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Abstract
Hybrid Proper Orthogonal Decomposition formulation is a POD based reduced-order modeling method
where the continuous equation of the physical system is projected on the POD modes obtained from a dis-
crete model of the system. The hybrid POD formulation is evaluated here on the simple case of a linear
elastic rod subject to a prescribed displacement imposed at the free end of the rod. Three techniques are used
and compared to take into account the non-homogeneous boundary condition with the hybrid POD: the first
method relies on Control Functions, the second on the Penalty Method and the third on Lagrange Multipliers.
Finally the robustness of the hybrid POD is investigated.

1 Introduction

The Proper Orthogonal Decomposition (POD) is a powerful method providing the description of a high-
dimensional system by means of a small number of elements, called the POD modes (POMs). These POMs
contain the main characteristics of the system response such that the solution of the system can be recon-
structed as a linear combination of the POMs. The method is closely related to the Karhunen-Loève de-
composition originating from the probability theory [1] and to the Principal Component Analysis commonly
used in the field of statistics. Connexions with the Singular Value Decomposition can also be highlighted [2]
and Liang et al. [3] demonstrated the equivalence between the three preceding methods when they are used
to handle discrete random vectors of finite dimension.
The starting point of the POD is a set of snapshots describing the system and obtained either from numerical
simulations or experiments. The set of snapshots is combined into a correlation tensor, whose properties
ensure that real eigenvectors exist. These eigenvectors are the POD modes and represent the coherent struc-
tures of the system. The most important feature of the POD is its optimality: for a given number of POMs,
the POD basis containing these modes provides the best approximation of any element of the snapshots set.
The POD is therefore a powerful technique for data analysis since an important database can be efficiently
represented by only a small number of modes.
However the method is not restricted to data analysis but can be combined with the equation governing a
dynamical system to form a reduced order model. The POD has therefore been extensively used for fluid
dynamics systems since the early work of Lumley [4] as it provides an efficient mean to build a reduced-order
model. Unlike the eigenmode reduction technique commonly used in structural dynamics, the POD has two
main advantages : (i) it can as well be formulated for a linear or a non-linear system and (ii) the POMs can
be obtained from the resolution of an eigenproblem whose dimension is equal to the number of snapshots
and is consequently very small compared to the number of degrees of freedom. The construction of POD
reduced-order models for the fluid has therefore expanded rapidly since the first works and a great part of



the POD literature is devoted to fluid reduced-order models that could be built for a wide variety of flows
to perform parametric studies or active control. Since the present paper focuses on a structural test case,
the construction of POD reduced-order models for the fluid is not detailed here but the reader is referred to
review articles like those of Lucia et al. [5] or Dowell et al. [6] for more details.
Historically, the POD-Galerkin method has been introduced for fluid dynamics systems but the technique
has spread over various mechanical systems and notably structural mechanics ones. Kerschen et al. [7] give
an overview of the general method and several examples of the use of POD. The POD method provides an
interesting alternative to the classical eigenmode reduction and is especially useful for non-linear systems.
Indeed, Feeny and Kappagantu [8] and Kerschen and Golinval [9] explained that the POMs converge to the
eigenmodes of an undamped and unforced linear system when the mass matrix is proportional to identity and
if a sufficient number of snapshots is considered. The POD is thus preferably applied to non-linear systems
[10, 11], sometimes subject to vibro-impacts [12]. However, Sampaio and Soize [13] claim that the POD
basis is not more efficient than the eigenmodes basis for non-linear elastodynamics.
The construction of reduced-order models can be handled in different ways according to the nature (discrete
or continuous) of the equation and snapshots used and the formulation often differs when fluids or solids
are considered. For structural dynamics problems, the discrete equation of the system is generally available
(for example by means of the mass, damping and stiffness matrices) and the reduced-order model can be
easily obtained by projecting the discrete operators on the discrete POMs, hence the name of discrete POD
for this approach. However the discretized equation is not always explicitly known: this is the case for
example if we want to model a non-linear fluid flow, or if we work with experimental data. In this case,
we only know the continuous equation of the system but we have discrete POMs (coming from numerical
simulations or sensors). This leads to an hybrid POD since the discrete POMs are used in conjunction
with the continuous equation. The reduced-order model is then built by projecting the continuous equations
on each POM according to the Galerkin method. These two formulations of the POD method have been
compared by Placzek et al. [14] to a third formulation based on an analytical solution and the hybrid POD
method proved to be slightly more efficient than the discrete POD formulation.
Since our aim is to build later reduced-order models for fluid-structure systems, we focus on the hybrid POD
which is the common approach adopted for fluids. When dealing with fluid-structure interaction problems,
the coupling condition between the fluid and the structure involves prescribed displacements on the fluid-
structure interface. It is therefore of prime importance to investigate the forced response with prescribed
displacements (non-homogeneous boundary condition) in the hybrid POD reduced-order model. Homoge-
neous boundary conditions are easily taken into account since those properties are inherited by the POMs.
However, when non-homogeneous boundary conditions are applied to the system, the POD reduced-order
model has to be adapted so that the boundary condition is satisfied. Three techniques are considered here
to take into account a displacement imposed at the free end. The first method relies on a weak formulation
of the boundary condition: the strong non-homogeneous Dirichlet boundary condition is transformed into a
weak Neumann boundary condition by means of a small parameter whose inverse will be called the penalty
factor. This method is therefore called the Penalty Method (PM). In the second approach, the system can be
considered as a problem with a constraint which, in this case, represents the boundary condition that must be
verified. The constraint is treated by means of a Lagrange multiplier, hence the name of Lagrange Multiplier
Method (LMM) for the formulation. The last technique is based on a different formulation of the POD in
which the POMs are computed from snapshots that have been previously homogenized. The homogenization
step uses a suitably chosen ”Control Function” that can be changed later in the reduced-order model to have
the desired boundary condition. According to the paper of Tang et al. [15], this formulation will be called
the Control Function Method (CFM).
The paper is organized as follows: the principle of the POD method and the construction of the hybrid POD
reduced-order model are presented in section 2. Then the different techniques (CFM, PM and LMM) devel-
oped to take into account the non-homogeneous boundary condition for the forced response are presented
and evaluated in section 3. Finally, in section 4, the robustness of the hybrid POD is investigated.



2 The hybrid POD formulation

2.1 The Proper Orthogonal Decomposition (POD) method

The POD method is presented here in the context of a deterministic system and we do not refer to the
Karhunen-Loève theorem usually adduced in the stochastic setting. The description, close to the one of
Holmes et al. [16], relies on an optimization problem which consists in finding the best basis to approximate
a set of snapshots. The snapshots are in fact solutions u(k) of the system evaluated at different instants tk
and the snapshots set U =

{
u(k) ∈ H, k = 1, ..,M

}
gathers a finite number of them . The solutions are

contained in a Hilbert space H with N = dim (H) (N being eventually infinite), whose vectors can be
continuous squared integrable functions on a spatial domain Ω (H = L2(Ω)) or real discrete finite vectors
(H = R

N ) for example. Let 〈·, ·〉 be the inner product associated to the Hilbert space H and ‖·‖ denote the
norm induced by this inner product so that ∀x ∈ H, ‖x‖2 = 〈x, x〉.
The POD consists then in finding a subspace S ⊂ H of finite dimension q � N which provides the best ap-
proximation of any member ofU . This subspace is entirely characterized by the basis

{
ϕ(j) ∈ H, j = 1, .., q

}

so that S = span
{
ϕ(1), ..., ϕ(q)

}
. Each snapshot can therefore be approximated on the subspace S by a linear

combination of the POMs ϕ(j):

u(k) =

q∑

j=1

a
(k)
j ϕ(j) ∀k ∈ [1;M ], (1)

where the a(k)
j are real scalars representing the modal amplitudes associated to the mode ϕ(j) in the decom-

position of the snapshot u(k). The subspace S has to be sought so that the basis
{
ϕ(j)

}q

j=1
is optimal in the

sense that it is better than any other basis of same dimension q. To ensure optimality, we impose that the

time-averaged squared projection error E
(∥∥∥u(k) −PS u

(k)
∥∥∥

2
)

is minimal. The time-averaging operation

for a function f
(
u(k)

)
depending on the snapshots is the sum E

(
f
(
u(k)

))
=
∑M

k=1 αkf
(
u(k)

)
where

the αk are weighting coefficients. The minimization problem is equivalent to maximizing the time-averaged

squared projection of the snapshots E
(∥∥∥PS u

(k)
∥∥∥

2
)

. Indeed the operator PS defines an orthogonal projec-

tion on the subspace S in order to minimize the distance between each snapshot in H and its approximation
in S. Developing the expression of the orthogonal projector in PSu

(k) =
∑q

j=1

〈
u(k), ϕ(j)

〉
ϕ(j) and using

the orthonormality of the POMs, the mathematical statement of optimality is to find the

max
ϕ(j)∈H,‖ϕ(j)‖=1

q∑

j=1

E

(〈
u(k), ϕ(j)

〉2
)

(2)

for suitably normalized POMs ϕ(j). The problem of finding the maximum subject to the constraint
∥∥ϕ(j)

∥∥ =
1 can be transformed into the following variational problem defined for the functional J :

J
[
ϕ(j)

]
= E

(〈
u(k), ϕ(j)

〉2
)
− λj

(∥∥∥ϕ(j)
∥∥∥

2
− 1

)
(3)

A necessary condition to obtain the maximum is that the functional derivative vanishes for all variations
ϕ(j) + δψ ∈ H, δ ∈ R. After some mathematical manipulations (for more details, see Holmes et al. [16]),
the preceding condition which must be true for all variation ψ, turns out to be equivalent to solving the
following eigenvalue problem:

Rϕ(j) = λj ϕ
(j) ∀j ∈ [1; q] (4)



where the operator R is an endomorphism of H defined by:

R = E
(
u(k) ⊗ (u(k))∗

)
(5)

In the preceding expression, (u(k))∗ is the dual of the vector u(k), i.e. the linear application defined by
(u(k))∗ : v −→ (u(k))∗v =

〈
v, u(k)

〉
,∀v ∈ H and ⊗ is the usual tensor product so that w ⊗ (u(k))∗v =

w
〈
v, u(k)

〉
,∀v, w ∈ H . The operator R is self-adjoint and has a finite rank r since it is spanned by the

snapshots. R is therefore a Hilbert-Schmidt operator and is consequently compact. With these properties
the spectral theory for compact self-adjoint operators is valid and ensures that there is only a finite number
r of real non-null eigenvalues λj . The associated eigenvectors which are the POMs we looked for are
orthonormal.
Taking the inner product of Eq. (4) with ϕ(j) and using the expression Eq. (5) of the operator R lead to the
following relation:

λj = E

(〈
u(k), ϕ(j)

〉2
)

(6)

The preceding relation indicates that the greatest eigenvalues λj maximize in average the projection of the
snapshots on the POMs. Consequently the greatest eigenvalues capture the most of ”energy” contained in the
snapshots set in the sense of the norm induced by the Hilbert space. In order to be efficient, the reduced-order
model constructed with the POMs has therefore to be composed of the first q ≤ r eigenvectors associated to
the largest eigenvalues.
The extraction of the POMs becomes very laborious when the size of the problem becomes important as the
dimension of the operator R is related to the number N of degrees of freedom in the system. A powerful
variant called the snapshots method proposed by Sirovich [17] reduces considerably the size of the problem
to be solved. The method is based on the fact that the POMs are a linear combination of the snapshots:

ϕ(j) =
M∑

k=1

c
(j)
k u(k) (7)

since the image of R is a subset of the space spanned by the snapshots. Introducing Eq. (7) into Eq. (4) with
the expression Eq. (5) of R leads, after reorganization of the terms, to:

M∑

k=1

(
M∑

l=1

αk

〈
u(k), u(l)

〉
c
(j)
l

)
u(k) = λj

M∑

m=1

c(j)m u(m) (8)

If the snapshots are assumed to be linearly independent, the previous expression reduces to the new eigen-
value problem whose dimension is now M � N :

M∑

l=1

αk

〈
u(k), u(l)

〉
c
(j)
l = λjc

(j)
k ∀k ∈ [1;M ] (9)

The previous relation can be transposed in the matricial form R̃∗c(j) = λjc
(j) with R̃∗

ij = αi

〈
u(i), u(j)

〉

and c(j) = [c
(j)
1 · · · c(j)M ]T . However the matrix R̃∗ is not symmetrical except if all the weights αi associated

to the time-averaging operator E(·) are identical. If all weights are strictly positive, the problem can be
symmetrized by using the matrix α̃ = diag(

√
α1, . . . ,

√
αM ). The eigenvalue problem obtained with the

snapshots method is finally:



R∗d(j) = λjd
(j) (10)

where R∗

ij =
√
αiαj

〈
u(i), u(j)

〉
and the eigenvectors are related to the coefficients c(j) of the decomposition

Eq. (7) by the following relation c(j) = α̃d(j).
The snapshots method has been obtained here for snapshots of possibly infinite dimension. The equivalence
with the direct method holds only if the snapshots are linearly independent, so that one can infer Eq. (9)
from Eq. (8). If snapshots of finite dimension are considered, it is not necessary to assume that they are
linearly independent. The equivalence between the direct method and the snapshots method can be proved
for example by using the Singular Value Decomposition of the matrix containing the snapshots of finite
dimension. In this case, the snapshots method provides as many POMs as the rank r of the snapshots
matrix and the POMs are strictly identical to those of the direct method. For practical applications, finite
dimension snapshots are always used and consequently the snapshots method will be preferably adopted in
the remainder of this paper.
It should also be noted that better results are obtained when the POD is performed for the fluctuations s(k)

of the data rather than for the raw data u(k). Indeed, Tamura et al. [18] observed that if the POD is carried
out directly for the snapshots u(k), the first POD mode is rather similar to the mean of the snapshots and
the eigenspectra is distorted. The fluctuations, or centered data, are defined by s(k) = u(k) − u, where
u = E

(
u(k)

)
represents the time-average of the snapshots. The operators R and R∗ are thus based on the

s(k) instead of the u(k) and the decomposition Eq. (1) of the snapshots is modified in:

u(k) = u+

q∑

j=1

a
(k)
j ϕ(j) ∀k ∈ [1;M ] (11)

2.2 Construction of a reduced-order model with the hybrid POD formulation

Now that we have described in the previous paragraph how the POMs associated to a system can be obtained
from a set of snapshots, we turn to the construction of a reduced-order model which uses these POMs in the
context of an hybrid POD formulation. The reduced-order model is built for a one dimensional rod subject to
traction and compression which is characterized by its length L, the section S and the material is represented
by the Young’s modulus E and the density ρ. In absence of external forces, the displacement u(x, t) of the
rod section at a given point x and at time t is governed by the wave equation:

ρS
∂2u

∂t2
−ES

∂2u

∂x2
= 0 (12)

The aim of the hybrid POD formulation is to use a discrete snapshots database in conjunction with the con-
tinuous equation Eq. (12) of the system. Indeed, the snapshots are almost always described by a discrete
quantity coming either from a numerical simulation or an experiment but the discrete equation that could
be combined with this discrete approximation of the snapshots is not always available. The discrete dataset
available is thus used to approximate directly the L2 inner product which appears in the hybrid POD formu-
lation since it relies on the continuous equation of the system. The inner product of two continuous functions
f and g is therefore approximated by the trapezoidal rule:

〈f, g〉L2(Ω) =

∫

Ω
f(x) g(x) dΩ =

N∑

e=1

∫

Ωe

f(x) g(x) dΩ ≈
N∑

e=1

f̂e ĝe δΩe (13)

where f̂e and ĝe are the average values relative to the functions f and g evaluated on each element e
and δΩe is the Lebesgue measure of the element Ωe. The previous expression takes the matricial form:



〈f, g〉L2(Ω) ≈ f̂T ∆ĝ with f̂ = [f̂1 · · · f̂N ]T (resp. for ĝ) and ∆ = diag(δΩ1, · · · , δΩN ). As the problem is
unidimensional, the average values of the function f on one element is simply given here by the arithmetic
mean f̂i = (fi + fi+1)/2, where the fi are the values contained in the dataset and which are supposed to be
the values at the nodes of the mesh.
The correlation tensor R∗ is defined by the L2 inner product since the reduced-order model is built from
the continuous equation. The inner product is then approximated with Eq. (13) so that the general term of
R∗ is: R∗

ij =
√
αiαj

〈
s(i), s(j)

〉
L2 ≈ √

αiαj

(
ŝ(i)
)T

∆ŝ(j). With matricial notations, the previous relation

is rewritten as R∗ =
(
α̃

T
ŜT
)
∆
(
Ŝ α̃

)
. The POMs extracted from the eigenvalue problem are discrete

like the snapshots they have been derived from. In order to build the reduced-order model, the continuous
POD decomposition Eq. (11) is substituted into the governing equation (12) and the resulting expression
is projected onto each POM ϕ(j). Using the orthonormality of the POMs and denoting c =

√
E/ρ, the

equation writes :

d2aj

dt2
= c2

q∑

k=1

〈
d2ϕ(k)

dx2
, ϕ(j)

〉
ak + c2

〈
d2u

dx2
, ϕ(j)

〉
(14)

The q equations obtained by projecting on each POM can be gathered in the matricial ordinary differential
equation ä = L̆a+K̆ defining the unknown amplitudes a = [a1 . . . aq]

T of the decomposition Eq. (11). The
computation of the coefficients L̆kj = c2

〈
d2ϕ(k)/dx2, ϕ(j)

〉
and K̆j = c2

〈
d2u/dx2, ϕ(j)

〉
of the reduced-

order model requires that the derivatives of the POMs are known. The derivatives can be computed for
example by means of Finite Difference Methods. It should also be mentioned that the inner products can be
simplified by performing parts integrations which introduce the boundary conditions in the expression of the
coefficients. In the case of the free response to an initial condition for example, the order of the derivatives
can be lowered and the integrals on the boundary vanish since the boundary conditions are homogeneous
(see Placzek et al. [14] for more details).

3 Hybrid POD formulations for the response to a prescribed dis-
placement

In the case of a clamped rod with a prescribed displacement γ(t) imposed at the free end, the boundary
conditions are:

{
u(x = 0, t) = 0
u(x = L, t) = γ(t)

∀t > 0 (15)

The Dirichlet boundary condition at the free-end is non-homogeneous and consequently the POMs do not
inherit this property: this boundary condition is not implicitly satisfied by the reduced-order model through
the POMs and it must be explicitly imposed. Several techniques are presented in the following for the hybrid
POD formulation to take into account this non-homogeneous boundary condition.

3.1 The Penalty Method (PM)

The Penalty Method is often used to impose Dirichlet boundary conditions in structural problems and has
already been used by Tang et al. [15] in the context of POD reduced-order model. The principle consists in
replacing the strong Dirichlet boundary condition u(x = L, t) = γ(t) by the artificial Neumann boundary
condition:



∂u

∂x

∣∣∣∣
x=L

=
uL − γ(t)

ε
(16)

where ε is a parameter small enough to satisfy approximately the boundary condition with uL = u(x = L, t).
We define the penalty factor fp = c2/ε whose value has to be great so as to uL = γ(t) when fp →
∞. The artificial Neumann boundary condition can be explicitly introduced in the reduced-order model
by performing one parts integration in the inner products of Eq. (14). The boundary term corresponding
to the homogeneous boundary condition at the clamped side is equal to zero since the POMs inherit the
homogeneous Dirichlet boundary condition. However the boundary term where the displacement is imposed
does not vanish. After reorganization of the terms, the reduced-order model becomes:

ρS
d2aj

dt2
= −ES

q∑

k=1

〈
dϕ(k)

dx
,
dϕ(j)

dx

〉
ak −ES

〈
du

dx
,
dϕ(j)

dx

〉

+ES

(
q∑

k=1

dϕ(k)

dx

∣∣∣∣∣
x=L

ak +
du

dx

∣∣∣∣
x=L

)
ϕ(j)(x = L)

(17)

The term in brackets is in fact the spatial derivative of the variable u evaluated in x = L when u is decom-
posed by the POD with Eq. (11). The artificial boundary condition Eq. (16) can then be replaced in Eq.
(17):

d2aj

dt2
= −c2

q∑

k=1

〈
dϕ(k)

dx
,
dϕ(j)

dx

〉
ak − c2

〈
du

dx
,
dϕ(j)

dx

〉

+ fp (uL(t) − γ(t))ϕ(j)(x = L)

(18)

The displacement uL is decomposed on the POD basis with Eq. (11): uL = uL +
∑q

k=1 ak(t)ϕ
(k)(x = L).

The vector ϕL = [ϕ(1)(x = L) · · ·ϕ(q)(x = L)]T is introduced so that the sum can be interpreted as the
vector product ϕ

T
L a where a is the vector of the modal amplitudes. The set of equations Eqs. (18) can be

grouped in only one matricial equation ä = L̃a + K̃ such that :

L̃ = L + Lp with Lp = fp

(
ϕL ϕ

T
L

)

K̃ = K + Kp with Kp = fp (uL − γ(t)) ϕL

(19)

where the matrix L and the vector K are exactly the same as those which would be found for the free
response with the hybrid formulation. The coefficients are given by Ljk = −c2

〈
dϕ(k)/dx, dϕ(j)/dx

〉
and

Kj = −c2
〈
du/dx, dϕ(j)/dx

〉
. The remaining terms can be considered as penalty terms whose action is to

enforce the boundary condition.

3.2 The Lagrange Multiplier Method (LMM)

In this case, the displacement imposed at the free end is treated as a constraint which has to be added to the
equation governing the rod. The displacement generates an unknown reaction Rγ that should be introduced
in the second member of Eq. (12). This reaction Rγ is an additional unknown reflecting the constraint of the
imposed displacement and is thus the Lagrange multiplier of the following problem:





ρS
∂2u

∂t2
−ES

∂2u

∂x2
= Rγ

u(x = L, t) = γ(t)

(20)



The first equation is, like before, projected onto each POM after having substituted u by its decomposition
Eq. (11) on the POD basis. In the second equation, the variable u is also replaced with the same decomposi-
tion evaluated in x = L:





ρS
d2aj

dt2
= ES

q∑

k=1

〈
d2ϕ(k)

dx2
, ϕ(j)

〉
ak +ES

〈
d2u

dx2
, ϕ(j)

〉
+
〈
Rγ , ϕ

(j)
〉

u(x = L, t) = uL +

q∑

k=1

ak(t)ϕ
(k)(x = L) = γ(t)

(21)

Since the reaction Rγ acts in fact only at the free end, it can be defined by a Dirac distribution: Rγ =
rL δ(x− L), where the scalar rL represents the intensity of the reaction at x = L. Consequently the inner
product involving the reaction Rγ is simplified in:

〈
Rγ , ϕ

(j)
〉

=
∫ L

0 rL δ(x− L)ϕ(j)(x) dx = rL ϕ
(j)(x =

L). The vector of the reaction projected on each POM is given by rL ϕL, where ϕL is the vector defined
in the previous paragraph and containing the values of the POMs at the free end. This vector is also used to
rewrite the second line in Eq. (21) in uL + ϕ

T
La = γ(t). The reduced-order model becomes:

{
ä = L̆a + K̆ + rL ϕL

0 = ϕ
T
La + uL − γ(t)

where the general term of the matrix L̆ and the vector K̆ are those found in Eq. (14). Finally the reduced-
order model is formulated for the augmented variable vector ã = [a rL]T and takes the new form Ĩ ¨̃a =
L̃ ã + K̃. The detailed expression of the reduced-order model is the following, where I is the q × q identity
matrix:

[
I 0

0 0

] [
ä

r̈L

]
=

[
L̆ ϕL

ϕ
T
L 0

] [
a

rL

]
+

[
K̆

uL − γ(t)

]
(22)

3.3 The Control Function Method (CFM)

The last technique presented in this paper to take into account the non-homogeneous boundary condition
is the Control Function Method commonly used to build reduced-order models for active control in flow
dynamics, see [15] for example. The variable u is divided into two parts, the first verifying homogeneous
boundary conditions and denoted uh and the second representing the effects of the forcing term and denoted
uf , such that u = uh + uf with uh(x = L, t) = 0 and uf (x = L, t) = γ(t).

The POMs are computed for the centered homogeneous snapshots s(k)
h = u

(k)
h − uh and the POD decom-

position is thus uh(x, t) = uh(x) +
∑q

k=1 ak(t)ϕ
(k)
h (x). The notation ϕ(k)

h is now used to highlight the
homogeneous character of the POMs derived from the snapshots that have been homogenized. The previous
decomposition of uh can be replaced in the relation u = uh + uf to obtain the POD decomposition of the
inhomogeneous variable u. Before doing this, it is interesting to write the forcing term uf as the product of
a spatial and a temporal function which corresponds to the temporal modulation of the boundary condition
Eq. (15): uf (x, t) = γ(t)uc(x). The new POD decomposition for the variable u is then:

u(x, t) = uh(x) + γ(t)uc(x) +

q∑

k=1

ak(t)ϕ
(k)
h (x) (23)

The forcing term is not completely defined as the shape of the spatial control function uc has not yet been
given. Several choices are possible since the only constraint imposed by uf (x = L, t) = γ(t) is that
uc(x = L) = 1. A Dirac distribution uc(x) = δ(x − L) satisfies the previous condition but is certainly not



optimal because of the discontinuity inherent to this function. A better choice consists in choosing the static
solution of the problem for a unitary displacement imposed at the free end: uc(x) = x/L.
The reduced-order model is easily obtained by introducing the new decomposition Eq. (23) into the contin-
uous equation of the rod and by projecting it onto each POM:

d2aj

dt2
= c2

q∑

k=1

〈
d2ϕ(k)

dx2
, ϕ

(j)
h

〉
ak + c2

〈
d2uh

dx2
, ϕ

(j)
h

〉

+c2 γ(t)

〈
d2uc

dx2
, ϕ

(j)
h

〉
− d2γ(t)

dt2

〈
uc, ϕ

(j)
h

〉 (24)

The form ä = L̃a + K̃ of the reduced-order model is preserved but the matrix L̃ and the vector K̃ are now
defined by:

L̃ij = c2
q∑

j=1

〈
d2ϕ(j)

dx2
, ϕ

(i)
h

〉

K̃i = c2
〈
d2uh

dx2
, ϕ

(i)
h

〉
+ c2 γ(t)

〈
d2uc

dx2
, ϕ

(i)
h

〉
− d2γ(t)

dt2

〈
uc, ϕ

(i)
h

〉 (25)

The three formulations given by Eqs. (19), (22) and (25) are clearly different. The Penalty Method (PM)
is very easy to implement because the matrix and vector of the reduced-order model are the same as those
obtained for the free response; they are only modified by the addition of a penalty matrix (or vector) which
is easily computed once the POMs are known. The main drawback of the method is that the boundary
condition is only approximated and not exactly satisfied. Indeed, the greater the penalty factor, the more
exact the boundary condition but the more ill-conditioned the matrices. The Lagrange Multiplier Method
(LMM) leads to the introduction of a new variable in the system which changes the form of the reduced-
order model: indeed, the matrix Ĩ in the left member is singular and prevents finding again the same form
common to the other formulations. Finally the CFM requires more modifications since the snapshots have
to be first homogenized before computing the POMs. Another assumption is that the forcing term can be
decomposed as the product of a spatial and a temporal function. The reduced-order model derived with the
new decomposition keeps the same usual form but involves time derivatives of the boundary condition time
modulation γ(t).

3.4 Hybrid POD evaluation for the response to a prescribed displacement

The time integration of the reduced-order model is performed either by the ODEPACK solver or with a
Newmark algorithm. This algorithm is especially adapted for the LMM where the differential equation
cannot be written under the generic form ȧ = f(a, t) which is solved by the ODEPACK. The efficiency of
each formulation is evaluated by means of the error ε∞ based on a reference solution Ur computed with a
Finite Elements simulation and defined by:

ε∞ =
‖U−Ur‖∞

‖Ur‖∞
(26)

The hybrid POD reduced-order model is used to reconstruct the response of the rod with a displacement
imposed at the free end. The POMs are thus evaluated from a discrete set of snapshots which have been
computed by a Finite Elements simulation for the forced response. The POMs for the PM and LMM, which
are represented on Fig. 1 with the black filled circles, are identical. If the Control Function Method (CFM)
is adopted, the snapshots have to be homogenized before computing the POMs. The shape of the POMs then
depends on the control function used for the homogenization: if a Dirac function uc(x) = δ(x− L) is used,
the modes are similar to those of the PM or LMM except for the last point x = L where the value is zero. On
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Figure 1: Comparison of the first four POMs for the forced response. The empty black circles (◦) represent
the eigenmodes of the rod clamped at both ends whereas the black filled circles (•) indicates the POMs
of the forced response when the PM or LMM are used to impose the displacement. The curves ( )
and resp. ( ) represent the shape of the POMs when the CFM is adopted and the control function is
uc(x) = δ(x− L) or resp. uc(x) = x/L.

the contrary, with the static solution uc(x) = x/L, the modes differ significantly from the previous ones: in
this case, homogeneous boundary conditions are satisfied by the POMs at both ends of the rod but the shape
does not exhibit any discontinuity. The POMs then coincide with the eigenmodes of a rod which would be
clamped at both ends; these eigenmodes are represented with empty black circles on Fig. 1.
We then compare the efficiency of the three techniques (PM, LMM and CFM) to take into account a displace-
ment γ(t) = Ue sin (2πfet) imposed at the free end. Figure 2 presents the response of the reduced-order
model based on the CFM with uc(x) = x/L for three couples of parameters (fe, Ue). The responses com-
puted with the other methods (PM, LMM and CFM with uc(x) = δx− L) are not shown since they are not
distinguishable. For each response, the POMs have been computed from snapshots stemming from the reso-
lution of the problem with the excitation parameters (fe, Ue) = (150, 0.01). This POD basis is then used to
calculate the response for the three couples of parameters (fe, Ue) = (150, 0.01), (fe, Ue) = (200, 0.05) and
(fe, Ue) = (325, 0.2) by introducing the desired imposed displacement γ(t) characterized by each couple
of parameters (fe, Ue) in Eq. (25). In each case, the response coincide exactly with the reference solution
which has been computed with a Finite Elements simulation.
To highlight the differences between the PM, LMM and CFM, the values of the infinite error ε∞ are plotted
on the figure 3.a. Except for the PM, the error grows as the parameters go away from those used to evaluate
the POMs. This is the main limitation of the POD method: since the POD basis is constructed from snap-
shots, the basis vectors depend on the excitation and the reduced-order model becomes less efficient as the
parameters for which the response has to be computed take away from those characterizing the excitation
with which the snapshots, and consequently the POMs, have been obtained. Nevertheless, the errors remain
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Figure 2: Comparison between the POD responses for the forced response computed for three different
couples of excitation parameters ( ) and the reference solution (◦) : (a) (fe, Ue) = (150, 0.01), (b)
(fe, Ue) = (200, 0.05), (c) (fe, Ue) = (325, 0.2).
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Figure 3: Comparison of the infinite error ε∞ produced by the different methods used to impose the dis-
placement: (a) for different couples of excitation parameters (fe, Ue), and (b) when the number of POMs
used in the reduced-order model is increased.

small for this simple system and the responses obtained with the different formulations are in very good
agreement with the reference solutions. The best method for this example seems to be the CFM when the
POMs have been homogenized with the static solution of the system uc(x) = x/L. However, the influence
of the control function is crucial and it can be seen that the choice of the Dirac function for uc leads to the
greatest error.
Figure 3.b represents for each method the convergence of the infinite reconstruction error ε∞ when the
number q of POMs contained in the POD basis is increased. The PM has in fact the greatest asymptotic
error and does not converge very well. The best method is actually the CFM with the static solution, but
when the number of POMs is increased, we notice that the use of the Dirac function becomes a reliable
choice, better than the PM or even the LMM. This is an interesting result since the use of a Dirac does not
require the computation of a physical solution of the system like it is the case with the static solution, whose
determination could become time-consuming when the number of dof at the boundary is great.
The CFM seems to be the most efficient method but the choice of the control function used for the homoge-
nization is capital. Moreover, when a displacement uL is imposed at the free end, it is necessary to know the
acceleration üL associated to this displacement in order to evaluate the coefficients K̃i of the reduced-order



model defined in Eq. (25). It is trivial to determine the acceleration for a sinusoidal displacement like the
one imposed here, but some difficulties can arise if other shapes are used (e.g. a sawtooth or crenel function
which is not derivable). Sometimes, the displacement is also not explicitly known (e.g. the case of a coupled
fluid-structure system) and determining the acceleration is not obvious. The PM and LMM avoid this draw-
back and have besides the advantage to be more flexible: the POD basis used in the reduced-order model
can eventually come from snapshots corresponding to the free response, or the forced response with a force
(instead of a displacement) imposed at the free end. This could also be done with the CFM but it requires
the determination of the adequate time modulations γ(t) in order to homogenize the snapshots.

4 Robustness of the hybrid POD method

In this section, the robustness of the hybrid POD formulation is investigated in the case of a non-linear
response produced by a clamped-free rod excited by a force F whose application point is distant of xf < L
from the clamped end. An obstacle is placed at the distance e from the free end (see Fig. 4). When the
magnitude of the force is enough important, the free end section hits the obstacle; this generates vibro-
impacts and therefore produces a reaction at this point. The reaction is non-linear and defined by R(uL) =
−Kobs(uL − e) if uL > e and R(uL) = 0 if uL ≤ e. The excitation force is sinusoidal and characterized
by F (t) = Fe sin (2πfet). According to the values of Fe and fe, the free end hits or not the obstacle, whose
stiffness has a great value (Kobs = 1020) in order to model a rigid obstacle.

L

xf

F (t)

e

x

Figure 4: Clamped-free rod excited by the force F and subject to vibro-impacts due to the obstacle.

In this example, the POMs are significantly different from those of the free or forced response. Figure 5
gives the shape of the POMs obtained from a set of snapshots computed with or without the obstacle. In both
cases, the excitation force F is characterized by (fe, Fe) = (175, 2.0E6). When the rod hits the obstacle,
the non-linear reaction at the free end leads to a more complex response of the system than when there is
no obstacle. In both cases (with or without the obstacle), the shape of the POMs is very different from the
rod eigenmodes: the force F applied at xf = 0.1L deforms considerably the shape of the modes in the
neighborhood of this point.
The response of the system for different couples of parameters (fe, Fe) is then computed. Figure 6 shows
the responses when the POMs used in the reduced-order model have been evaluated from snapshots with the
obstacle. For the first (a) and last (c) cases, the magnitude of the imposed force Fe is great enough so that
the free end hits the obstacle, whereas in the intermediate case (b) there is no contact between the free end
and the obstacle. Although the POMs stem from snapshots with vibro-impacts, they are suitable to rebuild
the responses either with or without contact. The hybrid POD formulation is considered to be robust since
the reduced-order model can be used to rebuild diverse responses with POMs stemming from snapshots
computed for a different type of excitation (with or without obstacle, or even POMs coming from the free
response of the system).
Although Fig. 6 exhibits a somewhat good accuracy of the response, the errors produced become now
significant, notably when vibro-impacts occur. The errors are plotted on Figure 7 for the three couples of
parameters and according to the nature of the POMs used in the reduced-order model. When the free end
hits the obstacle (first and last cases), the error is almost the same, whatever the nature of the POMs: despite
slight differences appear according to the type of the POMs used, the error has the same order of magnitude.
On the contrary, if no contact happens, the POMs computed from snapshots without the obstacle are clearly



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x/L

Φ
1 / 

||Φ
1|| ∞

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

x/L

Φ
2 / 

||Φ
2|| ∞

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

x/L

Φ
3 / 

||Φ
3|| ∞

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

x/L

Φ
4 / 

||Φ
4|| ∞

(d)

Figure 5: Panels (a)-(d) show the first four POMs of the rod subject to vibro-impacts and computed from
snapshots with the obstacle ( ) or without it ( ). The black circles (◦) represent the rod eigenmodes.
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Figure 6: Comparison between the responses for the rod subject to vibro-impacts computed for three different
couples of excitation parameters ( ) and the reference solution (◦): (a) (fe, Fe) = (175, 2.0E6), (b)
(fe, Fe) = (150, 0.5E6), (c) (fe, Fe) = (300, 5.0E6).
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Figure 7: Comparison of the infinite reconstruction error ε∞ for different couples of parameters according
to the nature of the POMs used.

more efficient than the others. The POMs of the free motion give the greatest error when no contact happens,
however the results are in good agreement in other cases.
To conclude, the POD method provides a rather robust mean to build a reduced-order model: when the
response is computed with POMs which have been evaluated for the same type of excitation, the accuracy
is in general very good. However, the use of POMs stemming from a different type of excitation is a more
delicate issue. The POMs of the free response could be employed easily to rebuild responses for other types
of excitations (e.g. response with structural damping or with a non-linear reaction induced by an obstacle,
response to an imposed displacement with the PM or LMM) but this is somewhat obvious since in this
particular case the POMs are close to the eigenmodes of the system. However, if we want to rebuild the
free response to an initial condition, the use of POMs obtained from snapshots with a displacement or a
force imposed is not appropriate since the POMs do not satisfy the suitable boundary conditions and the
reduced-order model has to be adapted.

5 Conclusion

In this paper the hybrid POD formulation has been evaluated and compared for the response to a prescribed
displacement. Several methods have been compared and advantages and drawbacks have been highlighted.
Except the PM which has a surprising convergence behavior when the number of POMs in the projection
basis is increased, the other methods (LMM and CFM) behave well and the asymptotic error remains small.
The CFM is the most accurate but has several drawbacks, particularly the sensitivity to the control function
or the need for the time derivative of the excitation function. However, once a good control function has been
determined, the method is robust and converge very quickly as the number of POMs is increased. Finally,
the results of the last paragraph show that hybrid POD is a rather robust method: the POMs obtained from
snapshots computed for a simple excitation (e.g. the response to an initial condition) seem to provide a good
basis to rebuild responses of diverse types, even for responses which are far from the one used to compute
the POMs.
This study that fits into the framework of the construction of reduced-order models for coupled fluid-structure
systems gives prominence to interesting results concerning the potential of the hybrid POD to build an
efficient reduced-order model and is therefore encouraging us to use this formulation for future applications,
the next one being the reduction of the fluid.
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