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Piezoelectric actuation mechanisms 
for intelligent sandwich structures

A Benjeddou, M A Trindade and R Ohayon

Structural Mechanics and Coupled Systems Laboratory,
Conservatoire National des Arts et Métiers, 2, rue Conté, 75003, Paris, France

Abstract. Surface-mounted piezoelectric materials poled in the same direction as the applied electric field are known to induce membrane 
strains only. This could be seen as their conventional extension actuation mechanism. However, when piezoelectric materials are 
constrained and poled perpendicularly to the applied electric field, they act through their shear modes. This is the newly defined shear 
actuation mechanism. The present paper compares both mechanisms with the help of an adaptive sandwich beam finite element, with 
either active surface layers (for the extension mechanism) or active core (for the shear mechanism). Segmented configurations are studied 
for cantilever beams. Deflection, stress and vibration characteristics are compared for various parameters (structure/actuator stiffness and 
thickness ratios, actuator position and length). The shear actuation mechanism is found to present several promising features for brittle 
piezoceramics’ use. In particular, it was found that the shear actuation mechanism is more efficient than the extension mechanism for stiff 
structures and thick piezoelectric actuators.

commercially available PZT piezoceramics are optimized for

their extension piezoelectric response but not for their shear

properties.

A sandwich beam finite element capable of treating both

shear and extension actuation mechanisms was presented

and validated by the present authors in [5]. Based on this

recently proposed unified FE approach, this paper discusses

both extension and shear actuation mechanisms theoretically

and numerically, with special emphasis on the comparison

of static actuation performance of such mechanisms.

Segmented adaptive cantilever beams are investigated for

this purpose. Extension actuation mechanism is studied

by letting the beam surface layers active with transverse

polarization, whereas shear actuation mechanism is studied

by activating the piezoelectric core poled axially. For each

case study, static deflections and stresses, and vibration

characteristics are compared for several parameter variations,

namely, structure/actuator stiffness and thickness ratios,

actuator position and length. To the authors’ knowledge, this

is the first detailed theoretical and numerical comparative

study of the actuation performance and parametric analysis

of these basic actuation mechanisms.

2. Theoretical analysis

Consider a sandwich beam made of either piezoelectric

surface layers and elastic core, or piezoelectric core and

elastic surface layers. To do so, each layer is considered

piezoelectric but poled transversely for the surface layers and

axially for the core. For both configurations, a transverse

electric field is applied to the piezoelectric layer. To simulate

elastic material, piezoelectric constants are set to vanish

1. Introduction

Piezoelectric materials used to control noise and vibration, 
either surface-mounted or embedded in host structures, are 
commonly poled parallel to the applied electric field. Hence, 
they act through their conventional extension mechanism. 
This was extensively used and studied in the literature 
either in purely active [8, 9] or hybrid passive–active systems 
[1, 10, 17, 20]. A review of recent advances in modeling and 
applications of piezoelectric materials in active and hybrid 
active–passive vibration control of flexible structures can 
also be found in [3, 7, 16]. Using interdigitated electrodes 
(IDE), transverse actuation, through e33 or d33 piezoelectric 
constant can also be introduced [9]. However, constrained 
piezoelectric materials, poled perpendicular to the imposed 
electric field, use their thickness shear mode, leading to 
the less known shear actuators. Although mentioned 
by Soong and Hanson [14], shear-based actuators were 
proposed only recently by Sun and Zhang [15, 21], through 
a preliminary study with a commercial finite-element (FE) 
analysis code [15] and a theoretical model [21]. Mechanical 
and FE models were also proposed by Benjeddou et al [4–

6]. They used the stress-induced piezoelectric coupling 
constant e15 of an axially poled lead zirconate-titanate 
(PZT) layer or patch sandwiched between thin elastic 
layers. Detailed comparisons of their results to those in 
[15, 21] can be found in [5]. d15-based torsional actuators 
were also proposed recently for the production of large 
angular displacement and torque [11]. Actuator designs and 
assembly methods, materials preparation, poling procedures, 
test results for joint strengths, and actuator output capabilities 
are discussed. The above report [11] pointed out that current
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(insulated layer). All layers are assumed perfectly bonded

and in plane deformation state. Moreover, the transverse

stress component is neglected compared to other components,

and the transverse deflection is considered to be constant

in the beam thickness. Sandwich beam surface layers are

supposed to behave as Bernoulli–Euler beams while the core

is assumed to be a Timoshenko beam. A local frame is

attached to each layer at its left-end center, whereas the global

frame is located at the left-end center of the beam, so that

beam centroidal and elastic axes coincide with the x-axis.

The length, width and thickness of the beam are denoted by

L, b and h, respectively. The indices a, b, c indicate the

top, bottom and core layer quantities and f index is used for

surface layer parameters.

2.1. Displacement field equations

Starting with linear longitudinal displacements for each

layer, and enforcing the interface displacement continuity

conditions, axial displacement for the ith layer can be written

in the form,

uα = ūα + (z− zα)β ūα = ū±
ũ

2
±
hα

2
β

β = −w′ α = a, b

uc = ūc + zβc. (1)

The prime denotes the first derivative in x, ‘+’ for α = a, ‘−’

for α = b. zα defines the position of the elastic axes of the

layer α in the global z-axis. ū and ũ are mean and relative

axial displacements of upper and lower core skins, i.e.,

ū = ūc =
u+ + u−

2
ũ = hcβc = u+ − u− (2)

where ūc, βc, hc, u
+ and u− are, respectively, mean

displacement, bending rotation, core thickness and axial

displacements of upper and lower core skins.

2.2. Reduced piezoelectric constitutive equations

A linear orthotropic piezoelectric material with symmetry

axes parallel to the beam axes is considered here. cij , ekj
and ǫkk (i, j = 1, . . . , 6; k = 1, 2, 3) denote its elastic,

piezoelectric and dielectric material constants.

For extension actuation mechanism, the piezoelectric

beam surface layers are poled transversely and only the

transverse electric field is important. Hence, three-

dimensional linear constitutive equations of an orthotropic

piezoelectric surface layer can be reduced [5] to

{

σ1

D3

}

=

[

c∗11 −e∗31

e∗31 ǫ∗33

]{

ε1

E3

}

(3)

where,

c∗11 = c11−
c2

13

c33

e∗31 = e31−
c13

c33

e33 ǫ∗33 = ǫ33+
e2

33

c33

and σ1, ε1, D3 and E3 are axial stress and strain, and

transverse electric displacement and field. The modification

of the material constants is due to the plane stress assumption

(σ3 = 0). Notice that the electromechanical coupling is

between axial strain and transverse electric field only. This

is the basic foundation of the extension actuation mechanism.

For the shear actuation mechanism, the piezoelectric

core layer is poled in the axial direction. Its constitutive

equations can be obtained from those of the surface layers,

through a 90◦ rotation around out of plane direction followed

by a 180◦ rotation around the transverse direction, so that

axial and transverse indices interchange. Therefore, three-

dimensional linear constitutive equations of the orthotropic

piezoelectric core are [5]

{ σ1

σ5

D3

}

=

[

c∗33 0 0

0 c55 −e15

0 e15 ǫ11

] {

ε1

ε5

E3

}

c∗33 = c33 −
c2

13

c11

(4)

where σ5 and ε5 are transverse shear stress and strain. This

modification is also due to the plane stress assumption for the

core (σ3 = 0). Notice that the electromechanical coupling is

between shear strain and transverse electric field only. This

is the origin of the newly defined concept of shear actuation

mechanism.

2.3. Electric potential forms

This section defines electric potential equations for each

actuation mechanism using strain-displacement relations,

computed from the displacement field (1), and the electric

field obtained from the reduced constitutive equations (3),

(4) and substituted in the electrostatic equilibrium equation

under free volumic charge density assumption.

For the extension actuation mechanism, integration of

the following electrostatic equilibrium equation for the ith

surface layer,

Dα3,3
= 0 (5)

leads to a quadratic electric potential in the surface layers,

ϕα = ϕ̄α + (z− zα)
ϕ̃α

hα
+

(

1 −
4(z− zα)

2

h2
α

)

h2
α

8

eα∗31

ǫα∗33

w′′ (6)

where,

ϕ̃α = ϕ+
α − ϕ−

α ϕ̄α =
ϕ+
α + ϕ−

α

2

ϕ+
α and ϕ−

α are given electric potentials on upper and lower

skins of the ith surface layer. Notice that the electric potential

is the sum of a linear part, known from the given potentials

ϕ±
α , and a quadratic part, proportional to the beam curvature.

The latter represents the induced potential, often neglected

in the literature [2, 13].

For shear actuation mechanism, Dc1,1 is neglected

compared to Dc3,3, hence equation (5) still holds and its

integration provides a linear potential in the core,

ϕc = ϕ̄c + z
ϕ̃c

hc
(7)

where ϕ̄c and ϕ̃c are now mean and relative potentials of the

core.
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2.4. Variational formulation of the actuation problem

For the actuation problem, ϕ̃ are known (imposed), hence
i

their virtual variations δϕ̃i vanish, and the variational

actuation problem can be written [4, 5] as
δHm − δT = δW + δHme (8)

δT and δW are virtual variations of the kinetic energy and

work done by external forces. They are similar for both

mechanisms and were detailed in [5], but not repeated here.

However, δHm and δHme are mechanical and mechanical–

electric coupling contributions in the total virtual variation

of the electromechanical energy δH .

2.4.1. Extension actuation mechanism. For identical

surface layers, δHm can be written as,

δHm = δHcm + δH̄fm (9)

where,

δHcm =

∫ L

0

[

cc∗33Acū
′δū′ + cc∗33

Ic

h2
c

ũ′δũ′

+cc55

Ac

hc

(

ũ

hc
+ w′

)

δũ + cc55Ac

(

ũ

hc
+ w′

)

δw′

]

dx (10)

δH̄fm =

∫ L

0

{

2c
f ∗

11 Af ū
′δū′ +

1

2
c
f ∗

11 Af (ũ
′ − hfw

′′)δũ′

−
1

2

[

c
f ∗

11 Af hf ũ
′ − (c

f ∗

11 Af h
2
f + 4c̄

f

11If )w
′′

]

δw′′

}

dx

(11)

and

c̄
f

11 = c
f ∗

11 +
(e
f ∗

31 )
2

ǫ
f ∗

33

(12)

Ii and Ai are moment area, and area of the ith layer. Notice

that the induced potential present in (6) has a passive effect

on the surface layers through augmentation of their bending

stiffness (12).

For active surface layers, the induced electric work δHme
is only due to the imposed potentials on the surface layers and

can be seen as an ‘initial’ stress vector,

δHfme = −

∫ L

0

[

e
f ∗

31

Af

hf
(ϕ̃a + ϕ̃b)δū

′

+
1

2
e
f ∗

31

Af

hf
(ϕ̃a − ϕ̃b)δũ

′ −
1

2
e
f ∗

31 Af (ϕ̃a − ϕ̃b)δw
′′

]

dx.

(13)

Two particular cases could be distinguished, depending on

the imposed potentials.

(a) ϕ̃a = ϕ̃b = ϕ̃f , δHfme reduces to

δH̄fme = −

∫ L

0

2e
f ∗

31 Af
ϕ̃f

hf
δū′ dx. (14)

For homogeneous material properties in axial direction

and uniform applied potentials, (14) reduces to

δH̄fme = −2e
f ∗

31 Af
ϕ̃f

hf
δū

∣

∣

∣

∣

L

0

. (15)

In this form, δH̄fme is interpreted as virtual work

of boundary tractions 2e
f ∗

31 Af ϕ̃f /hf induced by the

applied potentials. ū is here the dual displacement

parameter. Axial mean strain is then induced in this

case.

(b) ϕ̃a = −ϕ̃b = ϕ̃f , here, δHfme reduces to

δH̃fme = −

∫ L

0

e
f ∗

31 Af ϕ̃f

(

δũ′

hf
− δw′′

)

dx (16)

For homogeneous material properties in the axial

direction and uniform applied potentials, (16) becomes

δH̃fme = −e
f ∗

31 Af ϕ̃f

(

δũ

hf
− δw′

)∣

∣

∣

∣

L

0

. (17)

Now, δH̃fme can be interpreted as virtual work of

boundary tractions e
f ∗

31 Af ϕ̃f /hf and moments e
f ∗

31 Af ϕ̃f
induced by the applied potentials. ũ and −w′ are the dual

relative displacement and bending rotation. The relative

membrane strain and mean curvature are induced here. The

first term of (17) can also be seen as virtual shear work of the

interface shear forces e
f ∗

31 Af ϕ̃f /hf .

Using equations (8)–(13), the extension actuation

problem takes the form

δH̄fm + δHcm − δT = δW + δHfme. (18)

From this, it can be concluded that piezoelectric material has

a passive effect through the augmentation (12) of the bending

stiffness due to the induced potential (quadratic term in (6)),

and an active effect through an induced electric work (13).

The latter can be due to boundary induced point tractions (15)

or moments (17).

2.4.2. Shear actuation mechanism. Here, identical

surface layers are not piezoelectric. Hence, equation (9)

holds, but with c̄
f

11 = c
f ∗

11 . However, the induced electric

work, seen as an initial stress work becomes

δH̃cme = −

∫ L

0

ec15Ac
ϕ̃c

hc

(

δũ

hc
+ δw′

)

dx. (19)

Therefore, δHcme can be interpreted as virtual work of

distributed shear moments ec15Acϕ̃c/hc induced by the

applied electric potentials. Dual parameters are relative

displacement ũ and bending rotations −w′. The first term of

(19) can also be seen as virtual work of interface shear forces

ec15Acϕ̃c/h
2
c , where the dual displacement variable should be

the relative displacement ũ.

Using equations (8), (9) and (19), the shear actuation

variational equation is

δHfm + δHcm − δT = δW + δH̃cme. (20)

Since there is no induced potential in this case, the

piezoelectric effect induces an equivalent electric work only.

It is worthwhile to emphasize that, for the bending problem,

the shear actuation mechanism induces distributed shear

moments (19) whereas the extension actuation mechanism

induces boundary point moments (17). Note also that there

is no equivalent equation to the membrane problem using

(15). Hence, the shear actuation mechanism is not useful for

membrane problems.
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3. FE discretization

Since ū and ũ are C0-continuous andw is C1-continuous, they

are interpolated by Lagrange linear and Hermite cubic shape

functions, respectively. Only electric potentials are imposed

here, i.e. δW = 0. A classical FE procedure is followed to

discretize the variational actuation problem (8) which leads

to the following linear system for each actuation mechanism:

Mq̈ + (Kf +Kc)q = Fe (21)

where q = [ū1, ũ1, w1, w
′
1, ū2, ũ2, w2, w

′
2]T is the degrees of

freedom (dof) vector. M is the mass matrix of the sandwich

beam. Its expression was given in [4, 5]. Kf , Kc and Fe are

the surface layers and core stiffness matrices, and induced

electric force/moment vector. Their expressions are now

detailed for each actuation mechanism.

3.1. Extension actuation mechanism

The stiffness matrix of the piezoelectric surface layers has

the expression

K̄f = 2

∫ L

0

(c
f ∗

11 AfB
T
fmBfm + c̄

f

11IfB
T
f bBf b) dx (22)

where, T states for transpose operation and Bfj (j = m, b)

are membrane and bending deformation matrices. The

stiffness matrix of the passive core is,

Kc =

∫ L

0

(cc∗33AcB
T
cmBcm + cc∗33IcB

T
cbBcb + cc55AcB

T
csBcs) dx

(23)

where Bcs is the shear deformation matrix of the core. The

electric force vector is, for ϕ̃a = ϕ̃b = ϕ̃f

F̄f e = −2

∫ L

0

e
f ∗

31 Af
ϕ̃f

hf
N ′
ū dx (24)

and

F̃f e = −

∫ L

0

e
f ∗

31 Af ϕ̃f

(

1

hf
N ′
ũ −N ′

w′

)

dx (25)

when ϕ̃a = −ϕ̃b = ϕ̃f . N ′
i (i = ū, ũ, w′) are the

interpolation matrices derivatives of ū, ũ and w′.

The linear system (21) becomes, for a membrane

actuation problem,

Mq̈ + (K̄f +Kc)q = F̄f e (26)

and

Mq̈ + (K̄f +Kc)q = F̃f e (27)

for a bending problem.

It is worth noticing that when the induced potential is also

neglected in the surface layers, there is no passive effect of

the piezoelectric material; only an extra electric force vector

is induced. Hence, the left-hand side of (26) and (27) are

identical, but the piezoelectric material stiffness and mass

are taken into account.

3.2. Shear actuation mechanism

In this case the bending actuation problem can be written as,

Mq̈ + (Kf +Kc)q = F̃ce (28)

where the stiffness matrix Kf is given by (22) but with c
f ∗

11

instead of c̄
f

11 since the surface layers are passive here. The

induced electric force vector is given by

F̃ce = −

∫ L

0

ec15Ac
ϕ̃c

hc
BTcs dx. (29)

This expression is the discretization of (19) since the shear

strain is εcs = (ũ/hc) + w′. A new interpretation of F̃ce is

obtained here. The induced electric work vector is only due

to the thickness shear of the piezoelectric core.

4. Numerical comparisons

A sandwich beam finite element capable of treating

both shear and extension actuation mechanisms, was

implemented. It was validated in [4, 5]. Here, the emphasis is

put on static and dynamic comparisons of both mechanisms.

For the extension actuation mechanism, the top and bottom

layers are supposed to be PZT5H piezoelectric material and

the central core to be aluminum. The materials properties

were given in [5]. For the shear actuation mechanism, top

and bottom layers are assumed to be aluminum and the central

core to be composed of a small patch of PZT5H piezoelectric

material and, covering the rest of the core, a rigid foam

material. The rigid foam has a density of 32 kg m−3,

a Young’s modulus of 35.3 MPa and a shear modulus of

12.76 MPa.

4.1. Static analysis

The geometric configurations of both actuation mechanisms

are presented in figure 1. Beams are clamped at x = 0 and

free at x = L. Geometrical parameters, according to figure 1,

areL = 100 mm, h = 16 mm and t = 1 mm. In order to bend

the beam, voltages are applied at the top and bottom surfaces

of piezoelectric layers, inducing bending electric forces. For

the shear actuation mechanism, the voltage applied to the

piezoelectric core has a value of ϕ̃c = −20 V, and for the

extension actuation mechanism, voltages applied to surface

actuators are ϕ̃f = −10 V.

Different arguments were used to compare both

actuation mechanisms. First of all, a numerical analysis

of the influence of actuator position and length in beam tip

displacement is presented. Then, the longitudinal stress and

shear strain in the core layer induced by the beam deflection

are evaluated for both actuation mechanisms. Finally,

variations of beam tip displacement with structure/actuator

stiffness and thickness ratios are considered.

For the first analysis, the actuator’s position and length

vary in the range 15–60 mm and 5–15 mm, respectively. In

each case, the beam tip displacement induced by the applied

electric forces is evaluated. Figure 2 shows the effect of

actuator position and length in beam tip deflection for both

actuation mechanisms. It is clear that extension actuation
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b) Extension actuation configuration
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PZT-5H Actuator

L

Figure 1. Cantilever sandwich beam, shear (a) and extension (b) actuation configurations.
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Figure 2. Variation of beam tip deflection with actuator position
dc and length a.

mechanism is strongly dependent on position and length

of the actuator, whereas shear actuation mechanism has

almost the same effectiveness in all the range. Figure 2 also

confirms that surface-mounted actuators are only efficient

when they are long and near the clamped end. In contrast,

shear actuators can retain their efficiency even with very short

lengths and in a quite large position range.

Furthermore, as can be seen in figure 3, the longitudinal

stress in the piezoelectric actuator is much lower for shear

actuation mechanism than for the extension mechanism.

However, the induced longitudinal stress in the structure is

almost the same for both mechanisms. It is worth noticing

also that the axial stresses in the structure and in the actuator

are of the same order for the shear actuation mechanism,

whereas for the extension, stresses in the actuator are
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Figure 3. Longitudinal stress along the z-direction for shear (a)
and extension (b) actuation mechanisms.

approximatively ten times larger than those in the structure.

Figure 4 presents shear strains in the core layer for both

mechanisms. It shows the shear strain induced by the

piezoelectric shear actuator (figure 4(a)) and confirms the

theoretical prediction that out-of-phase extension actuators

induce only pure bending (figure 4(b)).

As piezoelectric actuation is applied, in practice, to

different kinds of structures, it is worthwhile to investigate the

effect of structure stiffness in the effectiveness of the actuator.

Therefore, an analysis of this effect was achieved by the

evaluation of the beam tip displacement through piezoelectric

actuation for several structure stiffness ratios. These are

defined as c∗11/c
∗
33 for the shear actuation mechanism and

5



0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
x 10

−6

Position along x−direction (mm)   (a)

S
h

ea
r 

st
ra

in

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−6

Position along x−direction (mm)   (b)

S
h

ea
r 

st
ra

in

Figure 4. Shear strain in the core along the x-direction for
shear (a) and extension (b) actuation mechanisms.

c∗33/c
∗
11 for the extension actuation mechanism. As can be

seen in figure 5, surface-mounted actuators are more efficient

when their stiffness is greater than that of the structure.

Nevertheless, although sandwich actuators are not so efficient

in this case, they preserve their effectiveness in all of the

range, especially in the most common structure/actuator

stiffness ratio range between one and 10. This is a great

advantage for the shear actuation mechanism since, in

contrast to the extension mechanism, its performance is

preserved for stiffer structures. Figure 5 shows also that

there is an optimal stiffness ratio range for which the shear

actuation mechanism is always better than the extension

mechanism. This is the case for PZT5H case and a stiffer

elastic material in the faces.

The variation of the beam tip deflection with the actuator

thickness was also evaluated. It can be seen in figure 6 that the

shear actuation mechanism performs better than the extension

mechanism for thicker actuators, as can be expected. Also,

for the case presented, the shear actuation mechanism is more

efficient in a medium range t = 0.5–5 mm, whereas the

extension actuation mechanism is more efficient in a low

range (t < 1 mm). It can also be noticed from figure 6

that for t > 1 mm, the shear actuation mechanism is always

more efficient than the extension mechanism.
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structure/actuator stiffness ratio.
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Figure 6. The variation of beam tip deflection with actuator
thickness.

4.2. Dynamic analysis

Natural modes and frequencies were evaluated for both shear

and extension actuation mechanisms. Material data are the

same as presented in [12] and the geometric representation

of the beam is presented in figure 1(b) where L = 50 mm,

h = 2 mm, t = 0.5 mm, dc = 11 mm and a = 20 mm.

The equivalent shear actuation beam is represented by

figure 1(a). Since an evaluation of eigenfrequencies

for the shear actuation mechanism was not found in

the literature, only the extension actuation mechanism

numerical eigenfrequencies were compared to analytical [12]

eigenfrequencies. Equivalent natural frequencies were, then,

evaluated for the shear actuation mechanism.

From table 1 it is clear that the FE results for the natural

bending frequencies showed good agreement with analytical

results. A graphical representation of the first three bending

modes is shown in figure 7. It can be seen that in all three

bending modes, the actuator deformation is lower for the

shear actuation mechanism.
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Table 1. First five natural bending frequencies (Hz) for a shear and extension actuated cantilever beam.

1 2 3 4 5

Shear actuation Present FE results 989 3916 8374 17416 26025

Extension actuation Present FE results 1084 4430 12422 23499 38014
Analytical results [12] 1030 4230 12000 23500 38500
Error (%) 5.24 4.73 3.52 −0.00 −1.26

Mode #1: 989 Hz Mode #2: 3915 Hz Mode #3: 8374 Hz

Mode #1: 1084 Hz Mode #2: 4430 Hz Mode #3: 12422 Hz

Figure 7. The natural bending modes and frequencies for shear and extension actuation mechanisms.

5. Conclusions

Theoretical and numerical comparisons of shear and

extension actuation mechanisms for statics and dynamics of

smart beams were presented. It was shown that surface-

mounted actuators, acting through the e31 piezoelectric

constant, induce boundary concentrated forces and moments

in the structure. Whereas, sandwich shear actuators, acting

through the e15 piezoelectric constant, induce distributed

moments in the structure. Therefore, less debonding and

singularity problems are expected for shear actuators.

Comparisons between both actuation mechanisms in

static piezoelectric actuation were analyzed for several pa-

rameter variations, such as actuator location and length and

structure/actuator stiffness and thickness ratios. It was found

that extension actuators are efficient when they are long

and placed near the clamped end of the beam. Shear ac-

tuators, however, retain their effectiveness, even for very

short lengths, over a larger range of positions. Longitudi-

nal stress evaluation showed advantages for the shear actu-

ation mechanism, since levels of stress in the actuator are

smaller. Also, longitudinal stress discontinuities at layer in-

terfaces are smaller, leading to the best protection against

interface debonding problems. It was also shown that shear

actuator performance is less dependent of structure stiffness.

Moreover, for stiffer structures, the shear actuation mecha-

nism performs better than extension mechanism. It was also

found that only thin extension actuators are efficient; shear

actuators are more effective for a medium thickness range.

Dynamic analysis of both actuation mechanisms was

presented, through the evaluation of natural bending

frequencies and modes. The numerical results showed

good agreement with the analytical results. The vibration

modes are equivalent in both mechanisms; nevertheless shear

actuators are less deformed than extension actuators.

The present work has been extended to active [19] and

hybrid active–passive [18] control applications. Therefore, a

new adaptive sandwich beam element [6] based on a different

kinematic description is used. It takes into account the extra

shear (due to the sliding of the faces against the core) in

order to better represent the energy dissipation mechanism

of hybrid active–passive damping treatments.
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