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Non-linear oscillations of continuous systems with quadratic and

cubic non-linearities using non-linear normal modes

C. Touzé ∗, O. Thomas, A. Chaigne

ENSTA/UME, Unité de recherche en Mécanique, Chemin de la Hunière, 91761 Palaiseau cedex, France

Abstract

Non-linear normal modes (NNMs), defined as invariant manifolds, are introduced through Normal Form theory. In a

conservative framework, it is shown that all NNMs, as well as the attendant dynamics onto the manifolds, are computed in

a single operation. The general third-order approximation of the dynamics onto a single NNM is derived. It is underlined

that single linear mode truncation can lead to erroneous results which are corrected when considering NNMs. These results

are illustrated by studying the vibrations of a linear beam resting on a non-linear elastic foundation.
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1. Introduction

Non-linear oscillations of continuous structures with

curvature, such as arches and shells, are considered. The

motion of these structure, at moderately large vibration

amplitudes, are governed by PDEs which include quadratic

and cubic non-linearities. Using non-linear normal modes

defined as invariant manifolds in phase space — as pro-

posed by Shaw and Pierre [1] — allows one to exhibit

reduced-order models which capture the essential proper-

ties of the dynamics. Here, normal form theory is employed

to define new coordinates (the normal coordinates) linked

to the invariant manifolds, as well as the non-linear rela-

tion between these new coordinates and the initial (modal)

ones. This idea has already been proposed by Jezequel and

Lamarque [2]. As a result of this operation, the dynamics

onto the manifolds is simply given by the normal form of

the initial problem.

In what follows, the general equations governing the

motion onto a single NNM (up to order three) are derived.

The interest of this result is due to the fact that a physi-

cally observed single mode motion occurs on an invariant

manifold. Comparisons can then be drawn with the usual

single linear mode Galerkin truncation. It is shown that the

latter method can lead to erroneous quantitative as well as

qualitative results, which are corrected when considering

the NNMs. A linear beam resting on a non-linear elastic
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foundation is studied to highlight the theoretical results

and to compare them with those derived by Nayfeh and

Lacarbonara [3].

2. Theory

2.1. General case

After projection onto the linear modes basis, the fol-

lowing temporal problem is considered, when dealing with

non-linear oscillations of undamped continuous systems:

∀ p = 1, . . . ,+∞ :

Ẍ p +ω2
p X p +

+∞
∑

i=1

+∞
∑

j≥i

g
p

i j X i X j

+
+∞
∑

i=1

+∞
∑

j≥i

+∞
∑

k≥ j

h
p

i jk X i X j Xk = 0. (1)

X p is the modal coordinate, related to the pth linear mode.

This system is truncated by considering N modes, with N

sufficiently large. The coefficients g
p

i j and h
p

i jk arise from

the projection of the non-linear terms of the PDE onto

the linear modes. It is assumed that no internal resonance

relationships are present.

A near-identity change of coordinates is defined by suc-

cessive eliminations of the non-resonant terms (for a more

complete presentation of Normal Form, see e.g. Arnold

[4]). The velocity Yp = Ẋ p is used as second independent
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variable. It reads:

X p = Rp +
N

∑

i=1

N
∑

j≥i

(a
p

i j Ri Rj +b
p

i j Si Sj )

+
N

∑

i=1

N
∑

j≥i

N
∑

k≥ j

r
p

i jk Ri Rj Rk +
N

∑

i=1

N
∑

j=1

N
∑

k≥ j

u
p

i jk Ri Sj Sk , (2a)

Yp = Sp +
N

∑

i=1

N
∑

j=1

γ
p

i j Ri Sj +
N

∑

i=1

N
∑

j≥i

N
∑

k≥ j

µ
p

i jk Si Sj Sk

+
N

∑

i=1

N
∑

j=1

N
∑

k≥ j

ν
p

i jk Si Rj Rk . (2b)

Rp and Sp are the normal coordinates and are linked

to a third-order approximation of the dynamics into a

curved grid of the phase space spanned by third-order

approximations of the NNMs. Complete expressions for

the coefficients of the polynomial expressions in Eq. (2)

are given in Touzé [5], as well as the normal dynamics,

which is not reproduced here for the sake of brevity, and

also because the normal form can be written with the

knowledge of the linear eigenspectrum only [4].

2.2. Single-mode motion

Some important features are now discussed for the mo-

tion along a single NNM. It is obtained by simply can-

celling all other coordinates. To study the pth NNM, one

has just to set: ∀k �= p, Rk = Sk = 0. It yields the third-

order approximation of the geometry of the pth NNM, as

well as the dynamics onto it, governed by:

R̈p +ω2
p Rp + (A p

ppp +h p
ppp)R3

p + B p
ppp Rp Ṙ2

p = 0, (3)

where

A p
ppp =

N
∑

l≥p

g
p

pl a
l
pp +

∑

l≤p

g
p

lpal
pp,

and B p
ppp =

N
∑

l≥p

g
p

pl b
l
pp +

∑

l≤p

g
p

lpbl
pp

(see Touzé [5]). One can notice the velocity-dependent

terms in Eq. (3), whose presence is only due to the

quadratic non-linearity. It is an important feature of the

quadratic non-linearity, which does not generate trivially

resonant terms, but has an influence on the behaviour of the

oscillations, as shown next.

The backbone curve for Eq. (3) is derived by any of the

perturbation methods available. At first order, it reads:

ωNL = ωp(1+Ŵpa2),

with Ŵp =
3(A p

ppp +h p
ppp)+ω2

p B p
ppp

8ω2
p

, (4)

where ωNL is the non-linear angular frequency and a is

the amplitude. This expression can be compared with the

backbone curve given when approximating the motion with

the projection along the pth linear mode, found by setting:

∀k �= p : Xk = 0 in Eq. (1):

ω̃NL = ωp(1+ Ŵ̃pa2),

with Ŵ̃p =
1

8ω2
p

(

3h p
ppp −

10(g p
pp)2

3ω2
p

)

. (5)

Eqs. (4) and (5) clearly shows that the reduced-equation,

which gives the dynamics onto the pth NNM, effectively

represents the dynamics of the retained mode and accounts

for the nonlinearities of the non-modeled modes, through

A p
ppp and B p

ppp terms. This is realized without increasing the

complexity of the dynamical equation, since a single oscil-

lator is still used. This will now be illustrated by studying a

continuous system, showing that linear truncation can lead

to erroneous results which are corrected with the NNM

modeling.

3. Example: a continuous system

3.1. Equations of motion

A linear hinged–hinged beam resting on a non-linear

elastic foundation with distributed quadratic and cubic non-

linearities is considered. The results obtained will be sys-

tematically compared with those presented in Nayfeh et al.

[3], where a perturbation technique (the method of mul-

tiple scales) is directly introduced into the PDE in order

to overcome the difficulties encountered with the linear

single-mode approximation.

In non-dimensional form, the undamped transverse vi-

brations are governed by [3]:

∂2w

∂t2
+

∂4w

∂x4
+α2w

2 +α3w
3 = 0, (6)

with boundary conditions:

w(x , t) = 0,
∂2w(x , t)

∂x2
= 0 for x = 0,1. (7)

w(x , t) is the transverse displacement, α2 and α3 are con-

stants. The linear analysis provides the eigenmodes as well

as the eigenfrequencies:

�n(x) =
√

2sin(nπx), ωn = n2π2. (8)

Projection onto the linear modes basis is performed via

the development w(x , t) =
∑

X p(t)�p(x), which is inserted

into Eq. (6). This leads to the following temporal problem:

∀ p = 1, . . . , N :

Ẍ p +ω2
p X p +

N
∑

i, j=1

g
p

i j X i X j +
N

∑

i, j ,k=1

h
p

i jk X i X j Xk = 0. (9)
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Fig. 1. Hardening and softening regions for the linear beam resting on a non-linear elastic foundation. White: hardening behaviour. Gray:

softening behavior.

3.2. Regions of hardening and softening behaviour

The theoretical results of Section 2 are applied to Eq.

(9). As discussed in Touzé et al. [6], single-mode mo-

tion on two-dimensional invariant manifolds exists for the

beam problem in spite of the numerous internal resonance

relationships. This is due to the particular form of the res-

onance relation set, implying only monoms which are not

invariant-breaking.

Regions of hardening and softening behaviour are given

by the sign of Ŵp when considering motions along the pth

NNM (resp. by the sign of Ŵ̃p when considering motions

along the pth linear eigenspace). Hardening behaviour re-

gions, defined by a positive value for Ŵp and Ŵ̃p , are

represented in the parameter plane (α2,α3) as a white zone

on Fig. 1. Softening behaviour regions are in gray. One

can notice that for mode 1, considering the NNM does

not change these regions. But this is not the case for all

the other modes. In particular for mode 2, a linear-mode

approximation predicts a hardening behaviour for every

(α2,α3), since the quadratic coefficient vanishes: g2
22 = 0.

When one considers the motion along the second NNM, a

softening region is in fact present. These results have been

compared with those of Nayfeh and Lacarbonara [3]. They

find exactly the same hardening/softening regions.

3.3. Mode shapes

A first-order perturbation method yields the oscillations

along the pth NNM, the dynamics of which is given at third

order by Eq. (3). It reads: Rp = a0 cos(ωNLt + β0) + ·· · ,
where ωNL is given by Eq. (4).

Substituting this result into the non-linear change of

coordinates, Eq. (2), gives the displacement of the structure

expressed with the modal coordinates:

∀k �= p : Xk = ak
pp R2

p +bk
pp S2

p +r k
ppp R3

p +uk
ppp Rp S2

p, (10a)

k = p : X p = Rp +a p
pp R2

p +bp
pp S2

p, (10b)

The complete expression for the displacement along NNM

p, denoted here by wp(x , t), is given as usual by the

decomposition: wp(x , t) = X p(t)�p(x)+
∑

k �=p Xk(t)�k(x).

A graphical representation of the maximum displace-

ment, obtained for Rp maximum, is given in Fig. 2, first

column, for the first three modes and two different ampli-

tudes. The result is compared with the linear approxima-

tion, and with the method proposed in [3]. No difference

is visible: the mode shapes match exactly (and thus the

dash-dotted curve is not visible).

Finally, as a quadratic non-linearity is present, a constant

term in the solution of the oscillations gives rise to a spatial

drift in the response. It is represented in Fig. 2, second

column. Once again, Normal form method is compared

with perturbation method directly into the PDE [3], and the
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Fig. 2. Mode shapes and drifts, (α2 = 12, α3 = 1). Solid line (—): NNM approximation with normal form. Dashed line (– –): linear

solution. Dash-dotted line (– ·): Nayfeh et al. solution [3].

linear result. Except for the first mode, where the result of

Nayfeh et al. [3] fit with the linear drift, the results are

found to be the same. The equivalence between the two

approaches is thus explicitly shown on this example.

4. Conclusion

In this paper, NNM has been defined through Normal

Form theory. It has been shown that single linear Galerkin

truncation can lead to erroneous results which are corrected

when considering the motion along invariant manifold. This

has been realized through third-order asymptotic develop-

ment for the dynamics expressed with normal coordinates.

This method yields accurate results that accounts for the

a priori non-modeled modes, without increasing the com-

plexity of the dynamical problem treated. Hence reliable

results are easily found. The effectiveness of the method

has been illustrated on a continuous system.
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