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1Université de Lyon, UCBL, CNRS, LGL-TPE, 69622 Villeurbanne, France
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SUMMARY6

7

Seismic imaging techniques such as elastic full waveform inversion (FWI) have their8

spatial resolution limited by the maximum frequency present in the observed waveforms.9

Scales smaller than a fraction of the minimum wavelength cannot be resolved, and only a10

smoothed version of the true underlying medium can be recovered. Application of FWI to11

media containing small and strong heterogeneities therefore remains problematic. This12

smooth tomographic image is related to the effective elastic properties, which can be13

exposed with the upscaling or homogenization theory of wave propagation. We study14

how this theory can be used in the context of FWI. The seismic imaging problem is15

broken down in a two-stage multiscale approach. In the first step, called homogenized16

full waveform inversion (HFWI), observed waveforms are inverted for a macro-scale, fully17

anisotropic effective medium, smooth at the scale of the shortest wavelength present in18

the wavefield. The solution being an effective medium, it is difficult to directly interpret19

it. It requires a second step, called downscaling or inverse homogenization, where the20

macro-scale image is used as data, and the goal is to recover micro-scale parameters. All21

the information contained in the observed waveform is extracted in the HFWI step. The22



2 N. Hedjazian, Y. Capdeville, T. Bodin

solution of the downscaling step is highly non-unique as many small scale models may23

share the same long wavelength effective properties. We therefore rely on the introduction24

of external a priori information, and cast the problem in a Bayesian formulation. The25

ensemble of potential fine-scale models sharing the same long wavelength equivalent is26

explored with a Markov chain Monte Carlo algorithm. We illustrate the method with27

a synthetic cavity detection problem: we search for the position, size and shape of void28

inclusions in a homogeneous elastic media, where the size of cavities is smaller than29

the resolving length of the seismic data. We illustrate the advantages of introducing30

the homogenization theory at both stages. In HFWI, homogenization acts as a natural31

regularization helping convergence toward meaningful solution models. Working with32

fully anisotropic effective media prevents the leakage of anisotropy induced by the fine33

scales into isotropic macro-parameters estimates. In the downscaling step, the forward34

theory is the homogenization itself. It is computationally cheap, allowing us to consider35

geological models with more complexity (e.g. including discontinuities) and use stochastic36

inversion techniques.37

1 INTRODUCTION38

Seismic tomography aims at quantifying elastic properties in the Earth’s interior using seis-39

mic data measured at the surface. It can be formulated as an inverse problem, where un-40

known parameters defining the Earth model are sought in order to replicate the observed41

data. Here we consider the case of full waveform inversion, where the seismic data is the42

seismogram waveform. The primary applications range from the exploration scale to image43

the subsurface, up to the global scale to study the Earth’s deep interior (Tarantola 1984;44

Brossier et al. 2009; Tape et al. 2010; Fichtner 2010; Bozdağ et al. 2016; Virieux et al.45

2017), while applications at the engineering scale or in medical imaging start to develop46

(e.g. Bernard et al. 2017; Nguyen & Modrak 2018). Replicating the observations requires47

to compute synthetic seismograms, which constitutes the “forward problem”. For example,48

waveform modeling can be performed using approximated methods, based on ray theory,49

normal mode summation, or on the Born approximation (Woodhouse & Dziewonski 1984;50
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Devaney 1984; Li & Romanowicz 1996), or more recently by numerically solving the full51

wave equation, leading to full waveform inversion (FWI) methods (Fichtner 2010; Virieux52

et al. 2017). In the standard approach, the misfit between simulated and observed data is53

minimized using a local optimization strategy based on data derivatives. Global parameter54

search methods are still out of reach for most real size 3D problems (Käufl et al. 2013). Once55

the misfit reaches a minimum, hopefully a global minimum, we obtain a quantitative im-56

age of the material elastic properties which aims at being interpreted in terms of geological57

structures.58

However, most waveform tomography problems represent an ill-posed inverse problem,59

where the solution is potentially non-unique. Many strategies have been developed to ensure60

convergence toward a meaningful solution. These include, among others, building a good61

starting model with alternative imaging methods (such as travel-time tomography), various62

regularization methods in the parameter space (smoothing, prior information), multiscale63

imaging by gradually increasing the frequency content of the waveforms (Bunks et al. 1995;64

Brossier et al. 2009), or constructing more sophisticated misfit functionals (e.g. Bozdağ et al.65

2011; Métivier et al. 2016). As a result, tomography, and in particular its interpretation,66

requires a lot of expertise. A recurrent discussion is to distinguish the features in the solution67

model that are properly resolved and required by the data, from those introduced by the68

specificity of the implementation, such as an initial model or an a priori constraint on the69

model parameters (promoting smoothness or sparsity, imposing discontinuities or symmetries70

in the elastic tensor, etc). Also, compromises have often to be made between the fit to the71

data and the realism of the image, or between model complexity and model constraint.72

Some of these aspects originate from two fundamental limitations. (i) Due to instrumen-73

tal limitations or to the high computational cost of waveform modeling, the seismic data74

are restricted to a finite frequency range. (ii) The imaged media are usually multiscale,75

but seismic inversions attempt to recover only a finite, limited number of model parame-76

ters. Accordingly, seismic imaging has difficulties to identify the different scales present in77
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the seismic signal. A common understanding approximates that the spatial resolution of a78

tomographic image is, at best, the smallest considered wavelength.79

We take interest in imaging problems involving high contrast, small-scale heterogeneities,80

especially with discontinuities in elastic properties. This comprises, for example, imaging81

the subsurface to detect faults, fluids, karsts or tunnels, and also non-destructive testing82

to detect flaws or rebars in concrete at the engineering scale. To address these problems,83

some possible methods are based on single-scattering formulations (e.g. Rose 1989), or are84

based on migration using time reversal and an imaging condition (Almuhaidib & Toksöz85

2015; Kocur et al. 2016). In particular, the present study deals with a cavity detection86

problem. This is usually performed with P- or Rayleigh-wave diffraction imaging (Grandjean87

& Leparoux 2004). These methods usually require complex processing of the data, to separate88

the different waves that tend to arrive simultaneously, or to handle multiple scattering. Hence89

FWI methods, in both acoustic and elastic regimes, have been investigated (Bretaudeau et al.90

2013; Tran et al. 2013; Seidl & Rank 2016; Nguyen & Modrak 2018). However, imaging such91

structures requires a fine-scale description of the medium, which makes the computational92

cost of modeling the full wavefield prohibitive.93

An appropriate tool to mitigate these issues is homogenization or upscaling of the elas-94

tic wave equation. It refers to an ensemble of methods able to compute long wavelength95

effective equivalents to a fine scale elastic medium. The effective medium does not contain96

heterogeneities smaller than a given minimum wavelength, but produces the same wavefield97

as the original medium in a limited frequency band. The historical example is the effective98

equivalent of a stratified media: an explicit formula was derived by Backus (1962), who99

showed that a stack of horizontal isotropic layers will be equivalent, at large scales, to a100

homogeneous hexagonal anisotropic medium with vertical axis of symmetry. The initial idea101

behind the homogenization theory is to reduce the computational cost of waveform model-102

ing in a complex medium. By calculating a smooth equivalent medium, it avoids the need103

of solving the wave equation on a mesh containing all the fine scales and the possible dis-104

continuities. In the present work, we proceed further and study how homogenization theory105
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can facilitate the inverse problem in seismic imaging. This tool being developed for elastic106

media, we restrict ourselves to this case in the following, but an equivalent for the acoustic107

case could be considered.108

In the context of elastic FWI, Backus theory can be used to constrain the solution space109

to effective models (Capdeville et al. 2013), or to ensure that fine-scale model updates pre-110

serve long-wavelength properties of the model (Afanasiev et al. 2016). Here, we will consider111

the more general non-periodic homogenization (Capdeville et al. 2010; Guillot et al. 2010),112

a technique able to compute the effective equivalent of any given media, without the need113

for spatial periodicity, scale separation or statistical invariance. It enables to properly pose114

FWI as a multiscale inverse problem (Fichtner et al. 2013b). This is especially important for115

attenuation and anisotropy that are scale-dependent properties. Similar ideas are present in116

the field of porous media and subsurface flow, where mostly elliptic equations are consid-117

ered. For example, one multiscale inverse problem is to determine the medium properties118

(porosity, permeability, conductivity) when large micro-scales fluctuations are present. Ho-119

mogenization theory helps at various levels (regularization, uncertainty estimation), and a120

natural procedure is to search for an effective model solution of the inverse problem (Nolen121

et al. 2012).122

We propose to solve a seismic imaging problem with the following method (figure 1): we123

first perform a waveform inversion where we aim to recover a macro-scale effective (or homog-124

enized) elastic medium, based on the homogenized full waveform inversion method (HFWI)125

developed by Capdeville & Métivier (2018). Next, we define a second inverse problem where126

the obtained macro-scale solution plays the role of the data and the homogenization op-127

erator the role of the forward model. That is, we search for micro-scale models having an128

effective equivalent close to the macro-scale solution. HFWI and subsequent inverse homog-129

enization can therefore be seen as a two-stage resolution method of a multiscale inverse130

problem (Frederick & Engquist 2014).131

Let us first synthesize some elements and results of the HFWI method. For all natural132

media considered in seismic imaging, it is possible to define a minimum wavelength λmin,133
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associated with the maximum frequency of the waveform data. The spatial wavelength under134

which structures cannot be resolved by FWI is directly related to λmin. We define a constant135

wavelength λ0, setting the separation between the fine and the large scales. The objective136

of HFWI is to recover, from the waveform data, an effective model at the scale of λ0.137

Knowing the diffraction resolution limit of a FWI is about λmin/2 (e.g. Huang & Schuster138

2014), a good choice is λ0 ≥ λmin/2, because smaller scales are poorly resolved by the data.139

Capdeville & Métivier (2018) consider numerical examples of a FWI using either isotropic140

or anisotropic parameters, adapting the space discretization to maintain identical number141

of free parameters. They show that the FWI solution may vary depending on the chosen142

parametrization. However, these different solutions have the same effective equivalent at143

the scale of λ0 = λmin and are in good agreement at the scale of λ0 = λmin/2. Hence,144

introducing homogenization in the FWI problem leads to the following observation: while145

FWI is parametrization and mesh dependent, HFWI is not. If we assume that the real,146

multiscale Earth is solution of a given FWI problem (this may not be true due to the147

imperfection of the inversion algorithm), its effective equivalent is also a solution. As the148

real Earth is inaccessible, Capdeville & Métivier (2018) suggest to seek for an effective149

medium and thereby reduce the non-uniqueness of the FWI solution.150

By definition, the HFWI solution model is smooth and presents apparent anisotropy.151

Because of this spatial simplicity, it is appropriate for fast data prediction. It can already152

prove useful in this form, for example regarding source localization, but it is poorly suited153

to geological interpretation. For this purpose, we are required to solve a second problem,154

the downscaling or inverse homogenization, which is the main subject of this study. Some155

previous examples of inverse homogenization examine the general case of elliptic equations156

(Hoang & Quek 2019), or, in the FWI context, porosity using seismic attenuation (Dupuy157

et al. 2016). In the 1D case, Bodin et al. (2015) proposed a Bayesian inverse homogenization158

strategy, where the ensemble of 1D fine-scale elastic models equivalent to a tomographic159

profile is explored.160

In this study, we show how the effective anisotropy recovered by the HFWI solution model161
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can be used to resolve small-scale isotropic heterogeneities. The forward operator in the162

inverse homogenization problem is the non-periodic elastic homogenization (Capdeville et al.163

2010; Guillot et al. 2010). Thus, no hypothesis such as periodicity or stochastic invariance is164

required on the fine-scale medium. The misfit is defined by a distance between two effective165

elastic media: the HFWI solution (taking the role of the observations) and the effective166

equivalent of the fine-scale model (the predictions). The space of fine-scale models is defined167

with an object-based approach to reduce the number of inference parameters. Because the168

solution could be non-unique, we use a Bayesian formalism, where an ensemble solution is169

sampled with a Markov-Chain Monte Carlo (MCMC) algorithm, thus allowing us to estimate170

uncertainties.171

We test the method in the case of a 2D homogeneous medium containing cavities. The172

objective is to recover the position, size and shape of the cavities. The setup is representative173

of near-surface or engineering problems, with high wave frequencies and short acquisition174

times. The rationale of this choice is also the prospect to validate the methodology using175

reduced-scale experiments in the laboratory (Pratt 1999; Pageot et al. 2017).176

We observe the following advantages to split the multiscale inversion into two steps: in177

the first step, recovering an homogenized elastic medium is in general a better-posed problem178

that conventional FWI, because the space of acceptable elastic models is contained. We only179

need to search for smooth solution models, the effective anisotropy contains the information180

on the small-scale structure seen in the waveform data. This lowers the computational cost of181

wave propagation if the true medium contains fine-scale heterogeneities or discontinuities. It182

also mitigates artifacts induced by incorrect parameter restrictions. The level of smoothing is183

naturally given by the wavelength of homogenization. We introduce as little prior information184

as possible at this stage, as it would require more advanced mathematical treatments of185

wave propagation and usually greater computational cost. The second step, the inverse186

homogenization, can be less well-posed. But it presents the great advantage to having a187

much cheaper forward model, which makes possible the use of statistical or global search188

approaches. For example, using a Bayesian framework facilitates the incorporation of a priori189
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Figure 1. Notations used for the two-stage method proposed here. We invert the waveform data d

for a macro-scale effective medium m∗. m∗h is an intermediate product of HFWI required by the

discretization of the problem. Next, we seek for micro-scale models m having a effective equivalent

close to m∗. H designates the homogenization operator.

information. Furthermore, the data is now “localized”: the effective properties at one location190

depend only on the fine-scale properties in the neighborhood. This potentially allows to solve191

the problem using a large ensemble of tools that are prohibited in waveform inversion (e.g.192

Nawaz & Curtis 2016).193

2 HOMOGENIZATION THEORY194

This section summarizes the elastic homogenization theory used in this study. More detailed195

descriptions can be found in Capdeville et al. (2010); Guillot et al. (2010). We define the en-196

semble of elastic mediaM. Each m ∈M is a vector of micro-scale parameters characterized197

by its density ρ and its elastic tensor c for every position in the medium. In the following,198

M∗ is the space of effective media, and effective quantities are noted with a ∗.199
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2.1 Homogenized wave equation200

Homogenization theory refers to an ensemble of methods that aims at “averaging” the fine201

scale properties of a heterogeneous medium, i.e. computing its effective properties at larger202

scale in a mathematically rigorous and consistent way for a given set of equations. Such203

methods have been widely developed for static elastic problems for media with an explicit204

separation of scales, in particular for periodic media (e.g Bensoussan et al. 2011). In the205

context of wave propagation, elastic heterogeneities smaller that the minimum wavelength206

are expected to only have an effective impact on the resulting wavefield. Hence the fine-scale207

medium is beneficially replaced by a long wavelength effective equivalent.208

In the case of periodic media, of period λ for example, the effective medium and equations

can be obtained with the two-scale homogenization method (e.g. Sánchez-Palencia 1980). It

is an asymptotic method based on the following small parameter:

ε =
λ

λmin

, (1)

where λmin is the minimum wavelengh of the wavefield. It makes it possible to find the209

effective solution and more by solving a series of partial differential equations (called the210

cell problem), most of the time numerically. It can be mathematically shown that the true211

solution weakly converge toward the effective solution as ε tends toward zero.212

For most geophysical media, the periodic assumption is not valid and the extension of213

the two-scale homogenization to the non-periodic case is not trivial. Indeed, there exist no214

natural scale separation λ0 in the elastic medium. To solve this difficulty, a solution based215

on the assumption that a minimum wavelength λmin = VS,min/fmax exists, associated with216

the maximum frequency contained in the waveform fmax and the slowest velocity in the217

medium VS,min, has been developed (Capdeville & Marigo 2007; Capdeville et al. 2010).218

In this method, the separation of scale is not performed with respect to the medium but219

to λmin. We therefore introduce λ0 as a user-defined parameter that sets the separation220

between scales considered as “fine” (or microscopic) and “large” (macroscopic). The choice221

of λ0 simply determines the minimum length-scale included in the given medium. A smaller222
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λ0 corresponds to a more detailed structure thus a more accurate solution for the effective223

displacement u∗, whereas a larger λ0 involves a smoother medium and imprecise solution.224

We can introduce:225

ε0 =
λ0
λmin

, (2)

which measures the scale separation position in the seismic model.226

We usually consider that the wavefield “sees” the medium at the scale λmin/2, that is227

ε0 = 0.5. Medium heterogeneities of scale λ0 � λmin are seen by the wavefield only through228

their homogenized/effective properties. Nevertheless, for some strongly scattering media, it229

can happen that an ε0 smaller, or even much smaller, than 0.5 might be required to model230

accurately a long coda wave. We refer to Capdeville et al. (2010) for numerical examples.231

In the inversion context, that is recovering the elastic medium properties knowing an232

observed displacement u at the surface, the image reconstruction becomes challenging when233

approaching this λmin/2 FWI resolution limit. Thus a value ε0 ≥ 0.5 might be preferable234

in most cases (for a more comprehensive discussion, see Capdeville & Métivier 2018). The235

value of ε0 ∼ 0.5 is chosen in this study.236

Homogenization theory introduces two space variables, macroscopic variations with the237

variable x, and microscopic variations with x
ε0

, and assumes they can be treated as indepen-238

dent variables. A physical quantity depending on macroscopic and microscopic variations239

and on time, such as displacement, is written u(x, x
ε0
, t). The homogenized solution of the240

wave equation at the scale of ε0 is the leading order of the displacement asymptotic expan-241

sion and is written u∗. It can be demonstrated to be independent of the small scale variable242

x
ε0

. The asymptotic expansion to the first order of the true displacement is:243

u(x, t) = u∗(x, t) + ε0χ(x,
x

ε0
) : ε(u∗)(x, t) +O(ε0) . (3)

χ is a third order tensor called the first-order corrector, it does not depend on time thus244
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needs only to be known at receiver positions. [ε(u∗)]ij = 1
2
(∂iu

∗
j + ∂ju

∗
i ) is the strain tensor245

of the effective displacement. In practice, (3) is most of the time in O(ε20).246

One can show that the effective displacement u∗ is the solution of the effective wave

equation:

ρ∗ü∗ −∇ · σ∗ = f∗

σ∗ = c∗ : ε(u∗), (4)

ρ∗, c∗, σ∗ and f∗ are the effective density, elastic tensor, stress tensor and source term respec-247

tively. This equation is subject to effective boundary conditions, which are not explicited248

here (see Capdeville & Marigo (2012) for the treatment of boundary conditions). This equa-249

tion is analogous to the classical wave equation except that quantities have been replaced250

by their effective equivalent. In this study, we consider a region containing neither sources251

nor receivers, thus we also omit the treatment of the effective source f∗ and the first order252

corrector χ. Hence, the effective elastic medium is uniquely determined by its effective den-253

sity and elastic tensor. Once ρ∗ and c∗ have been determined (see the next section), one can254

solve the equation 4 using a standard wave equation solver. The accuracy of approximating255

u by u∗ is given by equation 3: solving the wave equation in the media m or in m∗ produces256

identical displacements up to the first order in ε0.257

2.2 The Homogenization operator258

To compute the effective medium properties, we introduce a low-pass filter operator noted259

Fλ0 (see Guillot et al. (2010) for its exact analytic definition). Any spatial field filtered by Fλ0260

does not contain spatial variations smaller than λ0. A “naive” averaging or homogenization261

would be to simply filter the density ρ and the elastic parameters c. However, this ”naive”262

solution as well as any other simple option such as filtering the compliance tensor (the263

inverse of the elastic tensor) or directly the seismic velocities are leading to poorly accurate264

solutions (Capdeville et al. 2010). In the case of a layered media, Backus (1962) showed265

that the correct effective medium is obtained by filtering non-linear combinations of the266
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fine-scale elastic parameters. In the general case, there exist no analytic solution to the267

effective properties. Using homogenization theory, they are obtained following the procedure268

described hereinafter.269

We define effective properties of an elastic model m ∈M at the scale of ε0 as m∗ = (ρ∗,270

c∗) ∈ M∗. m∗ is spatially smooth at the scale of ε0, or in other words it does not contain271

wavelengths smaller than λ0. Thus the space of effective model M∗ is a finite dimensional272

space. Its dimension is proportional to (fmax/ε0)
d with d the dimension (2- or 3-D) of the273

problem. In the following, the relation between the fine and large scales is summarized by274

the homogenization operator H:275

(ρ∗, c∗) = H(ρ, c). (5)

The operator H is non-linear and implicitly depends on ε0 and λmin. In practice, the

procedure to compute H comprises following steps:

(i) Find the initial guess corrector χlm
s . We solve an elasto-static equation called the cell-

problem in the homogenization vocabulary:

∇ · c : ε(χlm
s ) = −∇ · (c : (el ⊗ em)) (6)

with periodic boundary conditions, and ei, i ∈ {1, ..., d} the Cartesian unit vector along

dimension i.

(ii) Compute the effective density and elastic tensor:

ρ∗(x) = Fλ0(ρ)(x), (7)

c∗(x) = Fλ0(Hs) : Fλ0(Gs)
−1(x), (8)

with (Gs)ijkl = 1
2
(δilδjm + δjlδim) +

(
ε(χlm

s )
)
ij

and Hs = c : Gs.276

First step involves the resolution of an elasto-static problem, which we solve numerically277

with a the finite element method (Capdeville et al. 2010). Second step involves low-pass fil-278

tering with operator Fλ0 . This implies that the inverse problem (downscaling, i.e. recovering279

small-scale properties knowing the large-scale ones) is ill-posed.280
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3 HOMOGENIZED FULL WAVEFORM INVERSION281

We now present the elements of the homogenized full waveform inversion used in this study282

(Capdeville & Métivier 2018). We invert seismic waveforms d for a macro-scale effective283

medium m∗. The interest of the HFWI method is that a relation can be established between284

its solution and the true Earth model mt:285

m∗ ≈ H(mt), (9)

where H is the homogenization operator defined above. We will then use this equation to286

define the inverse homogenization problem.287

3.1 Parametrization in the full waveform inversion288

We consider the inverse problem of FWI. In general practice, the solution space is defined289

with a restricted number of mechanical parameters (for example only P-wave velocity or290

only isotropic parameters) and with a spatial discretization that might be different from the291

wave equation solver mesh. Here, we chose this solution space as the ensemble of effective292

elastic modelsM∗, the image ofM through the operator H, for which the parametrization293

is fully anisotropic (six independent elastic parameters in 2D, and 21 parameters in 3D).294

In the layered media case, the homogenization problem has an analytic solution, thus the295

effective medium can be explicitly parametrized with the Backus parameter vector (Capdev-296

ille et al. 2013). In the general case however, no explicit parametrization of the effective297

medium space M∗ is known yet. This means, if we suppose having a model m∗i ∈ M∗ at298

iteration i, the updated model mi+1 obtained with an iterative optimization algorithm is299

not necessarily inM∗. Hence, in practice, we rely on an approximate finite dimension model300

space M∗h, wide enough to capture the information in the waveform data, but such that301

H(M∗h) ⊂M∗ (figure 1).302

We define a model in M∗h with the notation m∗h. We chose to parametrize such model303

with a density ρ∗h and the full elastic tensor c∗h on a regular mesh, each cell containing a304
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polynomial approximation of degree Nh in each direction. In contrary to m∗, m∗h may not305

be smooth at the scale ε0: we may have m∗h /∈M∗.306

To ensure that the final model m∗f is in M∗, two strategies are possible. A first one is307

to project m∗hi+1 ∈ M∗h into m∗i+1 ∈ M∗ after each iteration, using H, and compute the308

next model i + 2 from m∗i+1. This method acts as a natural regularization of the problem.309

A second possibility is to compute each model iteration in the space M∗h and project only310

the final model m∗hf into m∗f ∈ M∗. We rely on the second method in all the inversions311

performed in this study, because the regularization at each step was not required to make312

the algorithm converge for our examples.313

3.2 Waveform inversion strategy314

Waveform observations ds(xr, t) originating from sources s are measured at receivers posi-315

tions xr. We replicate the waveform data by solving the elastic wave equation and extracting316

the displacement us(xr, t) at the receiver locations. Waveform modeling is performed with317

a 2D spectral element solver (Komatitsch & Vilotte 1998).318

For a fine-scale model m = (ρ(x), c(x)), the misfit function is defined as a least-squares319

distance between d and u:320

E(m) =
∑
r,s

∫ T

0

(ds(xr, t)− us(xr, t;m))2 dt. (10)

Similar equations E∗h and E∗ can be written by replacing m with m∗h or m∗ if the321

model is in M∗h or is projected into M∗ at each iteration. m∗h will be used in all the tests322

presented hereinafter.323

The misfit function is minimized using a standard damped Gauss-Newton iterative324

scheme. The updated model is defined as:325

mi+1 = mi +
(
(Fi)TFi + λiI

)−1
(Fi)T (d− u(mi)), (11)

where I is the identity matrix. The Fréchet derivatives Fi of the displacement u with re-326
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spect to model parameters mi are calculated with the adjoint state method (Tarantola 1984;327

Plessix 2006; Tromp et al. 2008). The approximate Hessian (Fi)TFi is damped by a param-328

eter λi which value decreases with iterations. Once the algorithm has converged, the final329

model m∗h is projected into m∗ = (ρ∗, c∗) ∈M∗ using the homogenization operator.330

4 INVERSE HOMOGENIZATION331

The term “downscaling” is mostly used in the field of meteorology and defines the procedure332

of inferring micro-scale (or high resolution) information from macro-scale (or low-resolution)333

variables. In the present study, the upscaling operator is H, and hence the downscaling is334

called inverse homogenization. The problem consists in recovering fine-scale information on335

an Earth model, knowing an estimation of its effective elastic properties m∗. Typically, m∗336

is the result of the HFWI method presented in the previous section. It allegedly contains337

all the information that could be retrieved from the waveforms. To further learn something338

about the true Earth mt, incorporation of a priori information is required. This can include339

additional data from a non-seismic origin, some known geological features, spatial statistical340

properties of the rocks, etc. We aim at solving the inverse homogenization using a Bayesian341

formulation, where the a priori information is provided as a probability distribution (e.g.342

Kaipio & Somersalo 2006). Thus the HFWI and inverse homogenization process is particu-343

larly suited to incorporate constraints from geostatistical models.344

4.1 Problem setting345

Depending on the level of a priori constraints, the solution of the downscaling problem might346

be highly non-unique, as many small-scale models can have the same effective equivalent.347

Therefore, we cast the problem in a Bayesian framework, where we look for an ensemble of348

plausible solutions. It is described by the following equation:349

c∗ = H(c) + ε, (12)
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understood in a statistical sense, i.e. where ε is a random variable representing the errors350

attributable to the approximate estimation of c∗ in the HFWI. c∗, defining the observed351

data, is the effective elastic tensor of m∗ obtained by HFWI. c is the elastic tensor of a352

microscopic scale model m. In this equation, the models are described only with their elastic353

tensor because we did not consider the density in the inverse homogenization. We neglect354

the theoretical errors of the operator H, expecting that it should be orders of magnitude355

smaller than ε if computed correctly.356

Properly defining the inverse homogenization with a Bayesian formulation amounts to357

obtain an accurate idea of the distribution for ε. An assumption on its structure is required.358

We follow the general practice and suppose ε to be multivariate-Gaussian distributed with359

zero mean and covariance matrix Σ. These assumptions are discussed hereinafter and in the360

synthetic tests presented later on.361

The distribution for ε characterizes the mismatch between the solution of the HFWI m∗362

and the effective properties of the true earth m∗t , i.e. the meaning of ≈ in equation 9. Errors363

in the HFWI solution may have multiple sources, such as: noise on the waveform data, lack of364

data coverage, damping, convergence toward a local minima, etc. Solving the full waveform365

inversion using a global search is not achievable in real scale problems. They are solved with366

a local optimization strategy (here the Gauss-Newton method) returning a unique “best-fit”367

solution model. Therefore, HFWI shares the same difficulties as any other FWI methods368

to find a solution close to the global minimum. Still, because HFWI reduces the space of369

solution models to the effective ones, it at least mitigates the ill-posedness induced by a poor370

parametrization (Capdeville & Métivier 2018).371

If the global minimum is achieved, we can estimate “how far” m∗ is from m∗t by comput-372

ing local uncertainties associated to this solution. This is a widespread subject of research373

in seismic tomography. Broadly speaking, local uncertainties are usually characterized by a374

covariance matrix Σ. Methods developed in the FWI context to estimate Σ rely on low-rank375

matrix approximations (Bui-Thanh et al. 2013; Thurin et al. 2019). Σ is strongly linked with376

the Hessian matrix (Fichtner & Trampert 2011). As pointed out by Bui-Thanh et al. (2013),377
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the Gauss-Newton part of the Hessian FTF is a good approximation of the full Hessian,378

especially if the medium is smooth. It could thus be an appropriate choice to estimate Σ.379

However, in the HFWI formulation used here, we obtain FTF for the M∗h space, while we380

look for uncertainties in the M∗ space. A proper estimation of Σ, e.g. by upscaling of the381

Hessian matrix into M∗, will be the subject of future work.382

4.2 Bayesian inference383

The solution of the Bayesian inverse problem is described by the posterior probability density384

of the model parameters knowing the observations π(c|c∗). Using the Bayes formula, we write385

the posterior as (Kaipio & Somersalo 2006):386

π(c|c∗) ∝ πpr(c) exp (−φ(c)) , (13)

where πpr(c) is the prior distribution on c, and φ(c) the negative log-likelihood (the Bayesian387

equivalent of the misfit function).388

4.3 Likelihood function389

Using the Gaussian additive noise model of equation 12, the negative log-likelihood is:390

φ(c) =
1

2
(c∗ −H(c))TΣ−1(c∗ −H(c)), (14)

where c is expressed as a data vector. In the following 2D examples, this corresponds to the391

parameters (c1111, c1122,
√

2c1112, c2222,
√

2c2212, 2c1212) to take into account the symmetries in392

the elastic tensor.393

The choice of Σ−1 is crucial in estimating the posterior uncertainties on the model param-394

eters. To ensure that our estimate Σ̂−1 is reasonable, we only estimate relative uncertainties395

Σ̂r, and introduce a scaling parameter h setting Σ = h2Σ̂r, where h will be treated as an un-396

known variable in the problem, following the so-called hierarchical Bayes approach (Gelman397

et al. 2013). The role of h is to account for a misestimation in the amplitude of errors. An398
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inferred value of h close to 1 shows that the estimation Σ̂r given by the user is good. A value399

h > 1 indicate that some additional parts of the data are not explained by our modeling,400

due for example to theoretical errors. In this case, the negative log-likelihood becomes:401

φ(c, h) = N log(h) +
1

2
(c∗ −H(c))T (h2Σ̂r)

−1(c∗ −H(c)), (15)

where both c and h are unknown to be solved for.402

In order to compute φ, the next step is to estimate the inverse covariance matrix Σ̂−1r of403

the probability distribution associated to ε.404

For a solution space of dimension N , we need to estimate the N × N parameters. For405

now, we rely on a sampling-based estimation of Σ̂−1 similar to the approach in Hansen et al.406

(2014). It consists of first generating a large ensemble of error realizations, from which a407

Gaussian model is inferred. We generate M noise realizations on the waveform data d and,408

for each, estimate a HFWI solution. As such, we only consider errors associated to the noise409

in waveforms and mapped to the HFWI solution through the tomographic inversion. First,410

we calculate the empirical covariance matrix S of the M HFWI solution models. In order to411

get a stable inverse of S, a regularized version Σ̂r is computed using the shrinkage formula412

(Ledoit & Wolf 2004):413

Σ̂r = (1− α)S + α
TrS

N
I, (16)

where I is the identity matrix. It represents an optimal linear combination of S and I to414

minimize the mean squared error between Σ̂ and the true covariance. The formula reduces415

the ratio between the maximum and minimum eigenvalues while preserving the mean of all416

eigenvalues, thus a sufficiently large α ensures that Σ̂r is well-conditioned. The parameter417

α can also be interpreted as a trade-off between bias and variance for the estimator Σ̂r. We418

chose the value of α adapted to Gaussian distributed data (Chen et al. 2010).419
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4.4 Prior information420

The prior distribution πpr in equation 13 encodes the information known about the model421

m before the inversion. It is therefore widely dependent on the tackled problem. Basically,422

any geostatistical model could be used for πpr. The Bayesian formulation permits a large423

range of applications for the inverse homogenization.424

Prior information is enforced in two different ways: 1) by choosing a specific parametriza-425

tion of the model using geometrical objects, and 2) by choosing a relevant prior probability426

distribution on these parameters. Translated into notations, the elastic model c is con-427

structed from a vector Z of n latent variables. This process can be described as a function428

c(Z). Subsequently, a prior distribution is imposed directly on Z. Hence, we will write the429

prior distribution πpr(Z) and keep a similar notation for the other probability distributions430

described hereinafter.431

Because this study deals only with synthetic tests, construction of realistic priors is out432

of scope. We will consider a somewhat idealized prior distribution, using an object-based433

parametrization made of ellipses. The vector Z contains parameters describing the position434

and shape of each object, as well as the hyper-parameter h, the unknown scaling factor of435

the covariance matrix. For the problem at hand, the ellipses are representing cavities. They436

are described by their position (xi, yi), the long and short axes (ri1, r
i
2) and the angle from437

horizontal αi for each ellipse 1 ≤ i ≤ ne. All parameters are independent. We use a uniform438

prior distribution for the object parameters, and a Jeffrey prior for h (i.e. proportional to439

1/h).440

4.5 Sampling algorithm441

The posterior distribution is sampled using the reversible-jump Markov chain Monte Carlo442

(rj-MCMC) sampler (Green 1995). Rj-MCMC is a transdimensional sampler, where the443

number of parameters(here the number of elliptical cavities) is treated as an unknown in444

the problem. In our case, it amounts to consider a varying number ne of objects. Trans-445

dimensional inversions are popular in seismic imaging, as the spatial discretization of the446



20 N. Hedjazian, Y. Capdeville, T. Bodin

solution space is adapted to data quality and coverage (Sambridge et al. 2013). The present447

parametrization allows to make some simplifications in the algorithm, a more complete de-448

scription of the rj-MCMC algorithm for seismic imaging is outlined in Bodin & Sambridge449

(2009).450

MCMC algorithms aim at generating samples from a target probability distribution. In451

a Bayesian inverse problem, we want to sample from the posterior distribution π of equation452

13. At each step of the Markov chain, a new sample Z′ is generated as a small random deviate453

from the previous parameter vector Z, according to a proposal distribution noted q(Z′|Z).454

From this proposed model Z′, we construct the elastic tensor c′, and write its corresponding455

prior and negative log-likelihood πpr(Z
′) and φ(Z′). The Markov chain converges to the456

posterior distribution if the acceptance probability of Z′ is:457

αaccept(Z
′|Z) = min

{
1,

πpr(Z
′)q(Z|Z′)π(Z′|c∗)

πpr(Z)q(Z′|Z)π(Z|c∗)
× |J|

}
(17)

J is the Jacobian matrix of the transformation from Z to Z′. Its determinant |J| is458

equal to 1 for the transformations considered in this study (see Bodin & Sambridge (2009)459

for details). We use a “burn-in” period to ensure the convergence of the Markov chain.460

That means, the first samples are discarded until the Markov chain is expected to have461

reached its equilibrium. The following samples Z (and hence c) constitute samples from the462

posterior distribution π, from which any statistical quantity such as mean or variance can463

be computed.464

The proposal distribution comprises the following types of moves:465

(i) perturb a parameter describing an ellipse (position, axis length, angle) using a Gaus-466

sian probability density centered in 0;467

(ii) perturb the hyper-parameter h using a similar probability density;468

(iii) birth: add a new ellipse to the vector of parameters Z, each of the new parameters469

being drawn from the prior distribution;470

(iv) death: remove an ellipse, hence its parameters, from Z.471

For moves of type (i) and (ii), the proposal distribution is symmetric, q(Z′|Z) = q(Z|Z′),472
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which can be used to simplify expression (17). For moves of type (iii) and (iv), the proposal473

equals the prior distribution, they cancel out and the second term of the right-hand side474

in equation (17) becomes the ratio of the likelihoods: we do not need to explicit the prior475

distribution but only to sample from it (Mosegaard & Tarantola 1995).476

This method is appropriate when strong prior information is available, which is the case477

in this study. For a fast convergence of the Markov chain, numerical experiments suggest478

that the proportion of accepted moves should be between 10% and 50%. In birth moves,479

the proposal and the prior are identical. Hence the prior should be close to the likelihood480

function to achieve a sufficiently high acceptance of proposed samples.481

5 SYNTHETIC TESTS FOR THE INVERSE HOMOGENIZATION482

This section presents synthetic examples of the inverse homogenization step only. We try to483

recover small scale isotropic anomalies, inducing effective anisotropy, from its effective large-484

scale equivalent. The goal is to validate the proposed rj-MCMC algorithm and to study the485

effect of the prior information introduced in the problem.486

5.1 Setup487

We consider a 2D square homogeneous plate with 120 m sides (all boundaries are reflective).488

The first synthetic model contains 4 ellipsoidal cavities having minor and major diameters489

of sizes 2 and 6 m respectively, as seen in figure 2. We compute the effective equivalent of490

this model using the homogenization technique described in paragraph 2.2, using a scale491

separation parameter λ0 = 16.6 m. This value of λ0 will be kept for the remainder of the492

study. We present in figure 2 the resulting shear-wave velocity VS and a measure of anisotropy493

defined by the ratio ||c − ciso||2/||ciso||2, where ciso is the usual isotropic projection of c494

(Fedorov 2013; Browaeys & Chevrot 2004) and ||.||2 the Euclidean (or Frobenius) matrix495

norm. While the original model is discontinuous and isotropic, its effective equivalent is496

smooth and anisotropic.497

We add spatially correlated Gaussian noise to the elastic parameters of the homogenized498
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Figure 2. Synthetic model consisting in a homogeneous rectangular domain containing ellipsoidal

cavities: (left) the true model and associated synthetic waveform data, (right) shear-wave velocity

and anisotropy of its effective equivalent. Red stars show the sources locations, blue triangles the

receivers and a white bar shows λ0. The inverted region is inside the dashed-line rectangles.

seismic model. We chose an exponential covariance function with characteristic length-scale499

λ0, in order to reproduce the correlations that would be observed in an elastic model obtained500

from HFWI. There are however no correlations in-between elastic parameters. This noisy501

elastic field noted m∗n is used as data for the inverse homogenization problem.502

5.2 Results503

We invert m∗n for a small-scale model m using the rj-MCMC algorithm presented in section504

4. Prior information is incorporated in the construction of the model m and consists of the505

following: m is isotropic, its elastic properties are chosen from only two possible materials,506

either the plate or the void of the cavities, and the cavities are parametrized as (an unknown507

number of) ellipses.508

For each realization in the Markov chain, we need to build a discretized version of m509

before calculating H(m) with a finite element method. The elements are triangular and510

the interpolation is based on the Fekete points using high order polynomials. The mesh is511

generated using the Gmsh tool (Geuzaine & Remacle 2009). Triangular elements are more512

versatile than spectral elements meshes, hence allow to generate a new mesh at each iteration513
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of the Markov chain. But this way of proceeding will meet its limits in 3D where automatic514

generation of conforming meshes is difficult. Alternative computing methods will be reviewed515

in the discussion.516

The result of the inversion is the posterior distribution of the parameter vector Z. A visual517

representation is obtained by computing the probability of being inside a cavity (figure 3):518

it corresponds, at each spatial position of the image, to the number of times this position519

is inside an ellipse divided by the number of sampled models. The algorithm is able to520

recover the presence of four cavities, as well as their general shape and orientation, which521

was not obvious by looking only at the effective model of figure 2. We test the inversion522

on an additional setup with 6 cavities of various sizes and orientations. Similarly, the true523

model is well recovered. The number of ellipses, ne, is also an inferred parameter in the rj-524

MCMC algorithm. In both proposed tests, its posterior marginal distribution, shown figure525

3, indicates a maximum at the correct value of the true model.526

5.3 The role of prior information527

In the absence of prior information, the inverse homogenization problem is necessarily non-528

unique, and does not significantly improve the understanding of the medium. For example,529

the observation m∗n would be itself a solution (up to the loss of information in the filtering530

operation of equation 8). Therefore, we shall emphasize that we are only able to recover531

the small scale structure because the chosen parametrization and prior distribution incor-532

porate sufficient constraints. To highlight the importance of prior information, we present533

an additional test with different choices for the construction of small scale models.534

We consider the synthetic model of figure 4, where the ellipses are closer to one another,535

while other parameters are identical to the previous case. Its effective equivalent displays one536

large radial anomaly and visually distinguishing the underlying structure is not possible. To537

construct the noisy data m∗n, we increase the level of noise added to the elastic parameters538

so that the rj-MCMC is not able to recover the small scale model correctly.539

Figure 5 shows the inverse homogenization results for three different parametrizations,540
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Figure 3. Results of the inverse homogenization. The top left panel shows the probability of

recovering void at each spatial point in the model, the top right panel the marginal distribution

of the number of ellipses ne used to parametrize the small-scale model. The true position and

shape of the cavities is shown as white ellipses. The bottom panels display similar results for a true

small-scale model with 6 cavities of various shape and orientation.

from left to right: (a) we consider a stronger prior information, using a fixed-dimensional541

MCMC algorithm and choosing the number of ellipses ne constant and equal to four (the542

positions and geometries of the 4 ellipses are still unknown variables to be inverted for); (b)543

we use the rj-MCMC algorithm as previously; (c) we parametrize the small scale model with544

a regular grid. Each cell has a 1x1 m size and can contain either the elastic properties of545

the homogeneous plate or the cavities. We invert for a 30x30 m area, hence comprising 900546

parameters, using also a fixed-dimensional MCMC algorithm.547

As expected, the quality of the inversion is correlated to the incorporated prior informa-548

tion. Algorithm (a), which includes the most information and imposes the correct number549
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Figure 4. Effective seismic properties of a synthetic model having closer ellipsoidal cavities. The

true position and shape of the cavities are represented on the left panel as white ellipses.

of parameters, is able to recover the original small-scale model. The rj-MCMC algorithm,550

however, is inherently parsimonious. We observe a trade-off between models with three or551

four cavities, as models with less parameters are favored if they explain the data sufficiently552

well. Algorithm (c), which considers the least prior information, recovers only one elongated553

anomaly. Still, all methods are able to recover structures with a preferred orientation, al-554

though they are not directly noticeable on the effective medium. An analysis of the misfit555

function indicates that the orientation information comes from the anisotropic part of the556

data, especially from the off-diagonal elements of the elastic tensor. Furthermore, decreasing557

the level of prior information leads up to an increase of the number of inferred parameters558

and the convergence of the MCMC algorithm grows more difficult. The inverse homogeniza-559

Figure 5. Results of the inverse homogenization for the synthetic model of figure 4, using three

different parametrization: (a) a fixed number of ellipses ne = 4, (b) a variable number ne, (c) a

regular grid parametrization.
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tion is beneficial for problems where significant prior information is available, but, on the560

contrary, may not be useful if considering non-informative priors.561

6 SYNTHETIC TEST FOR COMPLETE TWO-STEPS IMAGING562

METHOD563

We now present synthetic examples of the full proposed procedure (HFWI followed by in-564

verse homogenization). The setup is identical to the one presented in figure 2, with elliptic565

cavities producing a large effective anisotropy amplitude. This configuration is relevant for566

subsurface cavity detection, for damaged structure inspection, or for reproducing reduced-567

scale experiments. Because they combine the information from all types of waves, full wave-568

form methods are attractive for such problems (Bretaudeau et al. 2013; Tran et al. 2013).569

We argue here that non-negligible information is already present in the anisotropy at long570

wavelength (longer than the anomaly size) and can be leveraged with HFWI.571

Such problem may also be tackled with a ”one-step” FWI method based on shape opti-572

mization, where the geometries of the cavities are directly inverted for (e.g. Guo & de Hoop573

2013). However, a conventional FWI would involve more expensive wave propagation given574

the fine scale discretization needed to mesh complex shapes with discontinuities. Derivatives575

with respect to the parameters defining ellipses position and shape would be difficult to576

compute, and we would expect convergence issues due to the strong non-linearity of the577

problem. With the method proposed here, we choose instead a parametrization adapted to578

waveform modeling and linearized inversion. We leverage information from effective seismic579

anisotropy, and the inverse homogenization step is solved with a derivative-free algorithm580

as described above.581

6.1 Waveform data582

Synthetic data is generated from sources and receivers placed at the top, using the 2D spec-583

tral element solver. Gaussian noise with an amplitude representing 5% of the signal standard584

deviation is added to the waveform data. M = 1000 noise realizations are generated. HFWI585
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is performed independently for each realization in order to produce an ensemble of M to-586

mographic solutions, and evaluate uncertainties on the model parameters. An example of587

synthetic waveform data distribution is displayed figure 2.588

The first step in HFWI is to chose the scale separation between the fine and large scales.589

The maximum frequency present in the data is fmax ∼ 90 Hz. The background shear-wave590

velocity is Vs,min = 3167.0 m/s, the slowest velocity in the imaged medium is somewhat lower591

due to the cavities. With λ0 = 16.6 m, the scale separation position is ε0 ∼ 0.5.592

6.2 Full waveform inversion solutions593

The waveform inversion is performed using the approximate model space parametrization594

M∗h. It is constructed on a 8×8 regular grid, each cell comprising a polynomial of degree 4595

in each direction. No continuity is imposed between the elements. This ensures an adequate596

degree of freedom relative to the minimum wavelength λmin. The model m∗h obtained after597

waveform inversion is then homogenized into m∗ with a minimum length-scale λ0.598

We compare two possible parametrizations for M∗h: 1) a fully anisotropic parametriza-599

tion (ρ, c) where the full elastic tensor is inverted for as prescribed in HFWI; and 2) an600

isotropic parametrization (ρ, VP, VS) corresponding to a “conventional” FWI (although a601

different, spatially denser discretization would have probably been used for a real FWI).602

One example of resulting inverted models m∗h and m∗ for both parametrizations are com-603

pared in figure 6.604

Again, we present the results in terms of shear-wave velocity VS and anisotropy index.605

Several features of HFWI emerge. The M∗h space is chosen for efficient wave propagation606

but does not aim at producing realistic images. As such, for both parametrizations, the four607

low velocity anomalies are recovered with a poor resolution and display the imprint of the608

inversion mesh. With the isotropic parametrization, we recover a sharper model. The strong609

low velocity anomalies help to explain the long coda in the waveform data. Such strong610

anomalies are not required once anisotropy is allowed.611

Once projected into M∗, results obtained in the case where m∗h is fully anisotropic612
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Figure 6. Full waveform inversion results presented in terms of (a) VS and (b) anisotropy. The

top row shows the images obtained with an anisotropic parametrization of M∗h, and the bottom

with the isotropic one. The left column of each panel displays the results in the spaceM∗h, where

the inversion mesh is apparent, and the right column their effective equivalent projection in space

M∗.

show only circular anomalies, while the strong anisotropy indicates that information about613

the shape is preserved. On the contrary, m∗ obtained from an isotropic m∗h depicts weak614

anisotropy while the isotropic parameters VP and VS already display some structure. The615

spatial discretization is too loose to resolve all the small scales and especially the shape616

of the anomalies. This example suggests that a fully anisotropic parametrization preserves617

more information and is beneficial in the HFWI method. Data misfit reduction is about618

76 % versus 61 % for the anisotropic and isotropic parametrizations of m∗h respectively.619

This is not surprising since the anisotropic parametrization has a higher complexity.620

6.3 Uncertainties in HFWI621

Estimating the uncertainty on the HFWI solution model m∗ is crucial for the following622

Bayesian inversion at the downscaling stage, where m∗ will take the role of the data (figure623

1). The uncertainty on m∗ is estimated as described in section 4.1. As in any Bayesian624

inversion, the result of the downscaling stage directly depends on this estimation.625

We consider M = 1000 HFWI resulting models (m∗1, ..., m
∗
M) obtained for each noise626

realization on the data and examine their statistical properties. In the inverse homogeniza-627
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tion problem, we suppose that the result of HFWI is equal to the homogenized true model628

m∗t . We verify this, at least in expectation, by comparing the mean m̄∗ of the elastic tensors629

of (m∗1, ..., m
∗
M) to the one of m∗t (figure 7a). We also perform for comparison a reference630

HFWI using waveform data without noise, and denote its results m∗0. All models are similar631

but not exactly identical and there is in particular a difference between m∗t and m∗0, which632

can be imputed to the imperfect illumination with this source-receiver configuration. Also,633

computing the mean on the elastic parameters is somewhat arbitrary (one could instead, for634

example, compute the mean on the seismic velocities). This choice may in part explain the635

difference between m̄∗ and m∗0. Ideally, we should construct an “homogenized” mean in the636

space of effective models.637

We now want to verify the Gaussian hypothesis on ε in equation (12). We suppose that638

ε is distributed as the ensemble of the HFWI resulting models. The noise on the waveform639

data is additive and Gaussian. But because the inverse mapping might not be linear, we640

need to verify whether the distribution of solution models parameters is also Gaussian. We641

examine the marginal distribution of individual model parameters from these M realizations.642

For example, we compare the marginal distribution of c1111 for a location in the middle of643

the image to a normal distribution on a quantile-quantile plot figure 5. c1111 is indeed close644

to normally distributed. Similar conclusions can be obtained for other parameters in M∗
645

(not shown). All parameters being individually Gaussian distributed is a necessary (but646

not sufficient) condition for the parameter space to be multivariate Gaussian. Still, these647

observations suggest that the HFWI result is similar to the homogenized true model, and648

that the uncertainties are close to normally distributed.649

We calculate the covariance matrix of the sample (m∗1, ..., m
∗
M) using the method pre-650

sented paragraph 4.1. In practice, because these models are smooth, their properties can be651

described on a regular grid with 2 points per wavelength λ0. This allows to preserve their652

spatial frequency content, while having a minimal size for the estimated covariance matrix.653

These chosen grid points determine the solution space dimension N and will be used to654

compute the likelihood function in the inverse homogenization. The estimated covariance655
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Figure 7. Uncertainty estimation in HFWI: (a) Comparison of the effective equivalent of the true

model (dashed black line) presented figure 2 to the distribution of the M images obtained by

HFWI, for parameter c1111 in a vertical cut at the middle of the model. The blue dot show the

mean of the M estimations, and the error bars show the standard deviation. The red star represent

a reference HFWI resulting model where no noise was added to the waveforms. (b) Quantile-

quantile plot comparing the M samples for a parameter c1111 in the middle of the model to a

normal distribution. (c) Regularized covariance matrix Σ̂r of the models (m∗1, ..., m
∗
M ), obtained

with equation (16) for a parameter α = 0.06. Its singular value decomposition (d) exposes the

effect of the regularization.

matrix, and the effect of the regularization on its eigenvalues is shown figure 7c and figure 7d656

respectively. The analysis of its structure indicates that variables are spatially correlated on657

a length scale λ0. Inter-parameter correlations also exist, for example between parameters658

c2222 and c1122.659

The covariance matrix can also provide information about the effective elastic parameters660
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that are best constrained by the waveform data through relative uncertainties. The relative661

uncertainty of a parameter is defined as its absolute uncertainty divided by its value. It662

is usually considered in seismic imaging that only a restricted part of the elastic tensor is663

resolved (for example, only isotropic or transverse isotropic media, depending on the data664

type). As expected, the parameters involved in isotropic properties are best resolved (∼ 1%665

of relative uncertainty). c1112 and c2212 are non-zero only in the presence of anisotropy and666

have at least 5% of relative uncertainty.667

6.4 Downscaling results668

To solve the inverse homogenization problem, we describe the ensemble of fine-scale models669

using the same object-based approach as previously, described by the vector of parameters670

Z. This choice may represent an excessively optimistic prior information for a seismology671

application, but it is appropriate for cavity detection. A good starting model for the rj-672

MCMC algorithm is required to reduce the “burn-in” period until which the chain reaches673

its target distribution. For this purpose, we start with an optimization procedure based on674

simulated annealing (Kirkpatrick et al. 1983). Once a starting model is found, we proceed675

with the rj-MCMC algorithm following standard practice.676

We first present the inverse homogenization results for the reference case: a macro-scale677

solution model m∗ with the fully anisotropic parametrization is used as observed data with678

uncertainties characterized by the covariance matrix of figure 7. This model m∗ is shown679

in figure 6 (top row) and corresponds to one element of the M inverted models. Figure 8680

shows the probability of being inside a cavity at each spatial position. The algorithm is681

able to recover the main structure, identifying four probable cavities with the correct shape.682

However, the position of the cavities are close but not always centered on the true values.683

Such deviations did not appear in the synthetic tests of section 5, and we conclude that the684

bias originates from a systematic error in HFWI. Possible explanations for this error are685

thus the effect of the damping in Gauss-Newton iterative scheme, an incorrect estimation of686

HFWI uncertainties from the M resulting models and an imperfect illumination.687
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Figure 8. Probability of recovering void at each spatial point in the model. The left panel presents

the results whenM∗h is parametrized with the full elastic tensor, and the right one for the isotropic

parametrization. The true position and shape of the inclusions is shown as white ellipses.

To look at the results in more detail, the posterior marginal 1D distributions for the688

number of ellipses ne, the ellipse axes and their orientation are shown in figure 9, top row.689

The mode for the distribution of ne is much higher than the true value of four. The algorithm690

uses additional ellipses to match some weak anomalies in m∗. They are in general small and691

circular, hence with an arbitrary orientation. The modes for the distribution of axes and692

orientation are close to the true values. The hyper-parameter h is only slightly higher than693

1, suggesting that the covariance estimation is reasonable (figure 10).694

6.5 Isotropic downscaling695

We repeat the inverse homogenization this time using HFWI solution model obtained from696

an isotropic parametrization in M∗h (figure 6, bottom row). In this test, the spatial dis-697

cretization of the model in the HFWI is the same as in the anisotropic case (we use the698

same mesh), but only 2 elastic parameters are inverted for (VP and VS), leading to a re-699

duced number of unknowns. Note that, once homogenized, the resulting effective medium700

in M∗ is not strictly isotropic. The waveform inversion uses the discontinuous nature of701

the discretization mesh inM∗h to preserve a (small) part of the fine-scale information. The702

effective medium is weakly anisotropic (figure 6).703
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Figure 9. Posterior distribution of the latent variables in Z. The top/bottom panels correspond to

anisotropic and isotropic parametrizationsM∗h respectively. For each variable type, all the ellipses

are combined on the same histogram. The y-axis shows the probability density associated to each

histogram and the vertical dashed lines specifies the true value. On the middle panels, both short

and long axis of the ellipses are combined on the same plot. The right panels display the angle

with respect to the horizontal.

With a finer spatial discretization, increasing the number of unknowns to the same704

amount as in the anisotropic parametrization case, one can recover more details in the705

model. Once homogenized, such a finer scale isotropic model can retrieve the correct effective706

anisotropy. Some examples are presented in Capdeville & Métivier (2018). The drawbacks are707

Figure 10. Posterior distribution of the hyperparameter h.



34 N. Hedjazian, Y. Capdeville, T. Bodin

an increased computational cost for wave propagation, and a more challenging convergence708

of the waveform inversion scheme.709

From the M obtained effective elastic models, we compute a new covariance matrix Σ̂iso
r ,710

and use it to calculate the likelihood function. One of the M effective models is selected711

for the inverse homogenization (the one displayed figure 6, bottom row). The resulting712

posterior probability of being inside an ellipse is presented figure 8, and 1D marginals of713

parameters in Z figure 9 (bottom). Without surprise, models with void inclusions close714

to circular are preferred, as they produce only weak anisotropy. This test confirms that715

some of the small-scale information has been lost in the isotropic waveform inversion. We716

conclude that parametrizingM∗h with the full elastic tensor can be beneficial for the inverse717

homogenization problem.718

7 DISCUSSION719

The homogenized full-waveform inversion of Capdeville & Métivier (2018) restricts the imag-720

ing solution space to effective media, which are not suited for geological interpretation. For721

this purpose, an additional downscaling step is required. A general summary of the complete722

procedure is presented in figure 11. Downscaling can be formulated as an inverse problem723

where the forward operator is the non-periodic homogenization. This study achieves the724

inverse homogenization of an elastic media and clarifies the possible applications of the725

method. Because it was restricted to synthetic tests, several additional points need to be726

discussed.727

The first important point is the choice of the minimum wavelength λmin. The maximum728

frequency in the waveform data is deducted from the chosen filter, but the minimum seismic729

velocity Vs,min is a priori unknown before imaging. A strategy to chose λmin has to be730

adopted for real data application. For instant, Capdeville & Métivier (2018) suggest to tune731

λmin iteratively during the HFWI.732

The assumption justifying the downscaling step is that the HFWI solution model is the733

effective equivalent of the true Earth model at scale ε0 (equation 9). One necessary condition734
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Figure 11. Summary of the seismic imaging method used in the study. The different steps cor-

responding to figure 1 are illustrated for the reference inversion, here shown in terms of P-wave

velocity.

to meet this assumption is to find the global minimum of the HFWI. Note that this issue735

is not inherent to HFWI but present in all seismic tomography problems. Constraining the736

solution to homogenized models is a natural regularization because it reduces the size of the737

solution space and yet guarantees the same data fit. It avoids the use of biased smoothing738

constraints on the parameter space. More sophisticated strategies used in FWI to guide the739

algorithm convergence, such as frequency-continuation, are also possible to implement in740

HFWI (Capdeville & Métivier 2018).741

We formulated the inverse homogenization problem in a Bayesian sense, where the so-742

lution is an ensemble of plausible fine-scale models. In this framework, uncertainties on743

the HFWI solution models are required. We computed them using a substitute method,744

performing multiple HFWI inversions for multiple noise realizations on the synthetic data.745

Uncertainty estimation in FWI is a current topical issue (Zhu et al. 2016; Sen & Biswas 2017;746

Thurin et al. 2019). One can expect viable solutions in the following years, at least for local747

uncertainties around the global minimum. In addition, we observed that the spatial corre-748

lation between parameters in effective models is specific and linked to the homogenization749

filter, thus uncertainty estimation in HFWI might be simpler than in conventional FWI. We750
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are therefore optimistic on the possibility to address this issue. The subsequent stage will be751

to clarify the theoretical link between uncertainties in the full-waveform inversion problem752

and the statistical model assumed in the inverse homogenization (equation 12).753

We used a Bayesian inversion because the inverse homogenization is supposed to be highly754

non-unique. But posterior probability distributions in high dimension might be difficult to755

interpret. Using optimization methods to find a single “best-fit” model, according to some a756

priori expert knowledge, is sometimes favored. If so, the HFWI uncertainty estimation issue757

is no longer relevant.758

All the presented synthetic tests consider a limited number of inferred parameters, ex-759

tension to larger problems is now discussed. In the HFWI part, inverting for the full elastic760

tensor increases the number of model parameters compared to conventional FWI. In return,761

the spatial discretization is directly defined by λ0 which could, depending on the application,762

reduce the solution space size. Additionally, the homogenization concept is beneficial for the763

forward problem, notably in cases where wave propagation is difficult. For example, if the764

starting model holds discontinuities or small-scale heterogeneities, the mesh size can shrink765

drastically. Expensive wave propagation can be spared by considering an effective equivalent766

of the starting model. Ultimately, it still must be based on a solver able to manage fully767

anisotropic media.768

The computational cost of the downscaling step is less of a problem. To answer a specific769

scientific question, one possibility is to select only a sub-area of the image, or a 2D section of770

a 3D image, for subsequent interpretation. Such a “target-oriented” downscaling will have771

little computational cost compared to the waveform inversion step. The models considered in772

this study contain discontinuities. Computing H with a finite elements method, as described773

in Capdeville et al. (2010), is appropriate. Hence, the mesh was generated again at each new774

proposed model and the full space of the model was homogenized. For continuous models, an775

alternative method is to compute H with an FFT-based solver on a regular grid (Capdeville776

et al. 2015). In this case, designing a proposal distribution with local perturbations, as well777
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as computing H only on the perturbed sub-area, is more straightforward and can further778

spare computation time.779

For the setup of figure 2, the total cost of the forward problem (comprising the mesher780

and the solver) is less than a second on a computing node with 28 cores. We estimate that781

MCMC-based methods quantifying the full posterior distribution, where forward modeling782

is performed thousands to millions of times, will be applicable for 2D downscaling problems.783

In 3D, the downscaling step will be likely restricted to optimization methods.784

We now discuss the range of potential applications of the presented 2-steps method. In785

our tests, we chose a problem comprising small-scale anomalies with maximal contrast and a786

preferred orientation, which constitutes an ideal case for using the information contained in787

the effective anisotropy. If we had considered a model with circular cavities smaller than the788

minimum wavelength, or a model with weaker velocity anomalies, their effective properties789

would not contain significant anisotropy. When the effective medium seen by the wavefield790

is close to isotropic, a FWI with isotropic parametrization would be able to reveal the same791

level of information. This is related to the fact that, in the case of weak velocity contrasts,792

the homogenization operator is close to a simple low-pass filter. Still, we believe this does not793

erase all the advantages of HFWI. First, using a fully anisotropic parametrization facilitates794

the convergence of the waveform inversion. Additionally, many imaged natural media present795

indeed effective anisotropy and it is generally not possible to know beforehand if a medium796

is isotropic at a given scale.797

Structures containing cavities, fluid inclusions or cracks will likely produce significant798

effective anisotropy, hence constitute appropriate use cases. They will exist at the engineer-799

ing and subsurface scales, where, additionally, strong prior information is usually available.800

Although not explored in this study, applications at the continental or global scale are envi-801

sioned. In seismology, a long standing issue is the ability to distinguish effective anisotropy802

(e.g. induced by small scale heterogeneities or preferentially oriented faults) from intrinsic803

anisotropy (induced by anisotropic crystals) (e.g. Fichtner et al. 2013a; Alder et al. 2017). For804
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example, downscaling of global surface wave tomography models could help to discriminate805

between effective and intrinsic anisotropy.806

Moreover, our two-step approach is particularly suited to handle discontinuities in elastic807

properties. FWI methods struggle to build discontinuous models, as most waveform solvers808

rely on spectral-element methods with rectangular meshes that need to honor the geometry of809

discontinuities. Inverse homogenization alleviates these limitations, because its forward part810

solves an elasto-static problem with a standard finite-element method and a triangular mesh.811

We showed a near-surface / engineering-scale application to image cavities, other possible812

applications at larger scale are characterization of discontinuous geological structures such as813

faults in the subsurface or study the depth and shape of major discontinuities in the Earth. A814

typical example is the issue of crustal corrections in global tomography, required as details815

within the crust cannot be resolved by long-period seismic waves. Inaccurate corrections816

lead to artifacts in the less constrained part of the model (e.g. Marone & Romanowicz817

2007). Instead of using corrections, one could first invert long period waves for a smooth818

homogeneous earth without crust, and in a second time, together with extra information,819

apply a downscaling approach to reconstruct crustal structures.820

8 CONCLUSION821

We have presented a proof of concept of the inverse homogenization of an elastic media,822

applied to a void detection problem. The seismic imaging problem is solved in two steps.823

The first one is a waveform inversion, where the solution space is restricted to effective824

or homogenized media. Second, in the inverse homogenization step, the resulting effective825

medium is used as data and we look for small-scale models having the corresponding ef-826

fective equivalent. The main benefits are an easier convergence for the waveform inversion827

in problems with strong heterogeneities and a better control on the prior information in828

the inverse homogenization. The theory was presented in general terms and is applicable at829

different scales. Thus, the benefits of an extension to other seismic imaging problems will830

be studied in future work. Different implementations might be more appropriate depending831
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on the problem size and on the properties of the heterogeneities (continuity, solid or fluid,832

etc). Besides the items for discussion mentioned above, future work on inverse homogeniza-833

tion need to focus on building realistic prior models of geological media and adapting the834

inversion strategy to these models.835
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