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The Proper Orthogonal Decomposition (POD) approach is applied to a linear Finite Element (FE) model of a squirrel cage
induction machine. In order to obtain a reduced model valid on the whole operating range, snapshots are extracted from the
simulation of typical tests such as at locked rotor and at the synchronous speed. Then, the reduced model of the induction machine
is used to simulate different operating points with variable rotation speed and the results are compared to the full FE model to
show the effectiveness of the proposed approach.

Index Terms—Induction machine, Magneto-quasistatic, Proper Orthogonal decomposition.

I. INTRODUCTION

TO study low frequency electromagnetic devices, the FE
method is commonly used. This approach gives accurate

results but requires large computational times when the size
of mesh and the number of time steps are important. In this
context, this is difficult to use a FE model for the cosimulation
of an electrical machine over a given operating cycle taking
into account its electrical or/and mechanical environment.
Then, Model Order Reduction (MOR) methods have been
proposed in the literature to reduce the size of numerical
models. The most popular approach is the Proper Orthogonal
Decomposition (POD) [1]. Based on the solutions of the FE
model (snapshots), a reduced basis is constructed where the
solution of the reduced model is sought. This reduced basis
should approximate correctly the solution for any operating
point. In electrical engineering, it is well known that to
characterize in practice the behavior of an electrical machine,
typical tests (at no load, in short circuit...) are carried out.
The idea is then to construct the reduced basis from snapshots
extracted from the simulation of such tests. The approach has
been applied to magnetostatic problems in order to determine
reduced models of a three-phase transformer [2] for different
loads and of a synchronous machine for different speeds [3].

In this article, we propose to apply this approach in the case
of a linear magneto-quasistatic problem in order to define a
reduced model of a squirrel cage induction machine valid its
whole operating range [4]. To the author’s knowledge, MOR
with POD of an induction machine accounting for the move-
ment and for any speed slip has not been treated yet. First,
the numerical model based on the FE method of the induction
machine is presented. Secondly, the proposed approach to
build a reduced model valid on the whole operating range is
developed. In this case, the POD will be based on snapshots
extracted from the simulation of typical tests such as at locked
rotor and at the synchronous speed. Finally, the reduced model
is used to study different operating points and the start-up of
the machine for different load torques.

Manuscript received December 1, 2012; revised August 26, 2015. Corre-
sponding author: T. Henneron (email: thomas.henneron@univ-lille.fr).

II. NUMERICAL MODEL OF A SQUIRREL CAGE INDUCTION
MACHINE

A. Continuous formulation

Let consider a squirrel cage induction machine presented on
Fig. (1-a). The effect of the end ring is not taken into account
in this study leading to a 2D extruded model. The mesh is
composed of 10758 prism elements (Fig. (1-b)).

(a) 2D geometry. (b) Mesh.

Fig. 1. Squirrel cage induction machine.

The mathematical formulation to be solved is based on a
Magneto-Quasistatic problem. In this condition, we consider
the Maxwell’s equations without displacement current,

curlH = Jind +

3∑
j=1

Njij (1)

curlE = −∂B

∂t
(2)

divB = 0 (3)
divJind = 0 and divNj = 0 (4)

with B the magnetic flux density, H the magnetic field,
E the electric field, Jind the eddy current density in the
conducting domain (i.e. the squirrel cage) and Nj and ij the
unit current density vector and the current flowing through
the winding j. In the linear case, the magnetic behavior law
is defined by B = µH = µ0µrH with µ0 the magnetic
permeability of the vacuum and µr the relative permeability.
In the squirrel cage, the electric behavior law is Jind = σE
with σ the electric conductivity. To impose the unicity of the
solution, boundary conditions must be considered. To solve the
problem, the A formulation can be used. A magnetic vector
potential A is defined in the whole domain from (3) such as
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B = curlA. From (2), the electric field can be expressed by
E = −∂A∂t − Ugradα with U the unknown representing the
electric potential difference between the two extremities of the
squirrel cage and α a given scalar function [5]. Then, based
on (1) and (4-a), the strong formulation to be solved is

curlνcurlA + σ(
∂A

∂t
+ Ugradα) =

3∑
j=1

Njij (5)

divσ(
∂A

∂t
+ Ugradα) = 0 (6)

with ν = 1/µ. The induction machine is supplied by a three-
phase sinusoidal voltages system. To impose the voltage Vj at
the terminals of the winding j, the following relation is added,

dΦj
dt

+Rij = Vj with Φj =

∫
Dj

A ·Njdx (7)

with R the resistance of windings and Φj and Dj the linkage
magnetic flux and the subdomain associated with the winding
j. In this condition, the currents ij with j = 1, 2, 3 are
also unknowns of the problem. In order to take into account
variations of the rotation speed, the mechanical equation is
introduced

J
dΩ

dt
+ fΩ = Γem − Γr (8)

with Ω the rotation speed, J the moment of rotor inertia, f the
viscous coefficient, Γem the electromagnetic torque depending
on B and Γr the load torque.

B. Discrete formulation

The fields A and Nj are discretised using edge and facet
elements and the scalar function α using the nodal elements.
We denote by XA ∈ Rn the vector of Degrees of Freedom
(DoF) of A with n = 5507 the number of DoF. The numerical
model of (5) and (6) is based on the Finite Element method.
Then, the full numerical model is composed of a strong
coupling between the FE model and the electric equations (7)
and of a weak coupling with the mechanical equation (8). At
each time step k, we solve the equation system

[Mν
XX + M(θk−1) + Mσ

XX∆t−1]XA,k + Cσ
XUUk

−
3∑
j=1

Fjij,k = Mσ
XX∆t−1XA,k−1 (9)

Cσt
XU∆t−1XA,k +Mσ

UUUk = Cσt
XU∆t−1XA,k−1 (10)

Ftj∆t
−1XA,k +Rij,k = Vj,k + Ftj∆t

−1XA,k−1 (11)
for j = 1, 2, 3.

Where ∆t is the time step, Yt is the transpose of the matrix
Y, Fj is the vector depending on Nj and M(θk−1) is the
matrix deduced from the Overlapping method used to take into
account the movement of the rotor [6]. The electromagnetic
torque Γem,k is computed by Γem,k = Xt

A,kMvwXA,k with
Mvw the matrix deduced from the Virtual Work method. Then,
the rotation speed Ωk is calculated with a weak coupling by

Ωk = (1− f∆t

J
)Ωk−1 +

∆t

J
(Γem,k − Γr). (12)

III. MODEL ORDER REDUCTION BASED ON POD METHOD

A. Structure of the reduced model

The idea is to build a reduced model of the equation system
of the full model depending on XA in order to conserve the
structure of the system to be solved. Based on solutions, called
snapshots, of the full model concatened into a matrix SX
such as SX = [XA,1; XA,2; ...; XA,N ] with N the number of
snapshots, a reduced basis is constructed from the Singular
Value Decomposition such as SX = USVt with Un×n
and VN×N orthogonal matrices and Sn×N the matrix of
the singular values. The reduced basis Ψ is defined by the
m first columns of U such as Ψ = [U1; U2; ...; Um]. The
truncation of the m first columns can be determined by taking
the most significative singular values of S. The vector of DoF’s
XAr of the reduced model is defined by XA = ΨXAr with
XAr ∈ Rm. To construct the reduced model, XA,k is replaced
by ΨXAr,k in (9), (10) and (11). The equation system is
then overdetermined since the number of equations n is much
higher than the number of unknowns m. To obtain a well posed
equation system, equation (9) is projected into the reduced
basis by multiplying by Ψt. Finally, at each time step k, the
reduced model to be solved is

[Mν
XXr + Mr(θk−1) + Mσ

XXr∆t
−1]XAr,k + Cσ

XUrUk

−
3∑
j=1

Frjij,k = Mσ
XXr∆t

−1XAr,k−1 (13)

Cσt
XUr∆t

−1XAr,k +Mσ
UUUk = Cσt

XUr∆t
−1XAr,k−1 (14)

Ftr1∆t−1XAr,k +Rij,k = Vj,k + Ftr1∆t−1XAr,k−1 (15)
for j = 1, 2, 3.

with Mν
rXX = ΨtMν

XXΨ, Mr(θk−1) = ΨtM(θj−1)Ψ,
Mσ

XXr = ΨtMσ
XXΨ, CσXUr = ΨtCσXU and Fjr = ΨtFj .

The torque Γem can be expressed in function of XAr,k by
Γem,k = Xt

Ar,kMvwrXAr,k with Mvwr = ΨtMvwΨ. We
can note that the matrix Mr(θk−1) is recomputed at each time
step k. However, the computation cost is limited due to the size
of this matrix which corresponds to unknowns on a subdomain
located in the air gap of the machine.

B. Construction of the reduced basis valid on the whole
operating range

In order to define a reduced model valid on the whole
operating range of the induction machine, Nsync and Nlr
snapshots are extracted from the simulation of typical tests
at the synchronous speed and at locked rotor respectively.
For both tests, the time interval corresponds to 12 electric
periods with a time step fixed to 0.4ms leads 50 time steps
per period. To optimize the size of the reduced basis, we
seek for the optimal number of snapshots for each typical
test, i.e. the numbers of first solutions Nsync and Nlr of the
full model (9)-(11) used to define an efficient reduced model
for the synchronous speed test and for the locked rotor test.
Then, the reduced model defined by (13)-(15) is solved on the
time interval for different reduced basis and for both typical
tests. This approach will enable to evaluate the capacity of the
reduced model to simulate a test run compared with the full
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FE model. To evaluate the errors between the full and reduced
models in function of the snapshot number, we consider the
average εX of the relative errors at each time step k

εX =
1

NT

NT∑
k=1

||Xfull
A,k −Xmor

A,k ||2
||Xfull

A,k ||2
(16)

with NT the total number of time steps and Xmor
A,k = ΨXAr,k

the approximated solution from the reduced model. Figure (2)
presents the evolution of εX for both typical tests. For both

Fig. 2. Average of the relative errors vs the number of snapshots for both
typical tests.

tests, the evolution of εX reaches a limit when the number
of snapshots increases, this phenomena can be explained by
the truncation of U used to define the reduced basis Ψ, no
significant informations are added into the reduced model
when the number of snapshots increases. Due to a large
transient state for the test at the synchronous speed, the number
of snapshots used to obtain an efficient reduced model is more
important than for the test at locked rotor. Then, to define a
reduced model valid to simulate accurately the two typical
tests, we consider Nsync = 150 and Nlr = 50 snapshots
concatened into a snapshot matrix SX . In these conditions,
the size of XAr,k and the vectors number of Ψ is 159. With
this reduced model, the both tests are recomputed with another
time step fixed to 0.667ms in order to verify no loss of
accuracy. Figures (3) and (4) present the evolution of currents
for the test at synchronous speed and also the electromagnetic
torque for the test at locked rotor obtained from the full and
reduced models. For the two tests, the solutions obtained from
the reduced model are close to the ones obtained by the full
FE model. The average of the relative error εX is 2.27 · 10−3

and 5.4 · 10−3 for the two tests and the speed up is about 15.

IV. SIMULATION FOR DIFFERENT OPERATING POINTS

A. Characteristic of the average electromagnetic torque
versus the rotation speed

From the full and reduced models, we seek to determine
the average electromagnetic torque Γav,em in function of the
speed Ω. Both models are solved for different values of fixed
rotation speed. Figure (5) presents the evolution of Γav,em
versus Ω. The torque characteristics obtained from the models
are very close for Ω > 80rad/s. For low rotation speeds,
the difference is more significant but remain acceptable. In

Fig. 3. Evolution of currents from the full and reduced models for the test
at the synchronous speed.

Fig. 4. Evolution of the electromagnetic torque from the full and reduced
models for the test at locked rotor.

Fig. 5. Evolution of the average electromagnetic torque versus the rotation
speed from the full and reduced models.

order to verify the efficiency of the reduced model, global and
local quantities obtained from both models are compared for
a fixed rotation speed equal to 141rad/s. Figures (6) and (7)
present the evolution of the currents and of the Joule losses
respectively. The global quantities obtained from the reduced
model are similar to those from the full model. Figures (8)
and (9) present the magnetic flux density in the stator and
the eddy current density in the squirrel cage at the end of
the time interval obtained from the reduced model. For each
local quantity, the difference of results between both models
is presented. For both cases, the magnitudes of the error are
small compared with those of the magnetic flux density and
of the eddy current density. The maximum of the error for B
is located at the tip of the teeth. Then, the reduced model is
valid to approximate the field distributions for any speed slip.
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Fig. 6. Evolution of the currents from the full and reduced model.

Fig. 7. Evolution of the Joule losses from the full and reduced models.

Fig. 8. Magnetic flux density (T ) from the reduced model and error in the
stator.

Fig. 9. Magnitude of the eddy current density (A/m2) from the reduced
model and error in the squirrel cage.

B. Study of the start-up for different load torques

From the reduced model defined by (13)-(15) coupled with
(12), we study the start-up of the induction machine for two
load torques. For the case 1, the torque Γr,1 is fixed to a
constant value equal to 20Nm. For the case 2, the torque
Γr,2 is defined as a quadratic function of the rotation speed
such as Γr,2 = 0.002Ω2. Figure (10) presents the evolution
of Ω for both cases. For the case 1, Γr,1 is close to the
starting torque (Fig. 5). A phase-shift appears between the
evolutions of the speed Ω1 obtained from the full and reduced
models. The dynamic of the speed up is directly related to the

difference ∆Γ between the electromagnetic and load torques.
As observed in the section IV-A, at low rotation speeds, there
is a gap of several percent between the electromagnetic torques
given by the reduced and full models. Since the load torque is
close to the starting electromagnetic torque, the gap between
∆Γ given by the reduced model and by the full model will
be of several dozen percent at low speed which explains the
difference of speed response. Nevertheless, the evolutions of
the speed obtained from both models are similar. For the case
2, Γr,2 is defined as a quadratic function of the rotation speed.
So at low speed, Γr,2 is small leading to a gap of ∆Γ between
the reduced model and the full model small as well. In this
condition, we can verify that the time evolutions of the speed
Ω2 obtained from the full and reduced models are close.

Fig. 10. Evolution of the rotation speed for the two different load torques.

V. CONCLUSION

A reduced model of a squirrel cage induction machine
based on the POD approach has been developed. Based on
typical tests, a reduced basis is defined in order to build
a reduced model valid on the whole operating range with
a good compromise between accuracy and computational
time compared with the full model. The effectiveness of the
approach have been shown by simulating the stard up with two
different load torque characteristics. Based on the proposed
approach, accounting for the nonlinear magnetic behavior will
be investigated in a future work.

REFERENCES

[1] J. Lumley, ”The structure of inhomogeneous turbulence”, Atmospheric
Turbulence and Wave Propagation, A.M. Yaglom and V.I. Tatarski., pp.
221-227, 1967.
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