only thin extension actuators are efficient; shear actuators are more effective for a medium thickness range.

Dynamic analysis of both actuation mechanisms was presented, through the evaluation of natural bending frequencies and modes. The numerical results showed good agreement with the analytical results. The vibration modes are equivalent in both mechanisms; nevertheless shear actuators are less deformed than extension actuators.

The present work has been extended to active [START_REF] Trindade | Parametric analysis of the vibration control of sandwich beams through shear-based piezoelectric actuation[END_REF] and hybrid active-passive [START_REF] Trindade | Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping[END_REF] control applications. Therefore, a new adaptive sandwich beam element [START_REF] Benjeddou | New shear actuated smart structure beam finite element[END_REF] based on a different kinematic description is used. It takes into account the extra shear (due to the sliding of the faces against the core) in order to better represent the energy dissipation mechanism of hybrid active-passive damping treatments.
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  (b) where L = 50 mm, h = 2 mm, t = 0.5 mm, d c = 11 mm and a = 20 mm. The equivalent shear actuation beam is represented by figure 1(a).
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