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ABSTRACT 
At low frequency, modal synthesis is usually used to solve 

the vibrational fluid-structure interaction problem. The modal 
technique application for elasto-poro-acoustic complex 
structures requires a modal description of the poroelastic 
vibroacoustic behaviour. Some recent works concerning the 
application of modal techniques for the displacement pressure 
equation of the generalized Biot’s model were published. Dazel 
proposes a modal decomposition based on the use of complex 
modes. This work consists in projecting the poroelastic system 
on a truncated basis of damped and coupled modes. In the 
mode calculation, the author takes into account fluid-structure 
interaction, viscous and thermal dissipations but structural 
damping is neglected. 

This paper presents a modal approach allowing to reduce 
the size of the poroelastic matrix system and to predict more 
effectively the porous material vibroacoustic behaviour. 
Starting from Dazel’s works, this modal approach is based on 
complex modes, modal synthesis, modal projection and modal 
superposition techniques. The originality of this paper is to take 
into account the porous material structural damping in the 
poroelastic mode calculation. 

INTRODUCTION 
The mechanical structures are subjected to a broad 

spectrum of dynamic excitation, for example the aerostructures 
can be subjected to acoustic excitations such as the jet noise, 
the propeller noise and the boundary layer turbulences, and also 
to mechanical excitations such as the propellers, engines and 
transmission system vibrations …. To reduce the vibrations and 
the acoustic radiation of these structures, various solutions can 
be planned. Among those, active techniques consist to measure, 
analyze and cancel the noise by generating a complementary 
noise in phase opposition. The passive techniques consist in 
placing between the noise source and the receiver a dissipative 
and damping complex structure. Finally active/passive 
techniques known as hybrid can also be considered.  

The development of powerful numerical tools allowing to 
predict the vibroacoustic behaviour of these complex structures 
is necessary in order to increase their effectiveness. The elasto-
poro-acoustic or “e-p-a” complex structures are an assembly of 
elastic, poroelastic and acoustic substructures. This 
configuration is largely used in the transportation and building 
industries to fight against the industrial noises. The low mass 
(porosity) and the capacity to dissipate the mechanical energy 
confer on porous materials many advantages. At low frequency, 
modal synthesis is usually used to solve the vibrational fluid-
structure interaction problem. The modal technique application 
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for e-p-a complex structures needs a modal description of the 
poroelastic vibroacoustic behaviour. 

Some recent works concerning the application of modal 
techniques for the displacement pressure equation of the 
generalized Biot’s model were published. Sgard and Atalla 
propose a selective modal decomposition in term of undamped 
and uncoupled real modes. The obtained modes take into 
account neither the coupling nor the dissipations. Then, the 
problem parameters no longer depend on frequency. Dazel 
proposes a modal decomposition based on the use of complex 
modes. This work consists in projecting the poroelastic system 
on a truncated basis of damped and coupled modes. In the 
mode calculation, the author takes into account fluid-structure 
interaction, viscous and thermal dissipations but structural 
damping dissipation is neglected. 

This paper presents a modal approach allowing to reduce 
the size of the poroelastic matrix system and to predict more 
effectively the porous material vibroacoustic behaviour. 
Starting from Dazel’s works, this modal approach is based on 
complex modes, modal synthesis, modal projection and modal 
superposition techniques. The originality of this paper is to take 
into account the porous material structural damping in the 
poroelastic mode calculation. Section 1 presents the finite 
element equation related to poroelastic problems and 
vibroacoustic response calculation by direct method. Section 2 
is devoted to the description and validation of the modal 
approach applied to the poroelastic problems including 
structural damping. Section 3 presents work’s conclusions and 
future works.  

NOTATIONS 
Throughout this paper, we use double and single underbars 

letters for tensor and vector notations. The overbar indicates the 
associated conjugate complex value. Dot is used to denote the 
first time derivation. The tilde symbol indicates that the 
associated quantity is complex. We use boldface capital letters 

for matricial notations. The symbols ,f x∇ ∇  and ( )DIV σ
denote, respectively, the scalar function gradient, the vectorial 
and tensorial quantity divergence. Prim is used to denote the 
matrix frequency dependence. 

THE POROELASTIC PROBLEM 
Biot [1] proposed to use the continuum mechanics 

formalism to model the porous material like that an equivalent 
homogeneous medium (the constitutive material is considered 
as homogeneous and isotropic). The poroelastic mediums 
considered in the Biot’s theory are supposed to be fluid-
saturated, continuums and homogeneous on the macroscopic 
scale. The small perturbation assumption of the elastic isotropic 
matrix (solid phase) and fluid ensure the linearity of the 
mechanical behaviour. The diffusion phenomena on the 
heterogeneities are neglected. The pores in the element are 
inter-connected between them and with outside. In agreement 
with Burridge and Keller’s works [2], the compressible and 
slightly viscous fluid in tubular permanent flow is considered as 
no viscous on the macroscopic scale. Finally, the viscous and 
thermal effects are regarded as independent according to 
Zwikker and Kosten [3]. The Biot’s theory is placed on the 
macroscopic scale and supposes the existence of a 
representative elementary volume which allows to regard the 

poroelastic medium on the macroscopic scale as the 
superposition in time and space of two coupled continuum 
mediums. In the generalized Biot’s model proposed by Allard 
[4], the structural damping dissipation is modeled by a 
frequency independent factor, the model suggested in this paper 
allows to take into account the frequency dependence of the 
porous material structural damping. Consequently, the real and 

frequency independent shear modulus N  (this latter is 

equivalent to the second Lamé’s coefficient µ  related to 

elasticity theory) becomes complex and frequency dependent, 
such as: 

( )1 SN N jη= +  (1) 

where j  is the imaginary number or imaginary unit 

defined as the root of 1−  (i.e. 1j = − ) and Sη  is the 

frequency dependent structural damping. Consequently, the real 
and frequency independent in vacuum stress tensor of the 

porous material solid phase 
0Sσ  proposed by Atalla and Al. [5] 

becomes complex and frequency dependent, this latter takes the 
following form: 
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 where dI  is the identity tensor such as 3d = , Φ  is the 

porous material porosity, 
Sε  is the partial strain tensor of the 

porous material solid phase and ( ),
S

u x t  is the average

displacement of the porous material solid phase. The complex 

and frequency dependent poroelastic coefficients A , Q  and R  

are according to Biot and Willis [6] of the following form: 

( )2
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, ( )1 FQ K= − Φ  (3) 
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where A  is equivalent to the first Lamé’s coefficient λ  

related to the elasticity theory, R  corresponds to the bulk 
modulus of the fluid occupying a Φ  fraction of the porous 

volume, Q  corresponds to the elastic coupling coefficient, M

is the complex and frequency dependent Biot’s module and ν  

is the Poisson's ratio, where FK  is the complex and frequency 

dependent bulk modulus introduced by Champoux and Allard 
[7] such as: 
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where 'G  is the complex and frequency dependent thermal 

damping function, THω  the thermal characteristic frequency, 

Pr  the Prandtl’s number, 'Λ  the thermal characteristic length, 

0P  the atmospheric pressure and γ  the air specific heat ratio.  

First, one considers the displacement pressure equations of 
the generalized Biot’s model, proposed by Atalla and Al. in 
order to highlight the associated matrix system dissymmetry.  

We consider the poroelastic linear vibrations around a 
static balance configuration regarded as natural state (non 
prestressed). The assumption of the small perturbations allows 
to confuse the Lagrangian and Eulerian co-ordinates, let us 
recall that this approximation is not valid any more when the 
initial configuration is prestressed. Figure 1 presents the studied 

system geometrical configuration. The index f  indicates that 

boundary conditions in forces (Neumann) are applied on the 

surface-coupling pΣ . We suppose an unit amplitude harmonic 

external surface load ( ),ext
F x t  acting on the surface-coupling

p

fΣ  defined by ( ) ( ) ( ), cosext ext
F x t F x tω=  and we suppose

the associated solutions such as ( ) ( ) ( ), cosS S
u x t u x tω=  and

( ) ( ) ( ), cosp x t p x tω= .

The system 

Let 3  be the physical space related to the cartesian 

reference system and x  be the geometrical point of 3 . Let 
pΩ  be the 3  bounded domain occupied by the poroelastic 

medium, p p p

f∂Ω = Σ ∪ Σ  its boundary and pn  its outward unit 

normal. We define ( ),
S

u x t  and ( ),p x t  the porous material

solid phase displacement and fluid phase interstitial pressure of 

a particle located in p
M ∈Ω  at the moment t . One defines by 

1 2 3, ,x x x  the M  co-ordinates. 

The boundary value problem  
The poroelastic boundary value problem (for 0ω ≠ ) is 

defined by the following equation system: 

( )( )( ) ( ) ( )0 2 0
S S S

DIV u x u x p xσ ω ρ γ+ + ∇ =         in pΩ    (7)                                                 

( ) ( ) ( )2 222 22

2
0

S
p x p x u x

R

ρ ρ γω ω∆ + − ∇ =
Φ

     in pΩ    (8) 

( )( ) ( )1
SS p p ext p

u x n n F nσ ⋅ = − Φ ⋅   on p

fΣ    (9) 

( ) p p ext p

dp x I n n F n⋅ = − ⋅    on p

fΣ  (10) 

The complex and frequency dependent factors ρ , γ  are 

defined by the following relations: 
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Figure 1: The studied system geometrical 
configuration. 

where the ijρ  are the complex and frequency dependent 

effective densities of the generalized Biot’s model such as: 

11 11

b
jρ ρ
ω

= − , 22 22

b
jρ ρ
ω

= −  (12) 

12 12

b
jρ ρ
ω

= +    (13) 

where b  is the complex and frequency dependent viscous 

damping coefficient introduced by Johnson and al. [8] defined 
by the following relations: 

2b Gσ= Φ , 1
v

G j
ω
ω

= +     (14) 

2 2 2

24
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Φ Λ=   (15) 

where G  is the complex and frequency dependent viscous 

damping function, vω  the viscous characteristic frequency, σ  

the air flow resistivity, Λ   the viscous characteristic length and 

airη  the air dynamic viscosity. 

The equations (7) and (8) are the displacement pressure 
form of the poroelasticity equations including the structural 
damping frequency dependence. This mixed form is a 
traditional fluid-structure coupling form. The first two terms of 
the equation (7) are associated to the in vacuum solid phase 
dynamic behaviour, whereas the first two terms of the equation 
(8) are associated to the fluid behaviour when the matrix is 
motionless or rigid. The equation (9) translated the normal 

stress continuity on the surface-coupling p

fΣ  between external 

and the poroelastic solid phase. The equation (10) translated the 

normal stress continuity on the surface-coupling  p

fΣ   between 

external and the poroelastic fluid phase. One defines the system 
S constituted by the equations (7) to (10). 

The variational formulation and discretization 
To build the variational form of the poroelastic boundary 

value problem we apply the test function method. This method 
consists in multiplying the equations (7) and (8) respectively by 

a vector field of virtual displacement ( )S
u xδ  and a scalar field
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of virtual pressure ( )p xδ , integrating the obtained result on

the pΩ  domain and applying the Green formula in taking into 

account the equations (9) to (10). Let S
u

C  and pC  be the test 

function spaces of the sufficiently regular and cinematically 

admissible ( )S
u xδ  and ( )p xδ  functions.

The Ritz-Galerkin’s method allows to search an 
approximate solution of the S system associated variational 

problem in a vectorial subspace ,,S S p Npu Nu
C C× . Let us consider 

a finite dimension subspace ,x Nx xC C⊂  with 1xN ≥  and a basis 

of it subspace  { }1,...,je j Nx= = . A generic element of ,x NxC

is of the following form: 

( )
1

ˆ
Nx

j j

j

u x eξ
=

=∑   (16) 

The satisfaction of the variational properties in the 

vectorial subspace ,x NxC  leads to a matrix system. In practice 

one selects the interpolation basis resulting from the finite 

element method. Then, ( )û x  defines the approximate vector

field value in any point of the finite element ( )
1... x

i i k
E

=
, with 

xk  the element number and jξ  defines the vectorial field nodal 

values of the associated finite element which will be noted Nu  

(degrees of freedom or d.o.f.). The retained interpolation 
functions in this paper are linear. The discretization of the S 
associated variational form gives the following matrix system:  

1

2

S ext
N

ext
N

u F

p F

   
 ′ =         
A   (17) 

with 

2p pω     ′ ′ ′= −    A X Y   (18) 

0

S S

p

F

   ′ ′−     ′ =    ′   

K C

X

K

    (19) 

0S

p

F F

  ′   ′ =      ′ ′    

M

Y

C M

        (20) 

where the complex and frequency dependent matrices are 
defined by: 

S ′ K  is the S S
u u

N N×  symmetric porous material solid 

phase stiffness matrix, 
S ′ M  is the S S

u u
N N×  symmetric porous material solid 

phase mass matrix, 
S   ′ ′=   C C  is the S pu

N N×  porous material volume-

coupling matrix, 

F ′ K  is the p pN N×  symmetric porous material fluid

phase kinetic energy matrix, 
F ′ M  is the p pN N×  symmetric porous material fluid

phase compression energy matrix, 
T

F   ′ ′=   C C  is the Sp u
N N×  porous material volume-

coupling matrix, 

1

ext
F  is the S

u
N  external surface load part acting on the 

solid phase porous material, 

2

extF  is the pN  external surface load part acting on the 

fluid phase porous material, 

and  ′ A  is the ( ) ( )S Sp pu u
N N N N+ × +  dissymmetric 

complex and frequency dependent poroelastic matrix. 

In order to make the matrix  ′ A  in a symmetric form,

first of all let us carry out the change of variable proposed by 

Kehr-Candille [9]: ( ) ( )p x j xω ϕ=  with 0ω ≠ . It should be

stressed that ( ) ( )F
u x xϕ≠ ∇  because the fluid is rotational.

After this change of variable, the poroelastic matrix  ′ A  takes

the following form: 

2p p p
jω ω      ′ ′ ′ ′= + −      A K C M      (21) 

where 
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K

K

K

        (22) 

0

0

p

T

  ′−    ′ =    ′   

C

C

C

 (23) 

0

0

S

p

F

  ′   ′ =    ′   

M

M

M

  (24) 

Finally the poroelastic matrix  ′ A  can be put in a

symmetric form by multiplying the equations relating to the 
poroelastic solid phase by 1− . The final obtained matrix 
system becomes of the following form: 

1

2

S ext
N

ext
N

u F

Fϕ
   − ′ =     ′    

A       (25) 

with 

( ) ( )

( ) ( )

2

2

S S

T
F F

j j

j j

ω ω

ω ω

     ′ ′ ′− −       ′ =        ′ ′ ′+      

K M C
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C K M
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where  ′ A  is now symmetric.

The vibroacoustic response calculation by direct 
method 

To calculate the direct vibroacoustic response of a 
poroelastic medium one searches for each frequency the 
solutions of the complex and linear system defined by the 
equation (25). Let us quote for example the direct method 
known as Gauss’s elimination witch allows to solve the linear 
systems. The purpose of this last be to transform the system 

ˆx bA =  into an equivalent system (i.e. having the same 

solution) having the following form ˆu bU = , where U  is a 

higher triangular matrix and b̂  is a suitably modified second 

member. Then, this last system can be solved by a retrograde 
substitution method. We point out the method allowing to 
calculate the poroelastic nodal displacement and nodal pressure 

by direct method. We express the matrix  ′ A  in the following

form: 

S S S

S

u u u

u

ϕ

ϕϕϕ

 ′ ′
  ′ =   ′ ′
 

A A

A

A A

   (27) 

and we consider the following problem, find S

Nu  and Nϕ  such 

as: 

1

2

S S S

S

S ext
u u u N

ext
N

u

u F

F

ϕ

ϕϕϕ
ϕ

 ′ ′    −  =     ′′ ′      

A A

A A

 (28) 

the obtained solutions are of the following form: 

( )1 1 1

1 2S S S

ext ext

N u u u
F F

ϕ
ϕ − − −′ ′ ′ ′= +B A A   (29) 

( )1

1S S S

S ext

N Nu u u
u F

ϕ
ϕ−′ ′= − +A A   (30) 

N Np jω ϕ=   (31) 

where 

1 1
S S S Su u u uϕϕϕ ϕ

− −′ ′ ′ ′ ′= −B A A A A    (32) 

The “original” change of variable proposed by Kehr-
Candille for the generalized Biot’s model was validated for 
poroelastic and e-p-a complex structure problems. The referring 
works concerning validation step are the Debergue’s works 
[10]. In this works, a validation of a computer code 
development based on the displacement pressure mixed form 
for the e-p-a systems is realized, numerical and experimental 
results are compared. The use of poroelasticity equation mixed 
forms allows to reduce the poroelastic matrix system size since, 
within the framework of the finite element method, only four 
degrees of freedom are necessary, three for the solid phase and 

one for the fluid phase. However although one passes from six 
degrees of freedom for the initial displacement form to four 
degrees of freedom for the mixed forms, the obtained 
poroelastic matrix systems remain of important size. To reduce 
efficiently the computing time and CPU memory necessary to 
the poroelastic system direct resolution, the development of 
powerful methods proves to be necessary. 

In the following section, we present a modal approach 
allowing to solve the poroelastic problems effectively.  

MODAL APPROACH 
Some recent works concerning the application of modal 

techniques for the displacement pressure equation of the 
generalized Biot’s model was published. Sgard and Atalla [11] 
propose a selective modal decomposition in term of undamped 
and uncoupled real modes. The obtained modes take into 
account neither the coupling nor the dissipations. Then, the 
problem parameters no longer depend on frequency. Dazel [12] 
proposes a modal decomposition based on the use of complex 
modes [13]. This work consists in projecting the poroelastic 
system on a truncated basis of damped and coupled modes. 
Although these works are very complete, the structural 
damping dissipation is neglected. Indeed the Dazel’s 

developments suppose 0Sη = .  

This section presents a modal approach allowing to reduce 
the poroelastic matrix system size and to predict more 
effectively the porous material vibroacoustic behaviour. These 
developments [14] are inspired by Dazel’s works and were 
carried out starting from the poroelasticity equation “original” 
form of the generalized Biot’s model proposed by Kehr-
Candille and presented in the preceding section. This modal 
approach is based on complex modes, modal synthesis, modal 
projection and modal superposition techniques. The originality 
of this work is to take into account the porous material 
structural damping in the poroelastic mode calculation. 

The expanded eigenvalue problem establishing 
The free problem associated to the matrix system (25) is 

defined by: 

0

0

S

N

N

u

ϕ
    ′ =         

A (33) 

It is noticed that each complex and frequency dependent 
poroelastic matrix is the product of a complex and frequency 
dependent scalar function by a real matrix. The low frequency 
observation of the multiplicative coefficients behaviour 

( )1 SN jη+ , γ , ρ ,
22

1

ρ
 and 

1

M
 has allowed to highlight the 

function regularity, these last could be approached by an n

order Taylor developments with real coefficient such as: 

( ) ( ) ( )( )1

0

n
i n

i

i

f j f j jω ω ω +

=

= +Ο∑              (34) 

For each matrices S ′ K , S ′ M , F ′ K , F ′ M  and

 ′ C  we define  the following developments:
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( ) ( )( )1

0

n
i nS S S

i

i

k j jω ω +

=

   ′ = +Ο   ∑K K                   (35) 

( ) ( )( )1

0

n
i nS S S

i

i

m j jω ω +

=

   ′ = +Ο   ∑M M                      (36) 

( ) ( )( )1

0

n
i nF F F

i

i

k j jω ω +

=

   ′ = +Ο   ∑K K                        (37) 

( ) ( )( )1

0

n
i nF F F

i

i

m j jω ω +

=

   ′ = +Ο   ∑M M                        (38) 

( ) [ ] ( )( )1

0

n
i n

i

i

c j jω ω +

=

 ′ = +Ο  ∑C C                   (39) 

where , , , ,S S F F

i i i i ik m k m c  are the Taylor development real 

coefficients respectively of the following complex and 

frequency dependent coefficients ( )1 SN jη+ , ρ , 
1

M
, 

22

1

ρ
and γ . The real and independent frequency untilde matrices are 

defined by: 

( )1S S

SN jη   ′ = +   K K  (40) 

S Sρ   ′ =   M M        (41) 

1F F

M
   ′ =   K K  (42) 

22

1F F

ρ
   ′ =   M M  (43) 

γ ′ =    C C     (44) 

Figures 2 to 6 present the frequency evolutions of the real 

and imaginary parts of the ( )1 SN jη+ , γ , ρ ,
22

1

ρ
 and 

1

M

coefficients for nine porous material types (BK-1, BFM, FM-2, 
FM-3, FM-4, RGW-1, SC-1, UGW-3 and XFM) in the study 
frequency band (i.e. 0 to 1000 hertz). These last allow to justify 
the regularity assumption of the matrix multiplicative 
coefficient associated functions. 

Then, by taking into account the equations (35) to (39), the 
free problem defined by equation (33) can, be written itself in 
the following form: 

( )
0

0

0

Sn
i N

i n

Ni

u
j Rω

ϕ=

    ′+ =                   
∑ A   (45) 

where n  is the jω  power development order and 
nR′    is 

the complex and ω  dependent matrix corresponding to the 

remainder including the Taylor development neglected terms.  
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Figure 2: Frequency evolutions of the ( )1 SN jη+

coefficient associated with the S ′ K  matrix.
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Figure 3: Frequency evolutions of the ρ  coefficient 

associated with the S ′ M  matrix.

The real and symmetric ( ) ( )u uN N N Nϕ ϕ+ × +  dimension 

i  A  matrices are defined by: 

[ ]
[ ]

0

0

0

0

0

S S

F F

k

k

  −   =       

K

A

K

  (46) 

[ ]
[ ]

[ ]
1 0

1

0 1

S S

T F F

k c

c k

  −   =
     

K C

A

C K

  (47) 
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[ ]
[ ]

[ ]
0 1

2

1 2 0

S S

T F F F F

m c

c k m

  −   =
    +     

M C

A

C K M

  (48) 

[ ]
[ ]

3 1 2

3

2 3 1

S S S S

T F F F F

k m c

c k m

    − −    =       +     

K M C

A

C K M

   (49) 

2i even∀ ≥

[ ]
[ ]

2 1

1 2

S S

i i

i T F F F F

i i i

m c

c k m

− −

− −

  −   =       +     

M C

A

C K M

  (50) 

2i odd∀ ≥

[ ]
[ ]

2 1

1 2

S S S S

i i i

i T F F F F

i i i

k m c

c k m

− −

− −

    − −    =       +     

K M C

A

C K M

   (51) 

The construction of the expanded eigenvalue problem is 

based on the use of Duncan transformation. We define the 1n −  

order expanded Duncan transformation the following 
application: 

( )

( )

1n p

p

p

p

j u

U
j u

u

ω

ω

− 
 
 =  
 
  

,  with 

S

Np

N

u
u

ϕ
 

=  
  

  (52) 

We define the expanded eigenvalue problem (in neglecting 
the remainder) by the following matrix system: 

[ ] [ ]1 2

0

0

p pU s U
 

+ =  
 

B B      (53) 

with s ∈  and [ ] [ ]1 2,B B  are the real symmetric 

( ) ( )u un N N n N Nϕ ϕ+ × +  dimension matrices defined by: 

[ ]

[ ] [ ]
[ ]

[ ] [ ]
[ ] [ ] [ ]

1

1

1 2

0

0 0

0

0

0 0 0

n

n

n n

−

−

 −   −   
 =
 
− − −       
     

A

A

B

A A A

A

 (54) 

[ ]

[ ] [ ]

[ ] [ ]
[ ] [ ]

1

2

2

1 2 1

0 0

0

n

d n

n

n n

−

−

    
       

 =
 

   
         

A

A A

B

A A

A A A A

  (55) 
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Figure 4: Frequency evolutions of the 
1

M
 coefficient 

associated with the F ′ K  matrix.
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Figure 5: Frequency evolutions of the 
22

1

ρ
 coefficient 

associated with the F ′ M  matrix. 

We define the poroelastic complex modes as the solutions 

{ }, p
s Ψ  of the following ( )un N Nϕ+  dimension expanded

eigenvalue problem: 

[ ] [ ]1 2

0

0

p p
s

 
Ψ + Ψ = 

 
B B     (56) 

If { }, p

i is Ψ  and { }, p

j js Ψ  are two eigenvalue problem 

solutions, the application of the principle of orthogonality gives 
the following equations: 

7



[ ]1

pT p

j i i ijs δΨ Ψ = −B              (57)  

[ ]2

pT p

j i ijδΨ Ψ =B  (58) 

Where ijδ  is the Kronecker delta function (i.e. 0ijδ =  for 

i j≠  or 1ijδ =  for i j= ). 

If { }, p
s Ψ  is a complex mode, { }, p

s Ψ  and the conjugate

{ }, p
s Ψ  are two eigenvalue problem solutions, then the

application of the conjugation principle gives the following 
equations: 

[ ] [ ]1 2

0

0

p p
s

 
Ψ + Ψ = 

 
B B  (59) 

[ ] [ ]1 2

0

0

p p
s

 
Ψ + Ψ = 

 
B B  (60) 

Taking into account the fact that the i  A  matrix is 

invertible and that the [ ] [ ]1 2,B B  matrices are symmetric, the

eigenvalue calculation can be carried out using traditional 
eigenvalue search algorithms. 

The poroelastic modes 
The Dazel’s works made it possible to define a selection 

criterion allowing to retain only the representative poroelastic 
modes. Among these modes, one distinguishes two categories. 
The first corresponds to the modes with eigenvalues having a 
no null imaginary part and the second corresponds to the modes 
with eigenvalues having a null imaginary part. The first 
category is called complex modes and the second category is 
called real modes. First, We consider the complex modes with 
complex eigenvalues having strictly negative real and positive 
imaginary parts. We define the complex eigenvalues by 

s jα ω= − +  with  0α >  and 0ω > . Then, we consider the 

real modes with strictly negative real eigenvalues. We define 

the real eigenvalue by s α= −  with 0α > .  

The retained complex modes for the modal superposition 
will be the modes such as: 

cω ω< , cξ ξ<  wih 
αξ
ω

=  and c
c

c

αξ
ω

=  (61) 

The real modes retained for the modal superposition will 
be the modes such as: 

cα α<        (62) 

with cξ , cω  and cα  the limit values imposed by the 

criterion. cω  corresponds to the excitation spectrum maximum 

frequency and cξ  depends on the material properties, boundary 

conditions and excitation type. 
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Figure 6: Frequency evolutions of the γ  coefficient 

associated with the  ′ C  matrix.

The vibroacoustic response calculation by modal 
synthesis method 

To calculate the vibroacoustic response of the poroelastic 
structure subjected to the harmonic external surface load 

( ),ext
F x t  by modal projection and modal superposition we

suppose the existence of an eigenvector basis. The latter is 

constituted by the eigenvectors p

iΨ  associated to the r  first 

retained eigenvalues. First of all we rewrite the expanded 
eigenvalue problem (53) to which we add to the second 

member relating to the ( ),ext
F x t  associated terms, the

equation takes the following form: 

[ ] [ ]1 2

1

2

0

0
p p

ext

ext

U j U

F

F

ω

 
 
 
 + =
 − 
 ′ 

B B        (63) 

For more readable reading one note: 

{ }1 20 0
T

ext ext ext
G F F ′= −   (64) 

Now we project the vector p
U  on the r  first modes 

truncated basis p

iΨ (Ritz-Galerkin’s method). Then the 

projection is defined by the following equation: 

1

r

p p p

i i

i

U q q
=

 = Ψ = Ψ ∑  (65) 
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where 1

p p p

r
   Ψ = Ψ Ψ     is the truncated modal matrix

constituted by the r  eigenvectors p

iΨ  and { }1

T

rq q q=  is 

the modal co-ordinate vector (or generalized co-ordinate 
vector). 

While replacing p
U  by his development defined by the 

preceding equation in the equation (63) and by projecting the 

result on the truncated basis p

iΨ , we obtain the following 

equation: 

[ ] [ ]1 2

pT p pT p pT ext

i i i i i i i
q j q GωΨ Ψ + Ψ Ψ =ΨB B  (66) 

The uncoupled equations allowing to calculate each iq

component are of the following form: 

[ ] [ ]( ) 1

1 2

pT p pT p pT ext

i i i i i iq j Gω
−

= Ψ Ψ + Ψ Ψ ΨB B    (67) 

Finally, we can recompose the vibroacoustic response: 

( )
1

r

p p pT ext p p pT ext p

i i i i i i

i

U G G
=

= Π Ψ Ψ +Π Ψ Ψ∑   (68) 

where 

[ ] [ ]( ) 1

1 2

p pT p pT p

i i i i ijω
−

Π = Ψ Ψ + Ψ ΨB B  (69) 

[ ] [ ]( ) 1

1 2

p pT p pT p

i i i i ijω
−

Π = Ψ Ψ + Ψ ΨB B  (70) 

Numerical implementation and validation 
The coupling modeling between the poroelastic material 

solid and fluid phases is not “standard” since contrary to the 
“traditional” fluid-structure interaction problems (example: 
elasto-acoustic …) for which interaction acts on a surface-
coupling, poroelastic interaction acts on a volume-coupling. 
This characteristic comes owing to the fact that the physical 
quantities observed on a macroscopic scale are averaged 
quantities on a representative elementary volume. Moreover, 
porous material constitutive matrices are complex and 
frequency dependent. 

The stiffness, mass and elasto-acoustic, elasto-poroelastic, 
acousto-poroelastic, poroelastic-poroelastic surface-coupling 
matrices can be calculated by the NASTRAN® software. 
However, the calculation of the poroelastic volume-coupling 
matrix is not possible. 

To calculate this matrix, a FORTRAN program has been 
developed. The matrix is read and inserted in the matrix system 
by DMAP developments (NASTRAN® internal programming 
language).  

To validate the modal approach, a MATLAB® program 
has been developed. This last allows to calculate the poroelastic 
vibroacoustic behaviour by direct integration and modal 
superposition. The porous material structural damping 

modeling Sη  allows to calculate the vibroacoustic behaviour by 

considering this last null, constant or frequency dependent.  

Figure 7: Geometrical configuration of the studied 
system. 

Properties Material : RGW-1

Porosity, Φ  0.94 

Flow resistivity, σ  ( 4 1
kNm s

− − ) 40 

Tortuosity, α  1.06 

Viscous characteristic length, Λ  ( m ) 656 10−×

Thermal characteristic length, ′Λ  ( m ) 6110 10−×  

Matrix density, Sρ  ( 3
kgm

− ) 130 

In vacuum shear modulus, N  ( kPa ) 32.2 10×  

Poisson’s factor, ν  0 

Structural damping, Sη  0.1 

Table 1: RGW-1 porous material properties. 

First of all we present the configuration used to validate the 
developed program. Then we present the comparative study 
results, calculated from direct integration, between case with 
structural damping and case without structural damping. 
Finally, we present the comparative study results, calculated for 

0.1Sη =  and for 3

S af bfη = + , between direct integration and 

modal superposition methods, where a  and b  are two scalar 

constants such as 55.10a −=  and 105.10b −= , f  is the 

frequency. 
The considered system consists of a porous material, 

supposed one-dimensional, free on the A  boundary, stuck on 
the B  rigid boundary and guided on the C  boundaries. Figure 

7 presents the studied system configuration. The properties of 
porous material are gathered in table 1. 

Only the corresponding force value is imposed on the 
porous material solid phase degrees of freedom. 

We suppose the fictitious excitation associated with extG

acting only on the porous material solid phase such as: 

{ }10 0 0
T

ext ext
G F= −             (71) 

z
xO

y
Mechanical 

excitation

Porous material

Rigid wall

C
A

B

z
xO

y
Mechanical 

excitation

Porous material

Rigid wall

C
A

B
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The HEXA poroelastic element number allowing to check 
the convergence criterion in the study frequency band (i.e. 0 to 
1000 hertz) is 6. The reference poroelastic element used is an 
eight-node parallelepiped and the interpolations functions are 
linear. 

In this study, the approximation orders of the matrices 
multiplicative coefficients associated functions are close to 3. 

In first step, we compare the nodal displacement (eleventh 
d.o.f. on the surface A) and nodal pressure (thirty-seventh 
d.o.f.), calculated by direct method, between with and without 

structural damping for 0.1Sη =  and 3

S af bfη = + . These 

results are presented Figures 8 and 9.   
Figures 8 and 9 illustrate the structural damping influence 

on nodal displacement and the nodal interstitial pressure 

respectively for 0.1Sη =  and 3

S af bfη = + . The comparison 

between the direct solutions shows logically that the peaks are 
pronounced in the structural damping neglected case. We do 
not note a frequency shift of the response peaks. 

In second step we compare for 0.1Sη =  and 3

S af bfη = +
the nodal displacement (eleventh d.o.f. on the surface A) and 
nodal pressure (thirty-seventh d.o.f.) obtained by direct 
integration and modal superposition. These results are 
presented Figure 10 and 11. 

Figures 10 and 11 illustrate the reduction obtained using 
the modal synthesis method. We realize the modal 
superposition on a truncated modal basis constituted by one real 
mode and the first complex modes. We selected 5 pairs of 

complex modes for 0.1Sη =  and 4 pairs of complex modes for 

3

S af bfη = + . The number of degree of freedom or d.o.f. is for 

0.1Sη =  of 11 (10 complex modes and 1 real mode) and for 

3

S af bfη = +  of 9 (8 complex modes and 1 real mode). The 

size of the initial system is of 52 d.o.f..  

CONCLUSIONS AND FUTURE WORKS 
This paper has presented a modal analysis approach based 

on modal synthesis and complex modes to reduce the size of 
the poroelastic matrix system and to predict more effectively 
the vibroacoustic behaviour of porous material in low 
frequency domain. This latter has the originality to include the 
structural damping in the poroelastic mode calculation and 
consists in projecting the poroelastic system on a truncated 
basis of damped and coupled modes to reduce the poroelastic 
problem size. 

First to improve the method, a validation step will be 
realized for three-dimensional structures.  

Moreover, the influence of the system configuration 
(constitutive material, boundary conditions and excitation) on 
the method as on the poroelastic modes selection criterion will 
be studied. If the selection criterion remains valid then the 
automation of the modes selection process could be realized. 

Finally, one will be able to couple this method with the 
traditional modal synthesis methods in order to solve 
effectively elasto-poro-acoustic problems by modal techniques. 
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Figure 8: Nodal displacement and nodal pressure 
calculation by direct method with (star curve) and 

without (circle curve) structural damping for 0.1Sη = . 
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Figure 9: Nodal displacement and nodal pressure 
calculation by direct method with (star curve) and 

without (circle curve) structural damping for 
3

S af bfη = + . 
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Figure 10: Nodal displacement and nodal pressure 
calculation by modal superposition (star curve) and 

direct integration (circle curve) for 0.1Sη = . 
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Figure 11: Nodal displacement and nodal pressure 
calculation by modal superposition (star curve) and 

direct integration (circle curve) for 3

S af bfη = + . 
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