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ABSTRACT

In this paper, we propose a symmetric variational formula-

tion for the eigenmode computation of a free-free elastic tank

partially filled with an incompressible inviscid liquid in presence

of a gravity field. The originality of this model is to take into ac-

count the strong coupling between the sloshing of the liquid free

surface and the hydroelastic deformations of the tank. We will

show that this allows the rigid body modes of the system to be

predicted correctly.

Γ liquid free surface

Σi fluid-structure interface

Σ f external force application surface

ΩS structural domain (ΩS = Σi ∪Σ f )

ΩF fluid domain (ΩF = Γ∪Σi)

n normal vector

τ linear variation of normal vector: τ dΣ0 ≃ n dΣ−n0 dΣ0

Du partial derivative matrix of u

fD dead loads

fF follower forces

g gravity field

ρS density of the structure

ρF density of the fluid

H elastic coefficient tensor of the structure

z altitude with respect to the liquid free surface

ix, iy, iz coordinate system defined with iz colinear to g

∗Address all correspondence to this author.

INTRODUCTION

In the aerospace field, the study of free structures contain-

ing internal fluids is of prime importance, for instance, to predict

the in-flight stability of aircrafts with auxiliary tanks or to con-

trol the trajectory of liquid propelled launch vehicles (Abramson,

1966; Moı̈seyev & Rumyantsev, 1968). Several symmetric for-

mulations have been proposed to compute the linear vibrations

of elastic tanks partially filled with incompressible inviscid liq-

uids (Ohayon & Valid, 1984). However those hydroelastic mod-

els usually neglect the gravity potential energy of the fluid and

therefore the sloshing of the free surface. The decoupling of both

phenomena is valid except if the first coupled eigenfrequencies

of the fluid-structure system are too close to the sloshing eigen-

frequencies. This may occur for highly flexible tanks but also for

free-free systems (since the first eigenmodes are zero-frequency

rigid body modes). The former case was studied in previous ar-

ticles (Schotté & Ohayon, 2001) while this paper will focus on

free-free systems.

In 1995, Morand & Ohayon proposed an hydroelastic model

to represent the coupling with the free surface sloshing by rein-

troducing the gravity in the formulation (Morand & Ohayon,

1995). A new elastogravity stiffness operator was then es-

tablished. We will extend this formulation to free-free fluid-

structure systems and show how to consider its uniform transla-

tional acceleration as an apparent gravity. It is then demonstrated

that, unlike previous approximate hydroelastic models with grav-

ity (Tong, 1966), the proposed formulation which accounts for

all the prestress and ”follower force” terms correctly represents

the rigid body modes of the fluid-structure system and their cou-

pling with the sloshing of the free surface. Numerical simula-
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tions and validations are presented to highlight the advantages of

this model.

FREE PRESTRESSED FLUID-STRUCTURE SYSTEM
Herein we are interested in linear vibrations of pulsation ω

and we then suppose that all external excitations are harmonic.

Figure 1 shows the system considered here.
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Figure 1. STUDIED MODEL

Prestressed Initial State and Apparent Gravity
The presence of gravity field g and hydrostatic pressure P

on the fluid-structure interface introduces a prestress in the ini-

tial state of the system (designated by subscript 0). In case of a

free-free fluid-structure system, this prestressed initial configu-

ration is not static but accelerated by the external forces f0. The

initial elastic deformation of the system will be rather described

in a reference frame attached to the accelerated system. In this

reference frame, the gravity is replaced with an apparent gravity

that depends on the system acceleration, denoted as γ. Since the

case of fluid-structure systems in rotation is very specific (Corio-

lis forces effect etc.) and has been treated in many other works

(Greenspan, 1986), we suppose here that the rigid motion of the

system due to the initial external forces is purely translational

(this means that the resultant torque of f0 with respect to the cen-

ter of gravity of the system vanishes). In this case, the apparent

gravity, denoted as gapp., is given by :

gapp. = g− γ with γ =
(mS + mF)g +

R
Σ f 0

f0 dΣ0

mS + mF

gapp. = −

R
Σ f 0

f0 dΣ0

mS + mF
(1)

where mS and mF are the structure and fluid masses.

The apparent gravity, which does not depend on the pres-

ence of the gravity field g, allows the initial position of the fluid

free surface1 to be defined. Furthermore, in the reference frame

attached to the system, the summation of all applied loads is null

since the inertial forces associated to the apparent gravity gapp.

balance the applied loadings f0. To determine the initial elas-

tic deformations ue
0 and then the prestress σ0 in the structure, it

is however necessary to ”support” the unconstrained system by

fixing enough degrees of freedom of the structure to make it iso-

static (Géradin & Rixen, 1997). The local equations satisfied by

ue
0 and σ0 are :

Divσ0(u
e
0)+ ρS

0 gapp. = 0 in ΩS
0 (2a)

σ0 n0 = f0 on Σ f 0 (2b)

σ0 n0 =−P
app.
0 n0 on Σi0 (2c)

where P
app.
0 is the fluid pressure in the reference frame attached

to the system.

Linear hydroelastic vibrations with gravity
The apparent gravity being constant in space, we can apply

the hydroelastic modelisation with constant gravity developped

in previous works (Schotté & Ohayon, 1999; Schotté, 2001)

to describe the linear fluid-structure vibrations in the reference

frame attached to the system. We remind here that, if H 1(ΩS
0)

denoted as Cu, the variational formulation obtained for the defor-

mation U S of the structure (with respect to the initial configura-

tion) is:

∃U S ∈ Cu, ∀δU ∈ Cu,

K̂ (U S,δU)−ω2 M (U S,δU)+ ω2 C (ϕ,δU) = f̃ (δU) (3a)

where K̂ is the elastogravity operator, M the inertia of the struc-

ture, C the coupling at the fluid-structure interface and f̃ the lin-

ear form associated with the variation of prescribed forces.

Since the fluid is incompressible and inviscid, its displace-

ments UF are irrotational at non-zero frequency and then can be

represented by a potential ϕ such as UF = ∇ϕ (on a simply con-

nected fluid domain). With C∗ϕ = {ϕ∈ H 1(ΩF
0) /

R
Γ0

ϕdΓ0 = 0},

the variational formulation for the liquid is:

∃ϕ ∈ C
∗
ϕ, ∀δϕ ∈ C

∗
ϕ,

F (ϕ,δϕ)−
ω2

|gapp.|
S(ϕ,δϕ)+ C (U S,δϕ) = 0 (3b)

1We have to exclude the particular case of a free fall ( f0 = 0) because, when

gapp. = 0, the position of the liquid free surface cannot be defined.
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where F and S are the bilinear forms associated respectively

with the kinetic and sloshing potential energies of the fluid

(the complete expression of all those operators can be found in

(Schotté & Ohayon, 1999)).

The elastogravity operator K̂ , whose symmetry is demon-

strated in (Schotté, 2001), is composed of several bilinear forms:

K̂ = kE + kG + kB + k1
Σ + k2

Σ where

kE(US,δU) =
Z

ΩS
0

Tr
[
H ε(US)ε(δU)

]
dΩ0 (4a)

kG(US,δU) =
Z

ΩS
0

Tr
[
DUS σ0

tDδU
]

dΩ0 (4b)

kB(US,δU) =
ρF |gapp.|

‖Γ0‖

(Z
Σi0

US.n0 dΣ0

)(Z
Σi0

δU.n0 dΣ0

)

(4c)

k1
Σ(US,δU) = −ρF |gapp.|

Z
Σi0

(iz.U
S)(δU.n0)dΣ0 (4d)

k2
Σ(US,δU) = −ρF |gapp.|

Z
Σi0

z0 τ(US).δU dΣ0 (4e)

kE : symmetric positive bilinear form related to the elastic stiff-

ness of the structure,

kG : symmetric bilinear form representing the geometric stiff-

ness due to the prestress σ0 in the structure in the initial

state,

kB : symmetric positive bilinear form associated with a quasi-

static effect of a liquid free surface elevation,

kΣ = k1
Σ + k2

Σ : symmetric bilinear form related to the ”follower

force” property of the liquid pressure on the fluid-structure

interface.

Follower force effect
We distinguish here two kinds of external forces: the ”dead

loads” f D and the follower forces f F supposed colinear to the

normal vector n. The linearized variation of external loads f̃ (δU)
appearing in the right hand side member of equation (3a) is then

proportional to:

f dΣ− f0 dΣ0 = f̃ D dΣ0 + |̃ f F |n0 dΣ0 + | f F
0 | τ(U S)dΣ0

where f̃ D = f D− f D
0 and |̃ f F |= | f F |−| f F

0 |. The linear variation

of the normal vector n, denoted as τ, is a fonction of U S. In the

case of prescribed follower forces, we then have to add a stiffness

term kF to the elastogravity operator, given by:

kF(U S,δU) = −
Z

Σ f 0

| f F
0 | τ(U S).δU dΣ0 (4f)

and to replace the right hand side member with:

f̃ (δU) =
Z

Σ f 0

( f̃ D + |̃ f F |n0).δU dΣ0 (5)

The vibrations of the coupled system are free if:

f̃ (δU) ≡ 0 ⇐⇒

{
f D = f D

0

| f F | = | f F
0 |

(6)

Symmetry of operator kF

First of all, let us explicitly define τ in term of U S using the

oriented surface transformation formula:

n dΣ = det(F)F−t n0 dΣ0 with F = Id + DU S (7)

Introducing this expression in the definition of τ(U S), we find

after linearization:

τ(U S) = div(U S)n0 −
t(DU S)n0 (8)

and then kF can be written as:

kF(U S,δU) =
Z

Σ f 0

| f F
0 |

(
(DU S)δU −div(U S)δU

)
.n0 dΣ0 (9)

To study the symmetry of kF , we will compute kF(U,V )−
kF(V,U):

kF(V,U)− kF(U,V )

=
Z

Σ f 0

| f F
0 |

(
div(U)V − (DU)V −div(V )U +(DV )U

)
.n0 dΣ0

=
Z

Σ f 0

| f F
0 | rot(V ∧U).n0 dΣ0

=
Z

Σ f 0

rot(| f F
0 |V ∧U).n0 dΣ0 · · ·

· · · −
Z

Σ f 0

(
grad(| f F

0 |)∧ (V ∧U)
)
.n0 dΣ0

=
Z

∂Σ f 0

| f F
0 | (V ∧U).dl−

Z
Σ f 0

(
grad(| f F

0 |)∧ (V ∧U)
)
.n0 dΣ0

To enforce the nullity of this expression, it is sufficient that:

1. on the one hand, | f F
0 | is constant on Σ f 0 (grad(| f F

0 |) ≡ 0),
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2. on the other hand, either Σ f 0 is a closed surface (∂Σ f 0 = /0) or

the displacements of the structure are known on ∂Σ f 0 (δU ,

cinematically admissible, is then null on ∂Σ f 0). However,

for free-free systems, this second option does not exist.

These both conditions are verified, for instance, in case of a pres-

surized tank since | f F
0 | is the pressure of the gas, supposed con-

stant in the gas volume and applied on the closed inner surface

of the tank.

In the general case, kF is non-symmetric and Hibbitt has pro-

posed to use a symmetric formulation instead: kS
F = 1/2 (kF +

tkF) to preserve the conservative property of the system (Hib-

bitt, 1979). This approximation is also used by Mohan (Mohan,

1997). We then suppose later that kF is symmetric.

RIGID BODY MODES OF A FREE FLUID-STRUCTURE
SYSTEM

The rigid body modes of the free fluid-structure system are

solutions of the following equations :

∀ (δU,δϕ) ∈ (Cu,C
∗
ϕ),

{
K̂ (U S,δU) = 0

F (ϕ,δϕ) = −C (U S,δϕ) with
R

Γ0
ϕ dΓ0 = 0

(10)

We are then interested in determining the kernel of the stiff-

ness operator K = kE + kG + kB + k1
Σ + k2

Σ + kF , where these dif-

ferent operators are defined by relations (4). Instead of doing a

direct computation, we will first try to verify whether the 6 clas-

sical rigid body modes UR (the 3 translations and the 3 rotations)

belong or not to this space. In this aim, we compute the deforma-

tion energy generated by K for these 6 rigid displacements UR,

defined by EK (UR) = 1
2
K (UR,UR).

Rigid Translational Motions

For a translational motion, UR = t with t ∈ {ix, iy, iz} and

EkE
(t) = 0

EkG
(t) = 0

EkF
(t) = 0

EkB
(t) =

ρF |gapp.|

2‖Γ0‖

(
t.
Z

Σi0

n0 dΣ0

)2

E
k1

Σ
(r) = −

ρF |gapp.|

2
(iz.t)

(
t.
Z

Σi0

n0 dΣ0

)

E
k2

Σ
(t) = 0

By using the relation :

Z
Σi0

n0 dΣ0 −‖Γ0‖ iz =
Z

Σi0∪Γ0

n0 dΣ0 = 0

we show that EK (t) = EkE
(t) + EkF

(t) + EkG
(t) + EkB

(t) +

E
k1

Σ
(t) + E

k2
Σ
(t) = 0. The translational motions are then rigid

body modes for a free fluid-structure system in presence of grav-

ity.

Rigid Rotational Motions

A rotational motion is defined by a rotational vecteur θ and

a center of rotation O: UR = θ∧OM0 with θ ∈ {ix, iy, iz}, al

denoted as UR = Θ OM0, where Θ is the antisymmetric matrix

associated to this rotation.

Computation of EkE
(UR)

EkE
(UR) =

1

2

Z
ΩS

0

Tr [C ε(Θ OM0)ε(Θ OM0)] dΩ0

By using the following relation:

εX (Θ OM0) =
1

2

(
D(Θ OM0)+ tD(Θ OM0)

)
=

1

2
(Θ + tΘ) = 0

we simplify the previous expression and obtain:

EkE
(UR) = 0 (11)

Computation of EkG
(UR) Thanks to the Green formula,

we integrate the expression of EkG
(UR) and obtain:

EkG
(UR) =

1

2

Z
ΩS

0

Tr
[
DUR σ0

tDUR

]
dΩ0

=
1

2

Z
ΩS

0

(
div

(
t(DUR σ0)UR

)
−Div(DUR σ0) .UR

)
dΩ0

=
1

2

Z
∂Σ0

DUR σ0 n0.UR dΣ0 −
1

2

Z
ΩS

0

Div(DUR σ0) .UR dΩ0
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We then use the local equations (2) and the fact that DUR = Θ to

simplify this expression:

EkG
(UR) = −

1

2

Z
Σi0

P
app.
0 (Θ n0).UR dΣ0 · · ·

· · · +
1

2

Z
Σ f 0

(Θ f0).UR dΣ0 +
1

2

Z
ΩS

0

ρS
0 (Θ gapp.).UR dΩ0

The center of gravity GS
0 of the structure in its initial configura-

tion is finally introduced to simplify this expression:

EkG
(UR) =

1

2

Z
Σi0

P
app.
0 n0.(θ∧ (θ∧OM0))dΣ0 · · ·

· · · −
1

2

Z
Σ f 0

f0.(θ∧ (θ∧OM0))dΣ0 −
mS

2
gapp..(θ∧ (θ∧OGS

0)

(12)

To give a physical interpretation of this relation, we introduce the

finite rotation UR whose relation with UR is given by (see figure

2):

UR = U (1) +U (2) avec

{
U (1) = θ∧OM0 = UR

U (2) = θ∧ (θ∧OM0)
(13)

The energy EkG
(UR) is opposite to the work of the prestress

forces (hydrostatic pressure, external forces and weight), con-

sidered as ”dead loads”, during the finite rotation UR (since the

nullity of the work corresponding to U (1) results from the struc-

ture equilibrium in the initial state) (Morand & Ohayon, 1975).

U
(2)

M0

0(M  )

R(M  )

U

0

θ

(1)

Figure 2. INFINITESIMAL AND FINITE ROTATIONS

R

Computation of E
k2

Σ
(UR) We use here the following ex-

pression of k2
Σ:

E
k2

Σ
(UR) =

1

2

Z
Σi0

P
app.
0 τ.UR dΣ0

Since for a rotation of vector θ, the value of τ is:

τ dΣ0 = θ∧n0 dΣ0 +(θ.n0)θ dΣ0

the previous expression gives:

E
k2

Σ
(UR) =

1

2

Z
Σi0

P
app.
0 (θ∧n0).(θ∧OM0)dΣ0 · · ·

· · · +
1

2

Z
Σi0

P
app.
0 (θ.n0)

(
θ.(θ∧OM0)︸ ︷︷ ︸

0

)
dΣ0

Finally, we find:

E
k2

Σ
(UR) = −

1

2

Z
Σi0

P
app.
0 n0.(θ∧ (θ∧OM0))dΣ0 (14)

Let us remark that the deformation energy associated with k2
Σ e -

actly compensates for the hydrostatic pressure component of the

energy associated with kG. This result seems in good agreement

with physics since the aim of the operator k2
Σ is to take the fol-

lower force effect into account.

Computation of EkF
(UR) A similar demonstration

gives:

EkF
(UR) =

1

2

Z
Σ f 0

| f F
0 |n0.(θ∧ (θ∧OM0))dΣ0 (15)

Computation of EkB
(UR)

EkB
(UR) =

ρF |g|

2‖Γ0‖

(Z
Σi0

(θ∧OM0).n0 dΣ0

︸ ︷︷ ︸
(A)

)2

Some vector analysis formulae are used to simplify the term de-

noted as (A). We obtain:

(A) =
Z

ΩF
0

θ. rot(OM0)︸ ︷︷ ︸
0

dΩ0 +(iz ∧θ).

(Z
Γ0

OM0 dΓ0

)
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We introduce C0, the center of the liquid free surface (in its initial

configuration), defined by ‖Γ0‖OC0 =
R

Γ0
OM0 dΓ0, and finally

find for EkB
(UR):

EkB
(UR) =

ρF |gapp.| ‖Γ0‖

2

(
(iz ∧θ).OC0

)2

(16)

Computation of E
k1

Σ
(UR)

E
k1

Σ
(UR)

=−
ρF |gapp.|

2

Z
Σi0

(
OM0.(iz ∧θ)

)(
(n0 ∧θ).OM0

)
dΣ0

= −
ρF |gapp.|

2

Z
ΩF

0

div

((
OM0.(θ∧ iz)

)
(θ∧OM0)

)
dΩ0

︸ ︷︷ ︸
(A)

· · ·

· · · −
ρF |gapp.|

2

Z
Γ0

(
OM0.(iz ∧θ)

)2

dΓ0

︸ ︷︷ ︸
(B)

The first term (A) can be simplified to give:

(A) = (θ∧ iz).

(
θ∧

Z
ΩF

0

OM0 dΩ0

)

If the center of gravity GF
0 of the fluid domain in its initial con-

figuration is introduced, this relation gives:

(A) = −‖ΩF
0‖ iz.

(
θ∧ (θ∧OGF

0)
)

The second term (B) is simplified by introducing the point C0

previously defined. We obtain:

(B) = ‖Γ0‖
(
OC0.(iz ∧θ)

)2
+ t(iz ∧θ)ℑC

Γ (iz ∧θ)

where ℑC
Γ is the inertia tensor of the free surface Γ0 with respect

to its center C0, defined by:

ℑC
Γ =

Z
Γ0

C0M0
t(C0M0)dΓ0 (17)

Finally, the energy E
k1

Σ
(UR) is written:

E
k1

Σ
(UR) = −

mF

2
gapp..

(
θ∧ (θ∧OGF

0)
)
· · ·

· · · −
ρF |gapp.|

2

(
‖Γ0‖

(
OC0.(iz ∧θ)

)2
+ t(iz ∧θ)ℑC

Γ (iz ∧θ)
)

(18)

Computation of EK (UR) We assemble the various en-

ergy computed previously to give the following expression of

EK (UR):

EK (UR) = −
ρF |gapp.|

2
t(iz ∧θ)ℑC

Γ (iz ∧θ) · · ·

· · · −
m

2
gapp..

(
θ∧(θ∧OG0)

)
−

1

2

Z
Σ f 0

fD0.(θ∧(θ∧OM0))dΣ0

(19)

where G0 is the center of gravity of the fluid-structure system in

its initial configuration and m its mass.

Using the definition of gapp., equation (1), we can give a final

expression of this energy:

EK (UR) = −
ρF |gapp.|

2
t(iz ∧θ)ℑC

Γ (iz ∧θ) · · ·

· · · +
1

2

(Z
Σ f 0

| f F
0 |n0 dΣ0

)
.(θ∧ (θ∧OG0)) · · ·

· · · −
1

2

Z
Σ f 0

fD0.(θ∧ (θ∧GM0))dΣ0 (20)

The term depending on follower forces f F is null if f F
0 naturally

satisfies the condition of symmetry for kF (| f F
0 | constant and Σ f 0

closed surface). Otherwise, we can eliminate this term by placing

the center of rotation O on the system center of gravity G. On the

other hand, we remark that the term depending on the dead loads

f D is not cancelled.

We can now give the following conclusions :

1. If all external loads f0 are not follower forces, the rotational

movements are no longer rigid body modes for the system.

We remark that the position of the dead loads in relation to

the system center of gravity determines their stabilizing or

destabilizing effect on the system. This result was given by

Kreis & Klein in (Kreis & Klein, 1992).

2. If the prestresses in the initial state are only due to follower

forces, additional stiffness terms kΣ and kF nullify the de-

formation energy generated by the geometric stiffness kG.

6



Then, the rotational movement with respect to the gravity

axis iz is still a zero-frequency rigid body mode for the sys-

tem.

3. However, the two rotations with respect to horizontal axes ix
and iy are no longer energyless movement because a fluid-

structure system prestressed by the gravity is not invariant

during such rotations : when the structure rotates, the liq-

uid free surface remains horizontal by action of the gravity

forces which generate this energy.

Table 1 summarizes the contribution of each term of the stiffness

operator to the deformation energy of the system.

EkE
+ E

k
g
G

+ E
k

f
F0

G

+ EkF
+ EkB

+ E
k1

Σ
+ E

k2
Σ

= EK

Tx or y 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0

Tz 0 + 0 + 0 + 0 + ➀ + (-➀) + 0 = 0

Rz 0 + ➁ + ➂ + (-➂) + 0 + 0 + (-➁) = 0

Rx or y 0 + ➁ + ➂ + (-➂) + ➀ + ➃ - ➀ + (-➁) = ➃

Table 1. SUMMARY OF THE DIFFERENT CONTRIBUTIONS TO THE

DEFORMATION ENERGY ASSOCIATED TO THE RIGID BODY MO-

TIONS

NUMERICAL EXAMPLES
Test case

To illustrate this result, the following test case has been stud-

ied: The first free eigenfrequencies, obtained with the hydroelas-

R = 2.7 m

L = 6.7 m

h = 4.5 m

ρF = 1138.7 kg/m3

e = 5. mm

ρS = 4450. kg/m3

E = 8.14 1010 S.I.

ν = 0.33

Figure 3. MESH OF TEST CASE TANK

tic modelisation with gravity presented here, are shown in table

2. The study of these results leads to the following remarks:

1. The x and y-translational modes have zero frequency, as pre-

dicted by the theory.

2. The translational and rotational modes in relation to the z

axis have quasi-zero frequencies. This error appears be-

cause, numerically, the differences between respectively EkB

and E
k1

Σ
, and E

k
g
G

and E
k2

Σ
are not exactly zero.

3. As expected, the rotational motions with respect to x and

y axes have non-zero frequencies. These eigenmodes are

the result of a coupling between the rotation of the stucture

and the first fluid sloshing modes (the first sloshing eigen-

frequencies are summarized in table 3). Figure 4 illustrates

the modal participation of the first 48 sloshing modes to the

ninth mode (0.59 Hz): it highlights the coupling between the

rotational movement of the structure and principally the first

and tenth sloshing modes of the fluid.

4. The other computed eigenfrequencies are equal to the slosh-

ing frequencies because, in this fequency range, the elastic

modes of the structure are not yet excited.

mode freq. (Hz)

1 and 2 trans. x and y 0.

3 and 4 trans. z and rot. z ∼ 0.

5 rot. x + sloshing 1 0.395

6 rot. y + sloshing 2 0.395

7 and 8 sloshing 3 or 4 0.53

9 rot. x + sloshing 1 et 10 0.59

10 rot. y + sloshing 2 et 11 0.59

11 sloshing 5 0.595

12 and 13 sloshing 6 or 7 0.62

· · · · · ·

Table 2. FIRST FREE HYDROELASTIC EIGENFREQUENCIES WITH

GRAVITY

Comparison with a benchmark

We have tried to validate this aspect of our modeling by

comparison with results available in the literature. A benchmark

was proposed by Kreis & Klein in 1991 to study the coupling

between rotational motion of the tank and sloshing of the fluid

(Kreis & Klein, 1991). The proposed model is illustrated by fig-

ure 5. The tank, whose walls (b) except the bottom (A) are rigid,

is suspended from a pivot such as the only rigid body mode of

the structure is the rotational motion with respect to the horizon-

tal axis.
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mode freq. (Hz)

1 and 2 0.41

3 and 4 0.53

5 0.595

6 and 7 0.62

8 and 9 0.70

10 and 11 0.705

12 and 13 0.77

· · · · · ·

Table 3. FIRST SLOSHING EIGENFREQUENCIES

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

Figure 4. SLOSHING MODES PARTICIPATION TO 9th FREE HY-

DROELASTIC MODE

d

A = 1. m

b = 0.5 m

d = 1. m

ρF = 1000. kg/m3

e = 5. cm

ρS = 3000. kg/m3

E = 1010 S.I.

ν = 0.3

Figure 5. KREIS & KLEIN BENCHMARK MODEL

Kreis & Klein’s method is particularly adapted to represent

the rigid mode behaviour of the system by including in the model

explicit rigid degrees of freedom. Moreover, the fluid is con-

sidered through approximations as a subsystem coupled via a

pendulum motion to the structure. The results we obtain with

our modeling on a three-dimensional finite element model are

in good agreement with their results: Kreis & Klein predict an

eigenmode coupling the rotation of the structure and the first

sloshing mode of the fluid for a frequency of 0.99 Hz (see fig-

ure 6) when we find the same eigenmode with a difference of 8%

on the frequency (see figure 7). According to the author’s knowl-

edge, no experimental measurements have been compared to the

numerical simulation results published in this benchmark and it

could be the aim of future works.

Figure 6. EIGENMODE FROM REF. (Kreis & Klein, 1991) (0.99 Hz)

Figure 7. SAME EIGENMODE COMPUTED WITH OUR MODELING

(0.91 Hz)

CONCLUSION
We have shown that the hydroelastic modeling with gravity

presented in previous papers (Schotté & Ohayon, 1999; Schotté

& Ohayon, 2001) can be adapted to study the particular case

of free-free fluid-structure systems by replacing the gravity by

an apparent gravity depending on the system acceleration. The

study of the rigid body modes has highlighted the prime impor-

tance of distinguishing the follower forces from the dead loads in

the external forces applied to the system: depending on whether

dead loads are applied or not to the system, the rotational motion

8



with respect to the gravity axis can or cannot be a zero-frequency

rigid body mode for the system. We have also demonstrated that,

due to the presence of gravity, the rotational motions with re-

spect to horizontal axes are not zero-frequency rigid body modes

but are coupled with the sloshing movements of the fluid free

surface. Some validations of this aspect have been engaged but

future works will consolidate this result.
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