
HAL Id: hal-03179630
https://hal.science/hal-03179630

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conflict analysis in CP solving: Explanation generation
from constraint decomposition

Arthur Gontier, Charlotte Truchet, Charles Prud’Homme

To cite this version:
Arthur Gontier, Charlotte Truchet, Charles Prud’Homme. Conflict analysis in CP solving: Explana-
tion generation from constraint decomposition. CP 2020: 26th International Conference on Principles
and Practice of Constraint Programming: Workshop: From Constraint Programming to Trustworthy
AI, Sep 2020, Louvain-la-Neuve, Belgium. �hal-03179630�

https://hal.science/hal-03179630
https://hal.archives-ouvertes.fr


Conflict analysis in CP solving: Explanation
generation from constraint decomposition

Arthur Gontier1,2, Charlotte Truchet1, and Charles Prud’homme2

1 LS2N UMR 6004, Université de Nantes, France
2 Institut Mines-Télécom Atlantique, France

Abstract. The interest of Conflit-Driven Clause Learning (CDCL) [7]
in SAT solving is well established. An adaptation of CDCL to Constraint
Programming have been introduced in [14,15]. However, for the algorithm
to run on global constraints, there is still a need to specify for each of
them the explanation rules. This is a huge obstacle on its standardisation
in off-the-shelf solvers. In this paper, we propose a method to automati-
cally generate explanation rules from any constraint decomposition.

1 Introduction

Conflict analysis consists in preventing a solver from repeating the same failures
during the search. In SAT solvers, Conflict Driven Clause Learning (CDCL) [7]
showed great improvement in the solving efficiency. When a fail occurs, SAT
solvers can learn new constraints in the SAT format, i.e., clauses, which en-
capsulate the combination of literals leading to the failure. These learnt clauses
are used later in the search process to prune the search space. In Constraint
Programming (CP), conflict analysis has been an active research topic since the
90’s, with, among others, constraint explanations [9,4]. Several adaptations of
the CDCL method where proposed for CP [14,15], offering significant improve-
ments. This is also a necessary first step to provide user information, (such as
certificate checking). However, explaining constraints is still a challenge, as the
constraint format is much richer than the SAT clauses. Global constraints must
be analysed separately in order to derive fair and accurate inference rules. Our
contribution aims at reducing this burden, by deriving explanations rules auto-
matically from global constraint decompositions.

The principle of the algorithm presented in [15] is as follows. During CP
solving, constraints filtering algorithms, or propagators, remove values from the
domain of variables. These removals are called events and are stored in an im-
plication graph. When a conflict occurs, the algorithm looks for a set of events
responsible for this conflict in the implication graph. Then, a clause based
on these events is built and added to the set of constraints to prevent find-
ing back the same conflict. To do so, the algorithm needs to be able to find
how each propagator generates their events upon a conflict in order to derive
the explaining events. This knowledge is the core of an explanation rule, writ-
ten explaining events

explained event [Rrule name] in the following. Finding all these rules could



2 A. GONTIER et al.

be tedious or difficult for global constraints. This is being studied for instance
in [10,3,13]. To address this problem, we rely on global constraints decomposi-
tions. A decomposition expresses the semantic and syntax of a global constraint
with atomic constraints, namely lower arity constraints. Several such decompo-
sitions exist in the literature [8]. We assume that the inference rules of atomic
constraints are already known or easy to define. Our proposal consists in com-
bining these inference rules through the implication graph deduced from the
decomposition of a global constraint to explain the events that the latter gen-
erates. In other words, the global constraint is used to filter values from the
domain of variables and a decomposition of it is used to explain those events.

This paper is organised as follows. In Section 2 we introduce the background
material and propose a simple constraint decomposition formalism and the ex-
planation rules for these equations. Section 3 presents the algorithm that uses
these last two to generate an explanation rule for the prime constraint and we
gives an execution example in section 4. Finally, in Section 5 we present the
questions raised by the solver usage of these generated explanation rules.

2 Constraint decomposition and their explanation rules

We first briefly introduce some definitions that are necessary to the description
of our method. For a more precise introduction of CP, we refer the interested
reader to [11,6].

Definition 1. A Constraint Satisfaction Problem is a triplet < X,D,C > with
X variables, D their domains and C the set of constraints, which are logical
formulas that define their relations.

There are different types of constraints [1], some of them are global [2]. The
important point in the following is that a global constraint can be decomposed
in multiple lower arity constraints [8]. This is usually done using constraint
reification [5] (example in section 4)

Definition 2. A reified constraint c is associated to a boolean variable b such
that the truth state of b matches the satisfaction state of c. b is called a reified
variable and we have c ⇐⇒ b.

Constraint satisfaction problem solving is a two-step process. The first step is
to remove all the impossible values of the domain of variables. To do so, each
constraint has a propagator, an algorithm to detect and remove values that
cannot satisfy the constraint given the current state of the domains. This step
can result in a solution, a conflict or an incomplete state. The latter triggers the
second step: a decision is applied, i.e., a non-assigned variable is selected and
its domain is reduced to a singleton. This modification must be verified by the
application of step one. By this process, a tree called the implication graph is
built. Its leaves contain either solutions, or conflicts. A conflict happens when a
domain is emptied by a propagator. From our point of view, the inner nodes of
the graph contain events.



Explanation generation from constraint decomposition 3

Definition 3. An event is a domain reduction written (X ≤ t, X ≥ t, X 6= t,
X = t) in the following. It is caused by either propagation or decision [12].

Global constraints can often be expressed with simpler, lower arity con-
straints. To build their decompositions, some basic constraints are introduced
below, along with their explanation rules. In the following, the events b = 1 and
b = 0 on a boolean variable b are written b and ¬b. Rules 3 (1)(2) are purely
technical, they express the equivalence between the events of the global con-
straint and their corresponding reified variable.
(1) Equality: Xi = t ⇐⇒ bit ∀i ∈ J1, nK ∀t ∈ J1,mK

Xi = t

bit
[R=]

Xi 6= t

¬bit
[R 6=]

bit
Xi = t

[R=]
¬bit

Xi 6= t
[R6=]

(2) Inequality: Xi ≥ t ⇐⇒ bit ∀i ∈ J1, nK ∀t ∈ J1,mK

Xi ≥ t

bit
[R≥]

Xi < t

¬bit
[R<]

bit
Xi ≥ t

[R≥]
¬bit

Xi < t
[R<]

Conjunction (3) and disjunction (4) are needed to build decompositions, their
rules are deduced from the truth tables of their reified formulas.
(3) Conjunction: (

∧
i∈J1,nK bi) ⇐⇒ b

b

bi
[R1
∧]

¬b bj ∀j 6= i

¬bi
[R2
∧]

bi ∀i
b

[R3
∧]

¬bi ∃i
¬b

[R4
∧]

(4) Disjunction: (
∨

i∈J1,nK bi) ⇐⇒ b

b ¬bj ∀j 6= i

bi
[R1
∨]

¬b
¬bi

[R2
∨]

bi ∃i
b

[R3
∨]

¬bi ∀i
¬b

[R4
∨]

To decompose cardinality constraints, sums of booleans variables (5)(6)(7) are
added to the formalism. The sum rules are deduced from their saturated cases.
For example, in the sum (5), when the sum reaches its limit, the other variables
will be set to false so the explanation for a false variable is the fact that the
others are true. The reasoning is inverted when the reified variable is false.
(5) Sum≤:

∑
i∈J1,nK bi ≤ c ⇐⇒ b

¬b ¬bj ∀j 6= i

bi
[Rinf1

sum ]
b bj ∀j 6= i

¬bi
[Rinf2

sum ]
¬bi ∀i

b
[Rinf3

sum ]
bi ∀i
¬b

[Rinf4
sum ]

(6) Sum≥:
∑

i∈J1,nK bi ≥ c ⇐⇒ b

b ¬bj ∀j 6= i

bi
[Rsup1

sum ]
¬b bj ∀j 6= i

¬bi
[Rsup2

sum ]
bi ∀i
b

[Rsup3
sum ]

¬bi ∀i
¬b

[Rsup4
sum ]

3 Recall that an explanation rule is defined as explaining events
explained event

[Rrule name].



4 A. GONTIER et al.

(7) Sum=:
∑

i∈J1,nK bi = c ⇐⇒ b

b ¬bj ∀j 6= i

bi
[Rsup1

sum ]
b bj ∀j 6= i

¬bi
[Rinf2

sum ]
bi ¬bj ∀i 6= j

b
[R=1

sum]
bi ∀i
¬b

[R=2
sum]

¬bi ∀i
¬b

[R=3
sum]

3 Generation of explanations

To generate the explanation rule of an event for a global constraint, we build
the implication graph of its decomposition until we find the explaining events
of the global constraint. This is used once and for all for each constraint, as a
preprocessing step. In the following algorithms (Algorithm 1 and Algorithm 2),
the term constraint refers to decomposition constraint and Ctrs(e) is the set of
the decomposition constraints that contains the event e.

The generation starts by calling the find function (Algorithm 1) with the
event to explain, no previous constraint and an empty path. First, it checks if the
event to explain, or its negation, has not been processed before, in which case the
explanation is void. Then it looks for the event to explain in the decomposition,
and calls the corresponding explanation rule function on each of its appearances.
Finally, it adds a node in the explanation graph, labelled with an OR, to state the
multiplicity of possible explanations. In Algorithm 2, an example of explanation
rule function is depicted, here, the four rules of equation (3). The purpose of
such a function is to apply the rules presented in Section 2. First, the rule that
matches the input event is applied. If the explaining event belongs to the global
constraint, it is added as a leaf of the explanation tree. Otherwise, i.e., if the
event is internal to the decomposition, the find function is called on it. If the
rule states multiples explaining events, the node is labelled with an AND.

Algorithm 1: find(e=event,
ctr=previous ctr, p=path)

1 if e or ¬e not already in path p
then

2 for c ∈ Ctrs(e), c 6= pre do
3 Add e in path p
4 c.rule(e, p)

5 end
6 Label node(OR)

7 end

Algorithm 2: rule3
(e=event, p=path)

1 slf : current ctr
2 if e = bi then
3 find(b, slf , p)// [R1

∧]
4 else if e = ¬bi then
5 find(¬b, slf , p)
6 find(bj ∀j 6= i, slf , p)
7 Label node(AND)// [R2

∧]

8 else if e = b then
9 find(bi ∀i, slf , p)// [R3

∧]
10 else if e = ¬b then
11 find(¬bi ∃i, slf , p)// [R4

∧]

In addition to these two main mechanism, our system also features an index
propagation system. In practice, many constraint decompositions are written
using either operations on the variables indexes (e.g., Xi+1, Xi−1...), or even
sets of variables indexes (e.g., ∀j 6= i...).



Explanation generation from constraint decomposition 5

To properly propagate the indexes appearing in a decomposition, we add to
each event in the decomposition two index propagation functions (index propagate

and index update). The first one implements the modification written in the
decomposition equation, for example bi+1 will add one to the index i. The second
one synchronises the current event index with the corresponding decomposition
event index before any propagation. In the end, our system is capable of dealing
with equalities and inequalities between indexes, addition or substraction by a
given integer, and ∃ and ∀ quantifiers over a given integer set. This is, in prac-
tice, sufficient to deal with most of the decompositions, but the formalism is also
expandable.

4 An example: the cumulative constraint

Consider the Cumulative({X1, . . . , Xn}, {d1, . . . , dn}, c) constraint4. This con-
straint expresses a capacity constraint in a scheduling problem. We use here the
Cumulative’s variant with fixed durations, and a fixed task height of 1. Start-
ing time variables are written X, the durations d and the capacity c. For this
constraint we have the following decomposition [13]:

Xi ≥ t ⇐⇒ bit ∀i ∈ J1, nK∀t ∈ J1,mK (1)

(bi(t−di) ∧ ¬bit) ⇐⇒ b2it ∀i ∈ J1, nK∀t ∈ J1,mK (2)∑
i∈J1,nK

b2it ≤ c ∀t ∈ J1,mK (3)

The first constraint (1) reifies a domain modification of the cumulative variables.
The second constraint (2) and its reified variable b2 encodes the overlap of the
ith task on time t. The last equation (3) constrains the number of overlapping
tasks not to exceed the integer c.

Xi ≥ t bit OR

AND

bi(t−di) Xi ≥ t− di

¬b2it b2i′t AND

bi′(t−di′ )

¬bi′t

Xi′ ≥ t− di′

Xi′ < t
b2i(t+di) ?

R≥

R
2
∧

R 2
∧

R 1
∧

R≥

Rinf2
sum

?

R
3∧

R 3∧

R≥

R<

Fig. 1. Lower bound event explanation generation

4 http://sofdem.github.io/gccat/gccat/Ccumulative.html

http://sofdem.github.io/gccat/gccat/Ccumulative.html


6 A. GONTIER et al.

The explanation rule generation is started on a chosen event, for example
Xi ≥ t. It is found only in the first equation (1), thus the node bit is generated.
The rule that has been used is written on the arrow and the first algorithm is
then applied on bit. It appears three times in the decomposition, one in (1) and
two in (2), therefore, there are three possible explanations. The first constraint is
forbidden because it was used to get bit. The two other possibilities are labelled
by an OR node. The explanation by the negative variant of bit will generate
an AND node as explained by R2

∧. The generation will continue until we have
no inner decomposition events in the leafs. At the end of this example, there is
three leaves in the upper branch and none in the lower one because in this case,
there are no rules for a positive variable in a sum less than an constant c with a
reified variable set to true (a non reified constraint is implicitly reified to true).

We implemented the generator5 in the OCaml language. With the decomposi-
tion formalism we defined, we can parse the OCaml explanation rule in LATEX for
them to be read. For example the following generated explanation rules for the
Cumulative constraint has been produced by our tool:

Xi ≥ t′ t′ = t− ci, Xi′ ≥ t′ t′ = t− ci′ , ∀i′, i′ ∈ D, i′ 6= i, i ∈ D,

Xi′ < t ∀i′, i′ ∈ D, i′ 6= i, i ∈ D,

Xi ≥ t

Xi < t′ t′ = t+ci, Xi′ ≥ t′′ t′′ = t′−ci′ , t′ = t+ci, ∀i′, i′ ∈ D, i′ 6= i, i ∈ D,

Xi′ < t′ t′ = t + ci, ∀i′, i′ ∈ D, i′ 6= i, i ∈ D,

Xi < t

5 Conclusion

We have presented a generation method for explanations of global constraints,
that takes advantage of the constraint decomposition. This method automati-
cally expands an implication graph that is run to generate an explanation of an
event triggered by the global constraint. The resulting rules can then be encoded
within any event-based CDCL-like CP solver. This is still a work in progress,
and we plan to explore several questions which are still open. First, we have to
extend our implementation to more global constraints, in particular cardinal-
ity constraints for which several decompositions exist. We also plan to compare
both the expressiveness and the practical efficiency of our generated explanation,
compared to the state of the art. The fact that we use a decomposition, which
may filter less than the global constraint, may lead to weak explanations, and we
will investigate this case. Finally, we already propose a LaTeX generated expres-
sion of the explanation in order to help the user refine his/her model. Yet, we
have to improve the presentation of this output to obtain a more concise, user-
friendly explanations. Since our method is generic, we plan to build a catalog
of global constraints explanations as a way to systematically compare different
explanations frameworks.
5 https://github.com/ArthurGontierPro/Explanations-by-constraint-decomposition.

git

https://github.com/ArthurGontierPro/Explanations-by-constraint-decomposition.git
https://github.com/ArthurGontierPro/Explanations-by-constraint-decomposition.git


Explanation generation from constraint decomposition 7

Acknowledgements
The work presented in this article was funded by the French National Re-

search Agency as part of the DeCrypt project (ANR- 18-CE39-0007).

References

1. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog (2010)
2. Bessiere, C., Van Hentenryck, P.: To be or not to be... a global constraint. In:

International conference on principles and practice of constraint programming. pp.
789–794. Springer (2003)

3. Downing, N., Feydy, T., Stuckey, P.J.: Explaining alldifferent. In: Reynolds, M.,
Thomas, B.H. (eds.) Thirty-Fifth Australasian Computer Science Conference,
ACSC 2012, Melbourne, Australia, January 2012. CRPIT, vol. 122, pp. 115–
124. Australian Computer Society (2012), http://crpit.scem.westernsydney.edu.
au/abstracts/CRPITV122Downing.html

4. Jussien, N.: The versatility of using explanations within constraint programming.
Ph.D. thesis (2003)

5. Khong, M.T., Schaus, C.L.Y.D.P.: Réification de contraintes tables. JFPC 2016
p. 45 (2016)

6. Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Information sciences 7, 95–132 (1974)

7. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient sat solver. In: Proceedings of the 38th annual Design Automation
Conference. pp. 530–535 (2001)

8. Narodytska, N.: Reformulation of global constraints. Ph.D. thesis, University of
New South Wales, Sydney, Australia (2011), http://handle.unsw.edu.au/1959.4/
51366

9. Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Computa-
tional intelligence 9(3), 268–299 (1993)

10. Richaud, G.: Outillage logiciel pour les problèmes dynamiques. Ph.D. thesis (2011),
http://www.theses.fr/2009NANT2145, thèse de doctorat dirigée par Jussien,
Narendra Informatique Nantes 2011

11. Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint programming. Elsevier
(2006)

12. Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In:
Foundations of Artificial Intelligence, vol. 2, pp. 495–526. Elsevier (2006)

13. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propaga-
tion for the cumulative resource constraint. In: Gomes, C.P., Sellmann, M. (eds.) In-
tegration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, 10th International Conference, CPAIOR 2013, Yorktown
Heights, NY, USA, May 18-22, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 7874, pp. 234–250. Springer (2013). https://doi.org/10.1007/978-3-
642-38171-3 16, https://doi.org/10.1007/978-3-642-38171-3 16

14. Stuckey, P.J.: Lazy clause generation: Combining the power of sat and cp (and
mip?) solving. In: International Conference on Integration of Artificial Intelligence
(AI) and Operations Research (OR) Techniques in Constraint Programming. pp. 5–
9. Springer (2010)

15. Veksler, M., Strichman, O.: A proof-producing csp solver,a proof supplement. In:
Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV122Downing.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV122Downing.html
http://handle.unsw.edu.au/1959.4/51366
http://handle.unsw.edu.au/1959.4/51366
http://www.theses.fr/2009NANT2145
https://doi.org/10.1007/978-3-642-38171-3_16
https://doi.org/10.1007/978-3-642-38171-3_16
https://doi.org/10.1007/978-3-642-38171-3_16

	Conflict analysis in CP solving: Explanation generation from constraint decomposition

