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Non-linear modal interactions in free-edge thin spherical shells:

measurements of a 1:1:2 internal resonance
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This study is devoted to the experimental validation of a theoretical model of large amplitude vibrations of thin
spherical shells described in Thomas et al.[1]. A specific mode coupling due to a 1:1:2 internal resonance between an

axisymmetric mode and two companion asymmetric modes is especially addressed. The structure is forced with a
sinusoidal signal of frequency close to the natural frequency of the axisymmetric mode. The experimental setup, which
allows precise measurements of the vibration amplitudes of the three involved modes, is presented. Experimental

resonance curves showing the amplitude of the modes as functions of the driving frequency are compared to the
theoretical ones. A good qualitative agreement is obtained with the predictions given in the model. The quantitative
discrepancies are discussed and an improvement of the model is proposed.
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1. Introduction

In an earlier paper [1], a theoretical model of a
spherical shell subjected to large amplitude asymmetric

non-linear vibrations was derived, using the analog for
thin shallow shells of von Kármán equations for plates.
This paper presents a series of measurements in order to
validate the theoretical developments of Thomas et al.

[1], in the special case of a 1:1:2 internal resonance,
observed with a harmonic forced excitation.
Asymmetric non-linear vibrations of spherical shells

have received little attention, as opposed to the axi-
symmetric case. Asymmetric modes are of major
importance as they are numerous compared to axisym-

metric ones. Moreover, as non-linear couplings between
any modes are possible, an axisymmetric excitation of
the structure can lead to asymmetric vibrations (see [1]
for example). Experimental investigations on non-linear

vibration of shells are very few. Most of them focus on
one-mode vibrations and on the associated hardening or
softening behavior. Amabili et al. [2,3] experimentally

investigated non-linear vibrations of cylindrical shells,

coupled with fluid or not, and reported other experi-

mental works. On spherical shells, experimental results
on snapthrough behavior are exposed in [4] and a few
qualitative experiments on the special case of a 2:1

internal resonance between two axisymmetric modes
were reported by Yasuda and Kushida [5]. To the
knowledge of the authors, no experiments on multi-
mode asymmetric non-linear response of spherical shells

have been proposed yet. A 1:1 internal resonance has
been studied in the same manner as here in the case of a
circular plate by Thomas et al. [6].

The structure is forced with a harmonic signal of
frequency close to the natural frequency !3 of an axi-
symmetric mode (with one nodal circle and no nodal

diameters, denoted mode 3). Two companion asym-
metric modes (with no nodal circles and 6 nodal
diameters, denoted modes 1 and 2) have their natural
frequencies !1 and !2 close to half that of mode 3 (!3 �
2!1 � 2!2). Due to this particular 1:1:2 internal reso-
nance, exchanges of energy between the directly excited
mode (mode 3) and the two others are observed. The

amplitudes of the three involved modes are measured
and compared to the theoretical results presented in [1].
A qualitative validation is obtained, and a quantitative

comparison leads to obtain the validity domain of the
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theory. Some improvements of the theoretical model are
finally suggested.

2. Theoretical model

This section briefly recalls the theoretical results of

Thomas et al.[1]. The local dynamic partial differential
von Kármán equations are expanded onto the linear
mode basis. The dimensionless transverse displacement
is then written:

wðr,	,tÞ ¼
Xþ1
s¼1

�sðr,	ÞqsðtÞ ð1Þ

where �s denotes the s-th. mode shape and qs its time
evolution. The latter is solution of:

€qsðtÞ þ !2
s qsðtÞ ¼ "q �

Xþ1
p¼1

Xþ1
q¼1

�spqqpðtÞqqðtÞ � 2
s _qsðtÞþ
"

~QsðtÞ
#
� "c

Xþ1
p¼1

Xþ1
q¼1

Xþ1
r¼1

�s
pqrqpðtÞqqðtÞqrðtÞ ð2Þ

where !s, 
s and ~Qs are the dimensionless angular fre-
quency, damping coefficient and excitation function of

the s-th mode, �q and �c are ‘small’ parameters depend-
ing on the geometry of the shell and �spq and �s

pqr are
coefficients that govern the energy exchanges between

modes. Their values are related to the mode shapes
{��}�=p,q,r,s.

A first order solution O("q) to the particular 1:1:2

internal resonance is obtained by retaining in (2) the
quadratic terms and the three equations related to the
three involved modes only. The structure is forced by a

harmonic forcing of angular frequency � at its center,
with � � !3. The steady-state response is then:

wðr,	,tÞ ¼ �1ðr,	Þq1ðtÞ þ�2ðr,	Þq2ðtÞ þ�3ðrÞq3ðtÞ ð3Þ

q1ðtÞ ¼ a1 cos
�

2
t� �1 þ �3

2

� �
, q2ðtÞ ¼

a2 cos
�

2
t� �2 þ �3

2

� �
ð4aÞ

q3ðtÞ ¼ a3 cosð�t� �3Þ ð4bÞ

q1 and q2 are related to the asymmetric modes and q3 to
the axisymmetric. The {as}s=1,2,3 and {�s}s=1,2,3 are the

corresponding amplitudes and phases.
It is shown that three vibratory solutions can be

obtained:
. the SDOF solution (single-degree-of-freedom), with a1
� a2 � 0 and a3 6¼ 0, which is the usual uncoupled
solution;

. the C1 solution, with a1 6¼ 0, a2 � 0, a3 6¼ 0: an energy
transfer occurs between mode 3 and 1;

. the C2 solution, with a1 � 0, a2 6¼ 0, a3 6¼ 0: an energy
transfer occurs between mode 3 and 2.

In the (a3, �)-plane, the SDOF solution is stable outside

an instability region, inside which the coupled solutions
C1 and C2 take birth.

3. Experimental details

The three involved modes and the experimental setup

are shown in Fig. 1. The excitation is located at the
center of the shell, so that only the axisymmetric mode
(mode 3) is directly excited, since the two asymmetric

modes have a node at the center. The non-contact
exciter already used by Thomas et al. [6] has been chosen
here. It is composed of a magnet, glued at the center of

the shell, and driven by a coil fed by a sinusoidal electric
current.
Three transducers (two accelerometer and a laser

vibrometer) are used to measure the time evolutions of
the modes. Accelerometer A (resp. B) is located on a
node of mode 2 (resp. mode 1) so that it measures the
time evolution of mode 1 (resp. mode 2). The laser

vibrometer beam points the center of the shell and thus
it measures mode 3 time evolution only. The three sig-
nals are filtered so that only their fundamental

component (of frequency �/2 for modes 1 and 2 and of
frequency � for mode 3) is retained. This operation also
eliminates the slight contribution of mode 3 to the

accelerometer signals, since points A and B are not
located on the nodal circle of mode 3.
The resonance curves of Fig. 2 are measured by

holding constant the amplitude of the excitation and
measuring the amplitudes of the three filtered transdu-
cers signals, for various frequencies of excitations. The
measured amplitudes are transformed in displacement

amplitudes by assuming that the measured signals are
pure sine waves.
The instability region (Fig. 3) is measured by the

following procedure: each point of its boundary, related
to a particular amplitude of excitation, is obtained by
measuring amplitude a3 and excitation frequency � at

the precise location where the SDOF solution becomes
unstable and coupled solutions arise. This measurement
is realized by sweeping forward and backward in fre-
quency, and is repeated for different forcing amplitudes.

4. Results and conclusions

Three resonance curves, obtained with increasing
forcing levels, are shown on Fig. 2. For low forcing level,

only a SDOF (uncoupled) solution is obtained (case (1),
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Fig. 2. Amplitudes of the three involved modes as functions of the excitation frequency ((’—’): theoretical, (’o’, ’�’): experimental), for

three forcing amplitudes. The gray shaded areas depict the theoretical instability regions and the dash line shows the unstable SDOF

solution. Case (1): 0.1N, SDOF solution only (not shown); case (2): 0.14N, SDOF and C1 solutions; case (3), 0.55N and (4), 1.1N: SDOF,

C1 and C2 solutions.

Fig. 1. Experimental setup and mode shapes of the three involved modes.
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not shown). Increasing the forcing level, a C1 (coupling
with mode 1) solution appears (case (2)). For a larger

forcing, a C2 solution (coupling with mode 2) is
observed, separated from the C1 solution by a SDOF

solution. For an even larger forcing, C1 and C2 solutions
are followed successively. An excellent qualitative

agreement is obtained with the theory, since all those
subtle features are predicted by the model.

A quantitative comparison is obtained by adjusting

the parameters of the model so that theoretical curves fit
the experimental ones. Table 1 gathers the parameters
values identified from various experiments. {fi}i=1,2,3,

{�i}i=1,2,3 denote the natural frequencies and damping
ratios (equivalent to the dimensionless parameters
{!i}i=1,2,3 and {
i}i=1,2,3), K is the ratio between the
theoretical forcing amplitude and the measured current

intensity in the coil, and {�i}i=1,2,3 are coefficients of the

nonlinear coupling terms, related to �spq and �s
pqr in (2)

(see [1]).

Some discrepancies on the parameters’ values are
observed, from one experiment to another. Two main
conclusions on the validity of the model can be

formulated.
. The cubic terms in (2), neglected in the model,

should be taken into account. This conclusion is

motivated by the fact that some resonance curves of
the form of case (1) (i.e. only an uncoupled sdof

solution is obtained) were measured slightly curved
toward the low frequencies, a feature characteristic

of a cubic non-linearity of the softening type for
mode 3. As the correction brought by the cubic
terms is of the same order as the non-resonant

excitations of the other modes of the system (i.e.
{qs}s 6¼1,2,3, is small but non zero), the formalism of
non-linear modes could be used to keep a 3-degrees-

of-freedom model [7].
. Imperfections on the curvature of the shell used in

the experiments have been observed. Even if those

imperfections are slight, some differences with the
theory have been noticed on the location of the
nodal circles of the axisymmetric modes. This could
explain the discrepancies theory/experiments on the

{�i}i=1,2,3. The finite element method should be a
mean of calculating the {�i}i=1,2,3 related to any
shell geometry. This will enable to study non-linear

oscillations of structure with geometric imperfec-
tions and more complex geometries.
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[1] Thomas O, Touzé C, Chaigne A. Non-linear vibrations of

free-edge thin spherical shells: modal interaction rules and

Table 1

Model parameters obtain theoretically by Thomas et al. [1] (first column) and by fitting the theoretical resonance curves to the

experimental ones, for various experiments

Theory Modal anal. Instab. region exp. (1) exp. (2) exp. (3) exp. (4)

(Ref. [1]) (Fig. 3) (Fig. 2) (Fig. 2) (Fig. 2)

K [N/A] – – – 0.92 0.92 0.92 0.92

f1 [Hz] 102 110.1 110.13 – 110.2 110.1 110.1

f2 [Hz] 102 110.86 110.95 – – 110.9 110.86

f3 [Hz] 387 220.05 – 220.16 220.2 220 220.3

�1 [%] – 0.074 0.05 – 0.04 0.06 0.12

�2 [%] – 0.087 0.06 – – 0.075 0.10

�3 [%] – 0.067 – 0.06 0.067 0.067 0.067

�1 30 – 1.0 – 1.1 1 1.1

�2 30 – 0.95 – 0.9 1 0.9

�3 13.8 – – – – 1.3 1.4

�4 13.8 – – – – 1.3 1.1

Fig. 3. Instability regions. (’—’): theoretical, (’o’,’�’):

experimental.

4



1:1:2 internal resonance. International Journal of Solids

and Structures 2004, accepted for publication.

[2] Amabili M, Pellegrini M, Tommesani M. Experiments on

large-amplitude vibrations of a circular cylindrical panel. J

Sound Vib 2003;260(3):537–547.

[3] Amabili M. Theory and experiments for large-amplitude

vibrations of empty and fluid-filled circular cylindrical

shells with imperfections. J Sound Vib 2003;262(4):921–

975.

[4] Evensen HA, Evan-Iwanowsky RM. Dynamic response

and stability of shallow spherical shells subject to time-

dependant loading. 1967;AIAA Journal 5(5):969–976.

[5] Yasuda K, Kushida G. Nonlinear forced oscillations of a

shallow spherical shell. Bull JSME 1984;27(232):2233–

2240.
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