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ABSTRACT

Finite element-based reduced order methods are presented

with application to the prediction of rotating mistuned bladed

disk forced response. These methods have already been applied

to tuned non-rotating models having cyclic symmetry. The aim

is to reduce significantly the number of interface co-ordinates,

which can be very important in classical component mode syn-

thesis methods. The approach is based on the use of the inter-

face modes which result from a static condensation of the whole

structure on the whole interface. A first implementation of this

procedure and numerical results are presented.

INTRODUCTION

Turbomachine blades are very sensitive to small variations

on blade to blade properties. These variations, called mistuning,

result from manufacturing tolerances or inner deviations of mate-

rial properties, and may appear randomly around all the bladed-

disk assemblies. The presence of mistuning has significant con-

sequences on the behaviour of the entire structure. One partic-

ular consequence is the apparition of a severe mode localisation

phenomenon [1–3], but it would also has a beneficial stabilizing

effect in a flutter situation [4, 5].

A widely used approach to study mistuned models consists

in finite element-based reduced order methods. As an advantage,

they are very appropriated to calculate the response of a struc-

ture with acceptable computational costs, and they can capture

the true behavior of a real mistuned bladed disk, contrary to the

simple analytical models used before.

We can separate these latest methods in two groups. The

first group contains all methods based on the use of a subset of

nominal modes [6, 7], while the second group gathers methods

based on component mode synthesis (CMS) [7, 8]. The study

presented in this paper is in this last line.

All CMS methods aim at performing the dynamic analysis

of structures by breaking them into substructures. Then, these

substructures, also named components, are represented by their

modes (in the sense of Ritz vectors), which contains the vibra-

tion normal modes, the static modes, the interface modes, etc.

Depending on the nature of the interface, four large groups of

methods have been developped : fixed interface [9, 10], free in-

terface [11, 12], hybrid interface [13] and loaded interface meth-

ods [14], and the coupling of the differents substructures is gen-

eraly performed through the interface displacements.

As part of the tuned structure analysis, Henry [15] combined

the cyclic symmetry reduction [16] with Craig and Bampton’s

method, and shown the efficiency of this procedure. In most

of the real industrial structures, the problem is that the classi-

cal CMS methods lead to a great number of degrees of freedom

at the interface. So, in order to reduce the number of inter-

face co-ordinates and therefore, the size of the coupled system,

Bourquin [17, 18] described a reduction procedure for the fixed
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interface CMS method based on the use of the interface modes.

Tran [19] generalized this procedure in the cases of free and hy-

brid interface CMS methods, with application to structures hav-

ing a cyclic symmetry. For each CMS method, the idea consists

in introducing the interface modes in place of the static modes in

the set of Ritz vectors on which the structure motion equation is

projected.

In this article, the reduction procedures proposed by

Bourquin and Tran are extended in the case of rotating mistuned

bladed-disk assemblies. In a first part, the motion equation of ro-

tating structures is reminded with its properties. Then, the model

description is presented, in both tuned and mistuned cases, be-

fore introducing the formulations of classical component mode

synthesis methods, and these using the interface modes. Finally,

the procedure based on the use of the interface modes and nu-

merical simulation obtained on a simplified development model

are presented.

EQUATION OF ROTATING STRUCTURES

The discretized equilibrium equation of a rotating bladed

disk assembly S is written as :

MS ẍS +[CS + GS ]ẋS +[KS
E + K

S
S + K

S
G + K

S
A]xS = fS(xS , ẋS),

(1)

with MS , K
S
E, and CS are the mass, elastic stiffness, and damp-

ing matrices of S, GS is the gyroscopic (Coriolis) matrix. The

gyroscopic effect implies a coupling between the displacements

normal to the rotation axis, which has an important role in the be-

haviour of rotating shaft, but can generally be neglected in case of

bladed disks. K
S
S contains the spin softening effects, which takes

geometry variations into account. In our particular case which

consists in a rotation arround the rotational axis with a cylindri-

cal reference frame, it can be shown that K
S
S = −Ω2 MS , where

Ω is the instantaneous rotational speed of the structure arround

its axis. K
S
G represent the centrifugal stress stiffening. This non-

linear effect couples the in-plane and transverse displacements,

and would be very important in case of thin structures with small

bending stiffness compared to axial stiffness. Finally, K
S
A de-

pends on the derivative of the rotational speed, and would have

an important effect on the maximum deflection of the structure

displacements when rotational speed increases. In the follow-

ing, we will consider a constant rotational speed, so that K
S
A will

be null. xS is the vector of physical co-ordinates of S, and fi-

naly fS(xS , ẋS) is the vector of external forces applied to S. The

matrices MS , K
S
E and −K

S
S are symmetric and positive definite,

whereas GS is an anti-symmetric positive definite matrix. Note

that the case of rotor blade is not considered in the following.

Figure 1. STRUCTURAL NOTATIONS.

DESCRIPTION OF THE BLADED DISK MODEL

We consider a rotating structure S decomposed into N sec-

tors S j which do not overlap as represented on Fig. 1. Each sector

S j, j = 0, ...,N−1, is made up of a blade B j and a part of disk

D j. We denote by L, the part of S which constitutes the interface

between all substructures B j and D j. LD j is the part of L asso-

ciated with the substructure D j, such as LD j = L
D j
r ∪L

D j

l ∪L
D j

b ,

with L
D j
r and L

D j

l , the right and left boundaries of D j, and L
D j

b ,

the boundary between D j and B j. The blade B j is associated

with LB j = L
D j

b . In the following developments, the reference

sector, blade, or part of disk, will be denoted by the subscript or

superscript 0.

Cyclic symmetry model

In the tuned case, we consider the structure S which con-

sists in N sectors S0,...,SN−1, identical by a rotation of β = 2π/N

around the rotation axis (O,−→z ) in the cylindrical reference sys-

tem (r,θ,z). Note that there is no need to distinguish D j and B j

in this tuned model.

The cyclic symmetry assumption and the boundary condi-

tions allow the discretisation and the reduction of the study to

the reference sector S0, which leads to N systems of motion equa-

tions :

{

MS0 ün + BS0 u̇n + KS0un = fn + rn

un
L

S0
l

= un
L

S0
r

eiσn , (2)

where BS0 = CS0 +GS0 , KS0 = K
S0
E +K

S0
S +K

S0
G , un = un(S0,t)

is the vector of travelling wave co-ordinates of the sector S0,

σn = nβ is the phase angle associated with the phase number n.

L
S0
l and L

S0
r reference the left and right boundaries of S0. Last,
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fn = 1
N ∑N−1

k=0 fSk e−ikσn , where fSk represent the external forces ap-

plied to Sk and rn are the reactions at the boundaries of S0 and its

adjacent sectors.

The vector of real physical displacements of Sk, for

k = 0, ...,N−1, is obtained from the travelling waves co-

ordinates un as follows :

U(Sk,t) = ℜ

{

N−1

∑
n=0

uneikσn

}

. (3)

Mistuned model

In order to represent most of real cases, each sector S j,

j = 0, ...,N−1, is subdivided in two substructures B j and D j

associated with a blade and a part of the disk. Thus, two con-

figurations are envisaged :

- tuned disk and mistuned blades ;

- mistuned disk and mistuned blades.

In the following, we will now denote by S j the substructure D j

or B j. The approach adopted in this work to take mistuning into

account consists in adding perturbation matrices to the mass and

stiffness matrices. In this way, the mistuning pattern is described

as follows :

M
S j

mistuned = M
S j

tuned + ∆MS j , (4)

K
S j

mistuned = K
S j

tuned + ∆KS j , (5)

with S j tuned mass and stiffness matrices M
S j

tuned and K
S j

tuned,

and their perturbation matrices ∆MS j and ∆KS j . These matrices

∆MS j and ∆KS j can be generated by Monte Carlo’s simulations,

but they could also be obtained by a deterministic manner in the

view to study a few particular mistuning patterns (perturbation

on the blades length, on their Young’s moduli, or geometric per-

turbation directly in the structural finite element model). In the

case of random perturbations, matrices ∆MS j and ∆KS j are gen-

erated in such a way that their infinte norms are less than scalar

factors ε
M

S j and ε
K

S j :

‖∆MS j‖∞ � ε
M

S j and ‖∆KS j‖∞ � ε
K

S j . (6)

The structural damping is supposed to verify the Rayleigh’s

assumption. So the damping matrices CS j are assumed to be

proportional to the mass and stiffness matrices of S j such as :

CS j = αMS j + βKS j , with α and β, two scalar factors which

depend on the model.

CLASSICAL CMS METHODS
We consider the structure as presented in Fig. 1. The in-

terface LS j can be separated in two parts : a fixed interface L
S j
c

and a free interface L
S j
a . Physical co-ordinate vectors of S, L,

S j, LS j , L
S j
c , and L

S j
a are respectively xS , x

S
L, xS j , x

S j

L , x
S j

Lc, x
S j

La,

and their dimensions are nS , n
S
L, nS j , n

S j

L , n
S j

Lc, and n
S j

La. If sub-

structures S j are unconstraint and have n
S j
r rigid body modes,

n
S j
r rigid body co-ordinates x

S j
r are choosen among the physical

co-ordinates xS j , in order to make substructures isostatically con-

straint during the computation of the attachment modes, by fixing

co-ordinates x
S j
r . Matrices PS j , P

S
L, P

S j

Lc and P
S j

La achieve the fol-

lowing restrictions xS j = PS j xS , x
S
L = P

S
L xS , x

S j

Lc = P
S j

Lc xS , and

x
S j

La = P
S j

La xS . For each substructure S j, the interface LS j , can b

of three different types. In the fixed interface case, n
S j

La = 0 and

n
S j

Lc = n
S j

L . For a free interface, n
S j

Lc = 0 and n
S j

La = n
S j

L , whereas

an hybrid interface is distinguished by n
S j

Lc = 0 > 0, n
S j

La > 0 and

n
S j

Lc +n
S j

La = n
S j

L . In this last case, we suppose that S j is constraint

when the vector x
S j

Lc is fixed.

According to Eqn. (1), the equilibrium equation of a rotating

substructure S j can be written as follows :

MS j ẍS j + BS j ẋS j + KS j xS j = fS j − tP
S j

Lcf
S j

Lc −
tP

S j

Laf
S j

La , (7)

where BS j = CS j +GS j , KS j = K
S j

E +K
S j

S +K
S j

G , fS j is the vec-

tor of external forces applied to S j, f
S j

Lc and f
S j

La are the interface

reactions applied to L
S j
c and L

S j
a . The physical displacements o

the substructure S j are formulated as a linear combination of the

substructure normal modes, rigid body modes and static modes.

Then, few transformations lead to a set of Ritz vectors QS j such

as :

xS j = QS j

{

�S j

x
S j

L

}

, (8)

with �S j , the generalized co-ordinates, x
S j

L , the interface dis-

placements, and QS j , a set of Ritz vectors whose expression

come from the choosen component mode synthesis method. By

projecting the motion equation (7) on the set of Ritz vectors Q S j ,

we obtain the reduced system :

tQS j MS j QS j

{

�̈S j

ẍ
S j

L

}

+ tQS j BS j QS j

{

�̇S j

ẋ
S j

L

}

+ tQS j KS j QS j

{

�S j

x
S j

L

}

= tQS j fS j −

{

0

f
S j

L

}

. (9)
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The interface continuity and the force equilibrium on the

boundaries allow to achieve the coupling between all different

substructures S j. As a consequence, the solutions of the coupled

system provide the generalized co-ordinates� S j , and the n
S j

L in-

terface displacements x
S j

L . Physical displacements xS j of each

substructure S j are then obtained by using Eqn. (8).

The different component mode synthesis methods refer to

the following modes :

- the first mS j normal modes Φ
S j of the undamped substruc-

ture S j, with fixed, free or hybrid interface ;

- the n
S j
r rigid body modes Ψ

S j
r in the case of unconstraint

substructures with free interface ;

- the n
S j

L constraint modes Ψ
S j

C associated with the interface

LS j . They are obtained by enforcing successively a unit dis-

placement on each co-ordinate of L S j , while fixing all others

co-ordinates of LS j . The constraint modes Ψ
S j

C are subdi-

vided in two sets of modes : Ψ
S j

Cc and Ψ
S j

Ca, corresponding

respectively to the unit displacements imposed on L
S j
c and

L
S j
a ;

- the n
S j

Lc constraint modes Ψ
S j
c associated with the interface

L
S j
c . These modes are only defined in the case of hybrid

interface and they are obtained similarly as the modes Ψ
S j

C ,

with the particular difference that L
S j
a remains free. The con-

straint modes Ψ
S j
c verify the expression :

Ψ
S j
c = Ψ

S j

Cc +Ψ
S j

Ca
a
Ψ

S j
c , (10)

where a() designate the restriction to the interface L
S j
a ;

- the n
S j

La attachment modes Ψ
S j
a of L

S j
a and obtained by apply-

ing on each co-ordinate of L
S j
a the opposite of a unit force,

keeping L
S j
c fixed ;

- the n
S j

La residual attachment modes Ψ
S j
ar obtained by remov-

ing the contribution of the undamped normal modes Φ
S j al-

ready contained in Ψ
S j
a ;

- the n
S j

La normalized attachment modes and residual attach-

ment modes Ψ
′S j
a and Ψ

′S j
ar whose expressions are :

Ψ
′S j
a = Ψ

S j
a (a

Ψ
S j
a )−1 and Ψ

′S j
ar = Ψ

S j
ar (

a
Ψ

S j
ar )

−1 . (11)

The formulations of the five component mode synthesis

methods presented below are based on Eqn. (8), and their dif-

ferences appear only in the expressions of the physical displace-

ments and of the matrices of Ritz vectors QS j .

Thus, in the fixed interface method cases, Eqn. (8) gives :

xS j = Φ
S j�S j +Ψ

S j

C x
S j

L , (12)

QS j = [ΦS j ,Ψ
S j

C ] . (13)

In the same way, Tran [19] has shown that for the free inter-

face methods with attachment modes, the displacements vector,

and as a consequence, the matrix Q S j can be written as :

xS j = Φ
S j�S j +Ψ

S j
r �

S j
r +Ψ

S j
a �

S j
a

= (ΦS j −Ψ
′S j
a

a
Φ

S j )�S j +(Ψ
S j
r −Ψ

′S j
a

a
Ψ

S j
r )�

S j

r

+Ψ
′S j
a x

S j

L , (14)

QS j = [ΦS j −Ψ
′S j
a

a
Φ

S j ,Ψ
S j
r −Ψ

′S j
a

a
Ψ

S j
r ,Ψ

′S j
a ] , (15)

with respectively �
S j

r and �
S j

a , the generalized co-ordinates as-

sociated with the rigid body modes and the attachment modes.

Using the residual attachment modes :

xS j = Φ
S j�S j +Ψ

S j
r �

S j
r +Ψ

S j
ar�

S j
ar

= (ΦS j −Ψ
′S j
ar

a
Φ

S j )�S j +(Ψ
S j
r −Ψ

′S j
ar

a
Ψ

S j
r )�

S j

r

+Ψ
′S j
ar x

S j

L , (16)

QS j = [ΦS j −Ψ
′S j
ar

a
Φ

S j ,Ψ
S j
r −Ψ

′S j
ar

a
Ψ

S j
r ,Ψ

′S j
ar ] , (17)

where�
S j

ar are the generalized co-ordinates linked with the resid-

ual attachment modes. Concerning the hybrid interface methods

with attachment modes, the same formulation gives :

xS j = Φ
S j�S j +Ψ

S j
c x

S j

Lc +Ψ
S j
a �

S j
a

= (ΦS j −Ψ
′S j
a

a
Φ

S j)�S j +(Ψ
S j
c −Ψ

′S j
a

a
Ψ

S j
c )x

S j

Lc

+Ψ
′S j
a x

S j

La , (18)

QS j = [ΦS j −Ψ
′S j
a

a
Φ

S j ,Ψ
S j
c −Ψ

′S j
a

a
Ψ

S j
c ,Ψ

′S j
a ] , (19)

and if we consider residual attachment modes, they become :

xS j = Φ
S j�S j +Ψ

S j
c x

S j

Lc +Ψ
S j
ar�

S j

ar

= (ΦS j −Ψ
′S j
ar

a
Φ

S j)�S j +(Ψ
S j
c −Ψ

′S j
ar

a
Ψ

S j
c )x

S j

Lc

+Ψ
′S j
ar x

S j

La , (20)

QS j = [ΦS j −Ψ
′S j
ar

a
Φ

S j ,Ψ
S j
c −Ψ

′S j
ar

a
Ψ

S j
c ,Ψ

′S j
ar ] . (21)
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CMS METHODS USING INTERFACE MODES
Classical component mode synthesis methods are time con-

suming in the case of large size problems, due to the interface

co-ordinate vectors x
S j

L , x
S j

Lc or x
S j

La which could reach extensive

sizes. Indeed, most of industrial models are made up of sev-

eral sectors, containing themselves many hundred thousands de-

grees of freedom. Therefore, the idea consist in reducing the size

of these vectors in each classical methods, by using the inter-

face modes obtained after a static condensation [20] of the whole

structure S on the interface L.

We denote by Ψ
S
C, the n

S
L global constraint modes of S as-

sociated with the interface L. Thus, the constraint modes Ψ
S j

C of

the substructure S j are the restriction to S j of the vectors in Ψ
S
C

associated with unit displacements imposed on the interface LS j .

The interface modes X
S
L are definied as the l first eigenvectors of

the reduced eigenproblem (22) :

K
S
L X

S
L = M

S
L X

S
L Ω

2
L , (22)

where M
S
L and K

S
L are the mass and stiffness reduced matrix ob-

tained by projecting MS and KS on the global constraint modes

Ψ
S
C :

M
S
L = t

Ψ
S
C MS

Ψ
S
C (23)

K
S
L = t

Ψ
S
C KS

Ψ
S
C . (24)

The static lifting of X
S
L on the whole structure S leads to the

global interface modes Φ
S
L, and their restriction to S j, Φ

S j

L such

as :

Φ
S
L = Ψ

S
C X

S
L (25)

Φ
S j

L = PS j Φ
S
L . (26)

As a matter of fact, the global interface modes Φ
S
L represent

the approximated vibration modes of the whole structure whose

displacements are expressed as a linear combination of the global

constraint modes Ψ
S
C. As a consequence, the subspace generated

by all the global interface modes (Φ
S
L plus the non retained ones)

is the same as the subspace generated by the global constraint

modes Ψ
S
C. As a consequence, since that the global interface

modes have a real physical interpretation, the idea consists in

replacing the global constraint modes Ψ
S
C by the l first global

interface modes Φ
S
L.

In the fixed interface component mode synthesis methods,

the displacements of S are expressed as :

xS = Φ
S�L +Ψ

S
Cx

S
L , (27)

where Φ
S are the extensions to S of the substructure fixed inter-

face normal modes Φ
S j , and �S is the vector containing all the

substructure modal co-ordinates � S j . As the global constraint

modes Ψ
S
C span the same subspace than all the global interface

modes, we can replace Ψ
S
C in the Ritz vectors QS = [ΦS ,ΨS

C]
by all the interface modes. The reduction procedure proposed by

Bourquin [17,18] consists in performing a truncation of the inter-

face modes, so that the global constraint modes Ψ
S
C are replaced

by the l first global interface modes Φ
S . Thus, the displacements

of S are written as :

xS = Φ
S�S +Φ

S
L�L , (28)

where �L is the vector of the generalized co-ordinates associ-

ated with Φ
S
L. This operation leads to a great reduction of the

interface co-ordinates x
S
L because they are substituted by a small

number l of generalized co-ordinates � L. Then, taking the re-

striction of Eqn. (27) to the substructures S j, the expressions

of the physical displacements xS j and the matrix of Ritz vectors

QS j become :

xS j = Φ
S j�S j +Φ

S j

L �L , (29)

QS j = [ΦS j ,Φ
S j

L ] . (30)

In the cases of the free and hybrid interface component mode

synthesis methods, the idea consists in introducing the expres-

sion of the constraint modes Ψ
S j

C in the classical expressions

the substructure displacements previously mentionned. As a re-

sult, they can be replaced by the interface modes with intention

of reducing the size of the reduced systems. So, the expressions

of physical displacements xS j and projection matrix are written

as follows :

- free interface methods with attachment modes :

xS j = (ΦS j −Ψ
′S j
ar

a
Φ

S j )�S j +(Ψ
S j
r −Ψ

′S j
ar

a
Ψ

S j
r )�

S j

r

+Φ
S j

L �L ; (31)

QS j = [ΦS j −Ψ
′S j
ar

a
Φ

S j ,Ψ
S j
r −Ψ

′S j
ar

a
Ψ

S j
r ,Φ

S j

L ] ; (32)

- free interface methods with residual attachment modes :

xS j = (ΦS j −Ψ
′S j
ar

a
Φ

S j )�S j +(Ψ
S j
r −Ψ

′S j
ar

a
Ψ

S j
r )�

S j

r

+Φ
S j

L �L ; (33)

QS j = [ΦS j −Ψ
′S j
ar

a
Φ

S j ,Ψ
S j
r −Ψ

′S j
ar

a
Ψ

S j
r ,Φ

S j

L ] ; (34)
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- hybrid interface methods with attachment modes :

xS j = (ΦS j −Ψ
′S j
a

a
Φ

S j)�S j +Φ
S j

L �L ; (35)

QS j = [ΦS j −Ψ
′S j
a

a
Φ

S j ,Φ
S j

L ] ; (36)

- hybrid interface methods with residual attachment modes :

xS j = (ΦS j −Ψ
′S j
ar

a
Φ

S j )�S j +Φ
S j

L �L ; (37)

QS j = [ΦS j −Ψ
′S j
ar

a
Φ

S j ,Φ
S j

L ] . (38)

These different formulations allow to reduce significantly

the projected system (9). The number l of generalized co-

ordinates �L depends on the precision required or on a user

choice (typically defined by a criterion like the Rubin criterion),

whereas the size of displacements vector x
S j

L is necessarily the

same as the number of degrees of freedom at the interface L.

PROCEDURE
The following scheme represents the calculation chain we

have to implement in order to predict the forced response of rotat-

ing mistuned bladed disks based on a component mode synthesis

approach with interface modes. The objective is to develop an

accurate and efficient reduction procedure of finite element mod-

els. This algorithm consists in the main following steps :

1. Computation of normal modes (with fixed, free or hybrid in-

terface) and static modes (constraint, attachment or residual

attachment modes) of D j and B j, for j = 0, ...,N−1 ;

2. Computation of the interface modes Φ
D j

L and Φ
B j

L :

computation of M
S
L, K

S
L, and the interface modes X

S
L, Eqn.

(22), then static lifting to obtain Φ
S
L, and extraction of Φ

D j

L

and Φ
B j

L . In practice, M
S
L and K

S
L are obtained by assem-

bling reduced mass and stiffness matrices of D j and B j,

which result from the static condensation of D j to LD j , and

B j to LB j ;

3. Computation of the Ritz vectors QS j = [Q′S j ,Φ
S j

L ]
, for j = 0, ...,N−1, from the normal, static and interface

modes previously obtained, and where Q′S j are the vectors

of QS j defined in Eqns. (30), (32), (34), (36) and (38) ;

4. Projection of disk matrices K
D j

tuned + ∆KD j and external

forces fD j on QD j = [Q′D j ,Φ
D j

L ], with ∆KD j = 0 if the disk

is tuned :

K
D j
r = tQD j K

D j

tunedQD j + tQD j ∆KD j QD j , (39)

f
D j
r = tQD j fD j . (40)

Same projections for MD j and BD j .

X

Y
Z

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46
45

44
43

42

41

40 39 38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10
9

8
7

654

3

2

1

X

Y
Z

Figure 2. STRUCTURAL MESH OF THE BLADED DISK.

5. Projection of the mistuned blade matrices K
B j

tuned + ∆KB j

and external forces fB j on QB j = [Q′B j ,Φ
B j

L ] :

K
B j
r = tQB j K

B j

tunedQB j + tQB j ∆KB j QB j , (41)

f
B j
r = tQB j fB j . (42)

Same projections for MB j and BB j .

6. Assembly of the reduced matrices K
D j
r , K

B j
r , M

D j
r , M

B j
r ,

B
D j
r , B

B j
r , and vectors of exrnal forces f

D j
r and f

B j
r ,

for j = 0, ...,N−1, thought the interface co-ordinates to ob-

tain reduced assemblied matrices KS
r , MS

r , BS
r , and general-

ized forces fS
r ;

7. Resolution of the following problem :

MS
r q̈S j + BS

r q̇S j + KS
r qS j = fS

r ; (43)

8. Finally, extraction of qS j from qS , then computation of the

physical displacements of S j with xS j = QS j qS j and deter-

mination of xS by assembing xS j for j = 0, ...,N−1.

APPLICATIONS
A simplified development model (Fig. 2) with five blades

was used to program and validate the classical CMS methods,

and those using interface modes, taking into account, or not, the

different terms generated by the rotation.

The structural finite element mesh of the complete bladed

disk has 375 degrees of freedom (5 per node). It is made up of 70

elements QUAD4 and the reference sector has only 14 elements.

The inner, outer, and overall outer radius of the disk are respec-

tively 40×10−3 m, 100×10−3 m and 120×10−3 m, the thickness
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Figure 3. STRUCTURAL MESH OF THE REFERENCE SECTOR.

of the plate is 5×10−3 m. Young’s modulus , Poisson’s ratio and

density of the bladed disk are respectively 2.11×1011 N/m2, 0.3,

and 7860kg/m3.

In fact, only one reference sector (Fig. 3) which is composed

by two sub-structures, is modelized and used to compute mass,

elastic stiffness, rotational matrices, and also static modes for the

projections.

Effects due to the rotational terms
A study of effects caused by the different matrices generated

by the rotation on vibrational frequencies has been realized on

the tuned model (Fig. 4).

Figure 4. EFFECTS ON FREQUENCIES DUE TO THE ROTATIONAL

TERMS.

This study show that the centrigal stress stiffning effet pro-

Figure 5. COMPARISON OF THE DIFFERENT FIXED INTERFACE

CMS METHODS.

vided by matrix K
S
G is preponderant compared to the softening

effect due to matrix K
S
S and the gyroscopic effect provided b

GS . Ideed, the Campbel diagrams are practically the sames for

computations with K
S
G only, K

S
G +K

S
S, and K

S
G +K

S
S and GS , as

represented on Fig. 4 for the 4th, 6th, and 8th vibrational frequen-

cies.

Comparison of fixed interface CMS methods

Classical CMS methods and CMS methods with interface

modes have been implemented in the case of fixed interfaces.

They have been evaluated on the tuned model in rotation pre-

sented previously, and results have been compared to a reference

solution provided by a direct computation in a FE code (NAS-

TRAN).

Fig. 5 shows that the twelves first vibrational frequencies are

in a good agreement between the reference solution, the classi-

cal CMS method (maximum error = 8×10−3 %) with 150 inter-

face co-ordinates, and the CMS method using interface modes

(maximum error = 6.1 × 10−1 %) with only 20 interface co-

ordinates. These results are obtained from the rotating reference

sector (5000 tr/min), with matrices K
S
G and K

S
S, using 10 normal

modes for the part of disk and 4 for the blade.

CONCLUSION

Methods based on the use of the interface modes were pre-

sented in order to predict the forced response of rotating mis-

tuned bladed disks. In these methods, the static modes are re-

placed by the interface modes, which result from a static con-

densation of the entire structure on the whole interface. This

approach has already been applied in case of tuned bladed disks

in combination with cyclic symmetry, and its application to mis-

7



tuned bladed disks is in progress as a part of a doctoral disserta-

tion. Adaptations and a resolution scheme have been explained,

taking into account that all sectors might be mistuned. Numer-

ical simulations are currently carried out to demonstrate the ef-

ficiency of the proposed approach. Eigensolutions obtained on

a rotating development model with classical methods and meth-

ods with interface modes have been compared, and have shown

a good agreement with a reference solution. Future work will

consist in taking aerodynamics into account, using an indirect

fluid-structure coupling formulation.
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