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ABSTRACT 
 In this paper we present numerical results concerning 

vibration reduction of structural-acoustic systems using the 

synchronized switch control technique. In order to develop a 

general procedure to model the coupled system (composed by 

the fluid domain, the structure and the piezoelectric elements), 

the idea is to use the performances of a standard commercial 

code such as Nastran. A symmetric reduced order model is 

derived from a general finite element description through the 

extraction of appropriate system matrices. For sake of brevity, 

we just recall that depending upon the choice of fluid field 

variables, non symmetric formulations are usually obtained (so-

called displacement-pressure formulations), the symmetrization 

can be derived through appropriate choice of fluid field 

variables [1,2]. A simple fluid-structure system for which an 

analytic solution exists will be used to verify the finite element 

results and to demonstrate the capabilities of the control 

procedure. Referring to experimental tests [3], the system 

consists of a straight air-filled tube with a square cross section. 

The tube is a rigid cavity with an elastic plate at one end and a 

piezoelectric patch bonded in its centre. Firstly, the 

conservative structural-acoustic problem is presented. The 

symmetric variational and finite element formulations are then 

described. The model is constructed using Nastran software and 

the finite element matrices are then extracted and assembled in 

Matlab. In a second step, the electro-mechanical coupling 

matrices are built using three-dimensional finite elements in 

order to take into account local moments of the piezoelectric 

wafers according to the equivalent thermal coefficient theory 

[4,5]. Finally, the reduced electro-mechanical fluid-structure 

system, obtained through a modal projection, is integrated in 

time using a Newmark type algorithm. Numerical results are 

then presented showing the performance of the synchronized 

switch damping for vibro-acoustic applications in the low 

frequency domain (low modal density).  

INTRODUCTION 
 In acoustic wave control field, as well as in the vibration 

control field, the trend is to use active technique that seems to 

be one of the most efficient strategies to reduce the noise level, 

at a wide broadband range, despite a complexity of the design 

and an external power supply required. Actually, for the 

purpose of noise reduction, the approach is to reduce acoustic 

radiation field through the vibration reduction of the structure, 

since the structure itself may be a noise source. A considerable 

amount of works deals with the numerical or experimental 

development of techniques of noise reduction using 

piezoelectric devices bonded or embedded in structural 

elements.  

 Kim and Ko [6] worked on finite element modeling for 

piezoelectric structures. The optimization procedure shows the 

best location of the actuators and sensors are close to those 

regions where the strain is maximal. The active control system 

implemented is a negative feedback. To take into account the 

acoustic pressure in the cavity the modal approach is used 

invoking the orthogonality of the modes shapes. The principal 
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advantage of this approach is the reduction of the size of the 

system equation.  

 Another approach is to combine active and passive devices. 

Ro and Baz [7] presented a work in which the sound radiation 

from a vibrating flat plate coupled with an acoustic cavity is 

controlled. The sound radiation is controlled using a single 

patch of active constrained layer damping. Dynamic and 

acoustic finite element model are developed to study the 

fundamental phenomena governing the coupling between the 

dynamics. The models are used to compute the frequencies, 

mode shapes and sound radiation for different control gains. 

The experimental results obtained indicate amplitude 

attenuation of 27, 54, and 75% with respect to uncontrolled 

plate, for controlling gains of 62, 250, 500 respectively for the 

first resonance frequency. 

 A different approach for noise reduction of sound radiating 

into a cavity is presented by Guyomar [8]. The work deals with 

the semi passive approach in which the synchronized switch 

damping technique is implemented and the piezoelements are 

continuously switched from the open circuit state to a specific 

electric network synchronously with the strain. The authors 

describe the experimental results consisting in exciting the 

plate via the loudspeaker and detect the noise level of the sound 

wave transmitted in the external environment. The plate 

vibrations speed is monitored in the center of the plate which 

corresponds to a maximum deflection for each mode. The 

measure is made and compared in three cases: without control, 

with an inductive switched shunt and with a voltage driving 

inductive switched shunt. A microphone monitors the pressure 

of the acoustic wave transmitted through the plate at different 

locations. A maximum attenuation of 15 dB on the transmitted 

wave pressure is obtained. 

 In the present paper we present a finite element modeling 

to simulate noise and vibration reduction of acoustic cavity 

through piezo in switched shunt configuration. In the first 

section we establish the variational formulation of the fluid 

structure coupled problem and the corresponding matrix 

equations. The aim is to establish a variational formulation in 

view of a direct treatment by finite elements. In the second 

section we assemble the fluid structure equation with the 

electro mechanical matrices of piezo device and finally the 

electrical contributions of the shunt circuit. The third section is 

dedicated to the numerical integration of the reduced model of 

the full coupled system. Due to the switching mechanism and 

the quick commutation time, the system is not linear, so a direct 

transient response in time domain will be computed. For this 

purpose a classical Newmark algorithm will be used.   

THE ELASTO-ACOUSTIC PROBLEM 
 Several finite element formulations have been proposed in 

literature for modeling elasto-acoustic coupled systems at the 

fluid structure interface. A symmetric reduced order model is 

derived from a general finite element description through the 

extraction of appropriate system matrices. For sake of brevity, 

we just recall that depending upon the choice of fluid field 

variables, non symmetric formulation are usually obtained (so-

called displacement-pressure formulations) and the sym-

metrization can be derived through appropriate choice of fluid 

field variables [1,2]. A symmetric formulation can be obtained, 

for example, using the fluid velocity potential  [1]. It must be 

noted that the velocity potential formulation has the 

disadvantage that it leads to a symmetric but artificial damping 

matrix which makes it necessary to use complex eigenvalue 

solvers. In what follows we recall the finite element 

formulation of the fluid structure coupled problem. For more 

details, the reader is referred to the book of Morand and 

Ohayon [1]. 

Local equation of the fluid structure coupled system 
 Let us present now the local conservative equation of the 

fluid structure coupled system in time domain in function of the 

structural displacement u, and the fluid pressure p [1]. Let us 

consider the vibrations of an elastic structure, occupying the 

volume ΩS, interacting with a homogeneous, inviscid and 

compressible fluid, occupying the volume ΩF, neglecting 

gravity effects. The fluid structure interface is noted as Σ. The 

structure is clamped at one part of the boundary Γu and an 

external excitation t acts on the structural surface Γt. The local 

equations of the problem are given by: 

SS in
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∂

∂
=

2
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∂
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with appropriate initial condition. 

The first corresponds to the elastodynamics equation in absence 

of body force; the second is the constrained boundary 

condition; the third is the external load boundary condition; the 

fourth is resulting from the action of pressure forces exerted by 

the fluid on the structure; the fifth is the kinematic interface 

fluid-structure condition; the sixth corresponds to the 

Helmholtz equation. 
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Variational formulation of the fluid structure coupled 
system 
 In order to derive the variational formulation we use the 

test function method. We proceed in two steps, treating 

successively the equations relating to the structure (subject to 

fluid pressure actions), then the equations relating to the fluid 

(subject to a wall displacement).  

First, we introduce the space Cu of the regular functions u 

defined in ΩS and time independent. Multiplying Equation (1) 

by any function-test δu of Cu, such that δu=0 on Γu, and then 

applying the Green’s formula and taking into account the 

boundary conditions (2, 3, 4) we obtain: 

[ ]
2

2
tr ( ) ( )

S S

S

u
u u dv udv pn uds t uds

t
σ ε δ ρ δ δ δ

Ω Ω Σ

∂
+ ⋅ − ⋅ = ⋅

∂∫ ∫ ∫
tΓ
∫  (7) 

In the second step, we consider the space Cp of the regular 

functions p defined in ΩF and time independent. Multiplying 

Equation (6) by any function-test δp of Cp, and then applying 

the Green’s formula taking into account the boundary condition 

Equation (5), we obtain: 

2 2

2 2 2

1 1
0

F FF F F

p u
p pdv pdv n pds

c t t
δ δ

ρ ρΩ Ω Σ
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∂ ∂∫ ∫ ∫ δ  (8) 

Finally the variational formulation of the fluid structure 

coupled problem consists in finding (u,p)∈ (Cu×Cp) verifying 

Equations (7) and (8). 

Finite element formulation of the fluid structure 
coupled system 
 The matrices corresponding to the linear or bilinear forms 

involved in the variational formulation (7) and (8) are defined 

by: 
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(10) 

In the Equations (9) and (10) U and P represents the degrees of 

freedom vectors for the structural displacement and the fluid 

pressure, respectively. The matrix system corresponding to (7) 

and (8) can be written as follows: 

0

0 0

u u up

up p p

M K C U FU

C M K PP

−⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎩ ⎭ ⎩ ⎭⎩ ⎭⎣ ⎦ ⎣ ⎦
⎨ ⎬ (11)

As previously mentioned, a symmetric formulation can be 

obtained by introducing the velocity potential ψ  [1]: 

0 0 0

0 0 0 0

u up u

T

p up p

M C K U FU U

M C K ψψ ψ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫

+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎨ ⎬  (12) 

THE PZT COUPLING MODELLING 

 A rectangular plate element has been taken into account to 

describe the PZT patch. Each node of the element have five 

mechanical dofs [9]. Since this element should represent a PZT 

lamina, an additional electrical dof is required, given by the 

charge q. We add the hypothesis that the electric plate is 

polarized in the transverse 3-direction. Moreover we assume a 

uniform charge density on upper and lower surfaces D3 = q/A 

(A being the surface normal to the direction of the electric 

field). The dofs vector may be expressed as follows: 

{ } pztnodeyx qwvux ∪= ϑϑ ,,,, (13)

The reverse and direct effects of the piezoceramic device will 

be described in the following paragraphs, but let us introduce 

here the physical hypothesis by which the piezoceramic 

electromechanical matrices will be derived. Equations (14) 

represent the fluid structure coupled system in which the 

piezoceramic actuation and sensing capabilities, that is to say 

the reverse and direct effects have been modeled. The moment 

Mpzt and the voltage Vpzt will be derived according to the piezo 

constitutive equations. In other words, the actuation moment 

will be related to the electrical charge while the sensing voltage 

will be related to the mechanical dofs. 

The fluid-piezo-structure matrix problem can then be written in 

the following form: 

1

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

u up u

T

p up p

pzt pzt

M U C U K U F

M C K

q q C q

ψ ψ ψ
−

⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ +⎡ ⎤ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎪⎪ ⎪⎢ ⎥ ⎢ ⎥− + + − =

pzt
M

V

⎫
⎪

⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎣ ⎦ ⎩⎩ ⎭ ⎩ ⎭

⎪
⎭

(14) 

where Cpzt is the capacitor of the piezoelement. 

In what follows, to simulate these effects only contact grid 

nodes between PZT and host structure will be taken into 

account.  

PZT Reverse Coupling Matrix 
 In this paragraph the expression of the Mpzt has been 

derived according to the Crawley - De Luis strain actuation 
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model [5]. Let us recall the hypothesis of this theory for a 

piezo-structure sandwich:  

• Linear stress/strain  relation;

• Linear strain along the structure thickness;

• Constant strain along the piezo thickness;

• Stress/strain relation is negligible in the in-plane

direction;

• Constant shear  stress  in the bonding layer.

In what follows the subscript p, s and a refers respectively to 

the piezo, the structure and the bonding layer. Expression have 

been reported and the reader is referred to the work of Lecce-

Concilio [10]. In this paragraph let us just recall the main 

results but in [10] all the assumption on the mechanical 

boundary conditions can be found and the equilibrium 

equations for both the piezoceramic and the structure are the 

following ones: 

06

0

=+

=−

s

s

p

p

tdx

d

tdx

d

τσ

τσ

(15) 

Substituting the stress expressions from the constitutive 

equations of the piezoceramic, the structure and the bonding 

layer, equation (15) can be rewritten as follows: 
2

2

2

2

/
( )
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6 ( )

p a p

p s
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t a s

p s

a s

d G E

tdx

d G E
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− −

+ −

0
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=

=
(16) 

where Ga is the shear modulus of the bonding layer and E is the 

Young modulus referred to the pzt and the structure. By the 

integration of the (16) and introducing the following 

parameters: 

pp
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tE

tE
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V
t

d

p

31=Λ (19)

representing the stiffness ratio, the bonding quality factor and 

the piezoceramic free strain at unitary voltage respectively, the 

expression of the strain actuation will be derived as follows: 

Γ
Γ
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−

+Ψ
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Γ
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+
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Λ
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s

p

ε

ε

(20)

Finally the piezoceramic moment, in case of perfect bonding, 

is:  

(21)qDM uqpzt =

with 

ppzt

pssuq
tC

d
LtED

312

6

1

2

3

+Ψ
=

The use of this relation between the actuator moment and 

electric charge allow us to express equation (14) in the 

following form: 

1
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0 0 0 0 0 0

0 0 0 0 0 0 0 0

u up u uq

T

p up p
0

pzt pzt

M U C U K D U

M C K

q q C q
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−

⎧ ⎫ ⎧ ⎫ ⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎧ ⎫
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⎧ ⎫
⎪ ⎪

⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎣ ⎦⎩ ⎭ ⎩ ⎭

⎪ ⎪
⎩ ⎭

 (22) 

At this point is necessary to build the finite element 

formulation in order to evaluate the Duq matrix. For this we can 

split the value of the moment (21) in the number of the nodes 

along x and y directions, in which the pzt has been discretised. 

Figure 1 is an example of a piezoceramic actuation experienced 

on the contact grid nodes. The arrows show the contribution of 

the moment for each node. 

M
y

+

M+M−
x x

M
y

−

Figure 1. PZT actuation over the hosting structure 

Now the matrix can be assembled, the dimension is n×1where n 

is the total number of mechanical dofs of the system. For 

simplicity (23) refers to the nodes, each node having 5 

mechanical dofs.  
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(23) 

1

.

.

2

1

×
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

uq

noden

node

node

D

This vector has all zero elements except the ϑx  and ϑy 

components of the grid nodes associated with the border of the 

piezoceramic element.   

PZT Direct Coupling Matrix 
 In this paragraph the expression of the Vpzt has been 

derived. The PZT direct coupling matrix that links piezo 

deformation to the voltage may be estimated by computing the 

second derivative of the transversal displacement w, from the 

following assumptions:  

• Bending-torsion coupling negligible;

• Axial vibrations negligible;

• Voltage not coupled to the axial vibrations;

• Electric field along the transversal direction;

• Constant charge in the surface;

• Isotropic material.

From the piezoceramic constitutive equations, according to the 

previous assumptions, we have:  

[ ]31 31 0
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xy

D d d

σ
σ
τ

⎧ ⎫
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(24)

where 
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⎣ ⎦

 

The corresponding in plane stresses, according to the Kirchhoff 

plate model, can be related to the transversal displacement in 

the classical way:  

2

2

2

2

y

w
z

x

w
z

yy

xx

∂

∂
−=

∂

∂
−=

ε

ε
(25) 

in which only flexural movement have been taken into account.  

Finally, the voltage has been related to the mechanical dofs 

(through the (i,j) coordinates of the nodes of interest) by the 

following relation (see Figure 2): 

( )
( )

1, , 1, , 1 , , 1

31 2 2

2 2

2 1

p p p s i j i j i j i j i j i j

pzt

E t t t w w w w w w

x yν
− + − ++ − + − +⎡

V g
⎤

= +⎢ ⎥− Δ Δ
 (26) 

⎣ ⎦

( )1,i j+

(( ) ), 1i j , 1i j− +

( )1,i j−

Figure 2. PZT sensing over the host structure 

The matrix Gqu (such that Vpzt = GquU) must be also obtained 

by assembling the nodes contributions: 

( )
( ) [ ]31 2 2 1

1

1 1
... ...

2 1

n
p p p s

qu l n

E t t t
G U g w

x yν ×

+ ⎛ ⎞
⎡ ⎤ = +⎜ ⎟⎣ ⎦ − Δ Δ⎝ ⎠

∑  (27) 

Equation (27) is a 1×n row where n is the total number of the 

mechanical dofs. Each elements of this vector are null except 

those corresponding to the transversal displacement of the 

contact grid nodes indicated in Figure 2. The (22) can be 

written as: 

1

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

u up u uq

T

p up p

qu pzt

0

M U C U K D U

M C K

q q G C q

ψ ψ ψ
−

⎧ ⎫ ⎧ ⎫ ⎡ ⎤− F⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧
⎪ ⎪ ⎪ ⎪ ⎢ ⎥

⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥− + + − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎪ ⎪
⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎭

0

 (28) 

THE CIRCUIT PARAMETERS   

 To finally describe the circuit, the R and L representing 

respectively the inductor and the resistor components, have 

been added to the model. The final expression of the dynamics 

equations for the coupled system is the following one: 

1

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

u up u uq

T

p up p

qu pzt

M U C U K D U

M C K

L q R q G C q

ψ ψ ψ
−

⎧ ⎫ ⎧ ⎫ ⎡ ⎤− F⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧
⎪ ⎪ ⎪ ⎪ ⎢ ⎥

⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥− + + − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎪ ⎪
⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎭

(29) 

The integration in time domain provides the response of the 

system with and without control for the mode of interest. 

Let us briefly describe the behaviour of the switch control, in 

order to define the best values of the parameters. The 
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piezoelement, generally in open circuit state switches to short 

circuit state for a fraction of the considered excitation period. 

During the closed circuit state, the inductance allows a charge 

inversion on the PZT electrodes (see Figure 3).  

Figure 3. PZT charge during the switch control for the first 

resonance frequency 

Figure 4. Time evolution of the switch signal 

In other words, when the charge is inverted, the piezo can 

perform a local strain actuation in phase opposition with 

respect to the structural strain. This phenomenon generates 

damping through a “pulse train” signal, in Figure 4 the switch 

signal synchronized with the maxima strain. 

The electrical oscillation should be designed to be 

“independent” on the structure dynamics, that is to say it must 

be “enough” high if compared with the highest mechanical 

resonance frequency to be controlled. Previous results [4-9] 

show a good behavior for a switching period of 1/10 of the 

highest resonance frequency to be controlled.  

The circuit pulsation ωel is simply related to Cpzt and L through 

the well known relation: 

LCpzt

mechel

1
10 == ωω (30)

Moreover, since the working principle of the SSC system is 

characterized by fast state variations, due to the electric circuit 

quick commutation times, the system behaviour will suffer a 

continuous transient regime. In what follows a computation in 

the time domain will be performed using a direct implicit 

numerical scheme of the Newmark family algorithm will be 

used. 

The transient structural output is computed using a couple of 

equations, assuming the short circuit/open circuit state. The 

integration method may be schematized as follows (Figure 5). 

Initial conditions 
open circuit 

Time increment 

Newmark  
integration 

Strain maxima 
detection 

oc cc
switch 

[ ] [ ]
[ ] [ ]
[ ] [ ]oc

oc

oc

KK

CC

MM

=

=

= [ ] [ ]
[ ] [ ]
[ ] [ ]

cc

cc

cc

M M

C C

K K

=
=
=

Figure 5. SSC-Newmark integration method flow chart 

As illustrated in the previous flowchart, after the time 

integration performed by a Newmark algorithm, the maxima 

are detected through a standard sine signal inversion procedure. 

When a maximum of strain is reached, the circuit is closed 

(Closed-Circuit configuration). The circuit remains in this state 

for the designed time interval. If no maxima are detected,  the 

system is switched to an Open-Circuit configuration. In the 
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following Table 1, are summarized the electrical parameter 

adopted in the numerical simulation of the control: 

State OC CC

Electrical frequency - 10 × Mech Freq 

R (Ohm) 1010 100

L (Henry) - see equation (30) 

Cpzt (Farad) 221×10-9 221×10-9 

PZT 

AIR 

PLATE 

Table 1. Open and short circuit parameters 

TEST CAMPAIGN: DESCRIPTION AND RESULTS 

 Referring to the experimental test [3], the system consists 

of the same rigid cavity filled with air with, with an aluminium 

plate with all clamped edges at one end, and a PZT patch 

bonded in the centre. Let us notify that in our model the 

thickness of the plate and that of the PZT are of 1 mm and 0.5 

mm, respectively. Moreover, let us recall that we are dealing 

with a semi-active control system with no damping layer added 

to the model, differently by [3]. In the following figure (Figure 

6) is sketched the acoustic cavity:

Figure 6. Acoustic cavity to be modelled with finite elements 

Table 2, 3 and 4 define the geometrical and mechanical 

characteristics of the test specimen: 

PLATE 

Material Alluninum 7075-T6 

In-plane dimensions (m) 0.30×0.30 

Thickness (m) 0.001 

Young modulus (GPa) 72 

Poisson ratio 0.33 

Density (kg/m3) 2700 

Table 2. Plate mechanical and geometrical parameters 

FLUID BOX 

Material Air 

Dimensions (m) 0.30×0.30×0.75 

Sound velocity (m/s) 340 

Density (kg/m3) 1225 

Table 3. Fluid geometrical and physical parameters 

PZT 

Material PPK-11 Stettner 

In-plane dimensions (m) 0.05×0.05 

Thickness (m) 0.0005 

Young modulus (GPa) 59 

Poisson ratio 0.34 

Density (kg/m3) 2700 

g31 (Vm/N) 8.0e-3 

d31 (C/N) 3.5e-10 

Table 4. PZT mechanical and geometrical parameters 

Modal analysis 
 In order to validate the finite element implementation of 

the proposed model, in what follows are presented the 

computation of the eigenvalues of the plate, the cavity and the 

coupling system respectively, according to the main finite 

element characteristics in the following tables (see Tables 5, 6): 

PLATE FEM 

Finite Element QUAD4 

Mesh discretization 10×10 

N° nodes 121 

N° constrained nodes 40 

Total number of dofs 486 

Constrained type Four clamped edges 

Table 5. Plate finite element model parameters  

Mode_1 Mode_2

7



Mode_3 Mode_4

Figure 7. First four modal shapes of the clamped plate 

FLUID BOX FEM 

Finite element HEXA8 

Mesh discretization 10×10×25 

Total number of  dofs 3146 

Table 6. Fluid finite element model parameters 

Mode_1 Mode_2 Mode_3 Mode_4

Figure 8. First four air cavity modal shapes 

PLATE Freq (Hz) FLUID Freq (Hz) F-S Freq (Hz) 

Nastran Exact Nastran Exact Nastran 

99 95 213 219 96 

201 197 432 438 200 

201 197 569 576 200 

290 285 569 576 217 

Table 7. Eigenfrequencies 

The previous Table 7 presents the first four eigenfrequencies 

for the system. The exact solutions are referred to Blevins [13]. 

Of course more accordance can be achieved through a refined 

mesh discretization. In Figure 9 is sketched the model with the 

external excitation and the location at witch the vibrations and 

sound pressure level will be detected.  

Figure 9. Acoustic cavity: FEM and boundary conditions 

SSC results in time domain 
 The plate is excited with a pure sinusoidal wave at the first 

resonance frequency. The vibration output is detected in the 

centre of the plate where the displacement reaches a maximum; 

the pressure level is detected inside the cavity along the axial 

line of the cavity at 15 cm from the plate. The structural and 

pressure level are plotted in time domain. Moreover, the 

damping capability of the SSC is evaluated by: 

1020log co

nc

A
d

A
=

where A is the amplitude of the signal and the subscript co and 

nc refers to the controlled and non controlled system status.  

In the Figures 10 to 14 the results for the first mode have been 

plotted. Previous results [4] performed on the structural 

damping through the SSC technique shows wide band control 

efficiency. In the present work, since the goal has been to study 

the feasibility of the semi passive control on the noise 

reduction, just the first mode has been processed. 

A first test is carried out without structural damping showing 

just the effect of the perturbation introduced by the circuit. In 

Figure 10, two plots have been presented, the first on the 

structural displacement and the second on the interior pressure 

level. 

In the second step, a proportional damping is added to the 

system being the structural damping coefficient ξ as 0.01. 

Again results have been reported in time domain with the 

relative spectrum signal for both the structural displacement 

and pressure level (Figures 11 and 12). Finally, taking into 

account the experimental test of [8], voltage amplification is 

introduced, in order to enhance the damping performances of 

the synchronized switch control technique (Figures 13 and 14).  

Clamped plate 

P
F

P
S

F
ext

Fluid cavity 
x

z

y
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Mode 1: no structural damping 

Figure 10. Time evolution for the first frequency. 

Up: structural vibration; Down: pressure level 

The results plotted in Figure 10 refers to the time evolution of 

the displacement of the plate detected in the central node and to 

the sound pressure level detected at a distance of 15 cm from 

the plate surface in the inward direction. The straight line is the 

evolution of the system without control while the dotted line is 

the evolution with the synchronized switch control. Since no 

damping has been added to the system a typical diverging 

behavior can be observed. Anyway the effect of the control on 

both the structure and the fluid has been achieved. 

Mode 1: structural damping with ξ=0.01 

Figure 11. First frequency. Up: time evolution of structural 

vibration; Down: spectrum of displacement 
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Figure 12. The first frequency. Up: time evolution of 

pressure level; Down: spectrum of pressure 

The results plotted in Figure 11 refers to the time evolution of 

the displacement of the plate detected in the central node and 

the results of Figure 12 refers to the sound pressure level 

detected at a distance of 15 cm from the plate surface in the 

inward direction. The straight line is the evolution of the 

system without control while the dotted line is the evolution 

with the synchronized switch control. In this test a proportional 

damping is added to the system, being the structural damping 

coefficient 0.01. The effect of the control on both structure and 

fluid has been achieved, and after the typical transient period, a 

regime condition can be observed. Some beatings can also be 

observed in the sound pressure level evolution. This 

phenomenon can be easily justified observing the pressure 

spectrum plot. It is possible to note the second pick at 210 Hz 

and the third pick at 430 Hz that shows the structural excitation 

along the z direction, has been able to excite the first two fluid 

modes.   

Mode 1: structural damping with ξ=0.01 and voltage 

amplification 

Figure 13. The first frequency. Up: time evolution of 

structural vibration; Down: spectrum of displacement. 
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Figure 14. The first frequency. Up: time evolution of 

pressure level; Down: spectrum of pressure 

The results plotted in Figure 13 refers to the time evolution of 

the displacement of the plate detected in the central node and 

the results of Figure 14 refers to the sound pressure level 

detected at a distance of 15 cm from the plate surface in the 

inward direction. The straight line is the evolution of the 

system without control while the dotted line is the evolution 

with the synchronized switch control. In this test the same 

proportional damping of the previous test has been left to the 

system, but now some voltage amplification is introduced. 

In the table below (Table 8) the damping effect is expressed in 

dB for the first resonance frequency at different voltage driving 

source. 

Mode 1st 1st 

Gain Voltage 1 2

Vibration (dB): node 81 3.31 9.24 

SPL (dB): node 1119 3.15 9.04 

Table 8. The vibration and pressure level reduction in dB at 

different voltage driving source 

CONCLUSIONS  

 In this paper we have presented numerical results 

concerning vibration reduction of structural-acoustic systems 

using the synchronized switch control technique. The 

experiments showed that reduction of vibrations can be 

achieved for the first resonance frequency using piezoelectric 

patch on the centre of the plate, connected to the RL electrical 

components. No optimization process has been done to 

determine the best position for the actuators to a multimodal 

control purpose. In this work just the first modal shape can be 

optimally controlled, according to the maximum strain of the 

plate (let us recall that for the particular geometry and 

boundary conditions the maximum is reached in the center of 

the plate). The results show also that some beatings are present 

due to the excitation of the first and second resonance 

frequency of the fluid. Some amplification has been added to 

drive the PZT actuator in order to augment the effectiveness of 

the control, taking into account the results presented in [8]. 

In order to improve the damping capability of the semi passive 

control system here adopted, the further improvement steps 

should be taken into account:  

• piezoelectric location on the structure is a fundamental

point that has to be considered in order to improve the

damping;

• the switch mechanism introduces a high frequency

noise that can be reduced using viscoelastic

treatments.
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