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1 INTRODUCTION
Vibration reduction of a turbojet fan blade with piezoelec-

tric patches connected to a passive electrical circuit, commonly

called “shunt”, is addressed in this study. The purpose of this

work is to present a method for maximizing the performance of

a piezoelectric resonant shunt. The cases of resistive shunt [1]

and switch techniques [2] are not covered here but the method

remains valid.

To improve the damping level, a key issue is the optimization

of the whole system, in terms of location and size of the piezo-

electric patches and electric circuit components choice. It was

shown in [3] these two optimizations, mechanical and electrical,

can be realized separately. Moreover, it is proved in [1, 4–6] that

the only parameters to maximize are the modal electromechan-

ical coupling factors (MEMCF), which characterize the energy

exchanges between the mechanical structure and the piezoelec-

tric patches for a given mode. Since the optimal value of the

electric circuit parameters are known as functions of the MEMCF

and the system structural characteristics [3,7], they can be evalu-

ated in a second step. Thus, the mechanical optimization consists

in maximizing the MEMCF by optimizing the patches positions

and dimensions, i.e. finding the best design. To fulfill this re-

quirement and in order to manage a complex geometry, a 3D fi-

nite element (FE) formulation of the coupled electromechanical

∗Address all correspondence to this author.

problem is derived [8]. A reduced order model of the discretized

problem is then obtained by expanding the mechanical displace-

ment unknowns vector onto the short-circuit eigenmodes to get

the MEMCF.

However, when the optimization aims to reduce the vibra-

tion level with several patches, the main concern arises from the

huge number of possible designs to test. Finding the optimal

design without a strategy is simply impossible within a reason-

able amount of time. Even when the size of the search space

is reduced, i.e. some design parameters are fixed, it remains a

very time consuming approach since for each design, an elastic

mechanical problem have to be solved to compute the MEMCF.

For that reason, a method is proposed to cut back the simulations

time span as well as to cope with the many local minima. This

method consists in splitting up the optimization procedure in two

steps. In the first one, the influence of patches on the structural

eigenmodes is neglected, which is equivalent to say the patches

have a negligible thickness. Therefore, an analytic coupling in-

dicator, based on the modes of the naked structure, is defined and

gives rise to a first approximate optimization using a simulated

annealing algorithm [9–12]. Then, the solutions of the first step

are used as a starting point for a second optimization, working

with the tabu search algorithm [12–15] and where the stiffness

and the mass of the patches are taken into account.
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2 FINITE ELEMENT MODEL

In this section, the general formulation of the equations that

govern the mechanical and electrical state of an elastic structure

equipped with piezoelectric patches is used to derive a finite el-

ement model [5, 8, 16]. Beforehand, the general problem is de-

scribed and the main assumptions are recalled.

2.1 Hypotheses and Variational Formulation

An elastic structure, occupying a domain denoted Ωs,

is equipped with P piezoelectric patches. Each piezoelec-

tric patch has its upper and lower surfaces covered with a

very thin electrode and can be slightly curved. The p-th

patch, p ∈ {1, · · · , P}, occupies a domain Ω(p) such that
(

Ωs,Ω
(1), · · · ,Ω(P )

)

is a partition of the whole domain Ω. The

domain Ω is subjected to prescribed body forces fd
i and the do-

main boundary, denoted ∂Ω, is subjected to a prescribed dis-

placement ud
i on a part Γu and to a prescribed surface force den-

sity tdi on the complementary part Γt, such that ∂Ω = Γu ∪ Γt.

A set of hypotheses, applicable to a wide spectrum of prac-

tical applications, can be used in order to obtain an efficient vari-

ational formulation of the problem. The main assumptions, de-

tailed in [8], are summarized below.

• Only the piezoelectric patches are made of piezoelectric ma-

terial. Consequently, the piezoelectric material constants

eijk vanish in Ωs. The electric displacement vector of com-

ponent Di is neglected in the elastic domain Ωs, as com-

pared to its value in any of the piezoelectric patches Ω(p).

• The piezoelectric patches are thin with a constant thickness,

denoted h(p) for the p-th patch, smaller than its characteristic

longitudinal length. The thickness of the electrodes is much

smaller than h(p) and is thus neglected.

• The piezoelectric patches are polarized in their transverse

direction (i.e. the direction normal to the electrodes). More-

over, the electric field vector, of components Ek, is normal

to the electrodes and uniform in the piezoelectric patch, so

that for all p ∈ {1, . . . , P}

Ek = −V
(p)

h(p)
nk, in Ω(p), (1)

where V (p) = ψ
(p)
+ −ψ(p)

− is the potential difference between

the p-th patch upper and lower electrodes surfaces Γ
(p)
+ and

Γ
(p)
− and nk is the k-th component of the normal unit vector

to the surface of the electrodes.

Considering the above hypotheses, it can be shown that the

variational formulation of the electromechanical problem is such

that

∫

Ω

cijklεkl(u)εij(δu) dΩ +

P
∑

p=1

V (p)

h(p)

∫

Ω(p)

ekijnkεij(δu) dΩ

+

∫

Ω

ρ
∂2ui

∂t2
δui dΩ =

∫

Ω

fd
i δui dΩ+

∫

Γt

tdi δui dS ∀δui ∈ C∗
u,

(2)

and

−
P
∑

p=1

δV (p)

h(p)

∫

Ω(p)

eiklεkl(u)ni dΩ +

P
∑

p=1

δV (p)C(p)V (p)

=
P
∑

p=1

δV (p)Q(p) ∀δV (p) ∈ R, (3)

where C(p) = ǫ33Ω
(p)/(h(p))2 is the capacitance of the p-th

piezoelectric patch (ǫ33 = ǫiknink being the piezoelectric per-

mittivity in the direction normal to the electrodes) and Q(p) the

electric charge contained in the upper electrode of the p-th piezo-

electric patch.

For more details about the derivation of this original formu-

lation, we refer the reader to [8]. It can be noted that we have de-

fined Cu as the space of sufficiently regular functions ui defined

in the whole domain Ω and C∗
u = {ui ∈ Cu |ui = 0 on Γu}.

2.2 Finite Element Formulation
Using the finite element method to discretize the mechani-

cal part of equations Eq. (2) and Eq. (3) leads to the following

matrices definitions:

∫

Ω

ρ
∂2ui

∂t2
δui dΩ =⇒ δUTMmU, (4)

∫

Ω

cijklεkl(u)εij(δu) dΩ =⇒ δUTKmU, (5)

P
∑

p=1

V (p)

h(p)

∫

Ω(p)

ekijnkεij(δu) dΩ =⇒ δUTKcV, (6)

P
∑

p=1

δV (p)C(p)V (p) =⇒ δVTKeV, (7)

∫

Ω

fd
i δui dΩ +

∫

Γt

tdi δui dS =⇒ δUTF, (8)

P
∑

p=1

δV (p)Q(p) =⇒ δVTQ, (9)
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with U the vector of nodal values of ui,

Q =
(

Q(1)Q(2) · · ·Q(P )
)T

the column vector of electric

charges and V =
(

V (1)V (2) · · ·V (P )
)T

the column vector of

potential differences. Mm and Km are the mechanical mass and

stiffness matrices, of size N × N , where N is the number of

mechanical degrees of freedom (dof). Kc is the electromechani-

cal coupling matrix, of size N × P . Ke = diag
(

C(1) · · ·C(P )
)

is the diagonal matrix filled with the P capacitances of the

piezoelectric patches. F is the column vector of mechanical

forcing, of length N . The general finite element formulation of

the electromechanical problem can be written in the following

matrix form

(

Mm 0

0 0

)(

Ü

V̈

)

+

(

Km Kc

−KT
c Ke

)(

U

V

)

=

(

F

Q

)

. (10)

The above discretized formulation Eq. (10) is particularly

adapted when the piezoelectric patches are ”shunted”, that is to

say, connected to a passive electrical network. In this case, nei-

ther V nor Q are prescribed by the electrical network but the lat-

ter imposes only a relation between them. For a resonant shunt

connected to the p-th patch and composed of a resistance R and

an inductance L [8, 17], one obtains

V (p) − LQ̈(p) −RQ̇(p) = 0. (11)

Depending on whether the patches are short-circuited (V = 0)
or in open-circuit (Q = 0), the homogeneous problem asso-

ciated to the discretized formulation (10) takes the following

forms:

MmÜ + KmU = 0 short-circuit, (12)

MmÜ +
(

Km + KcK
−1
e KT

c

)

U = 0 open-circuit. (13)

Therefore, one can notice the effect of open-circuit electrome-

chanical coupling on the elastic structure appears as an added

stiffness term KcK
−1
e KT

c .

2.3 Modal Expansion and Coupling Coefficient
In this section, a reduced-order formulation of the dis-

cretized problem is derived by expanding the mechanical dis-

placement unknowns vector onto the short-circuit eigenmodes

basis. The coupling factors are also introduced.

2.3.1 Short-circuit Eigenmodes The natural angu-

lar frequencies ωi and mode shapes Φi of the short-circuited sys-

tem (Eq. (12)) are theN eigensolutions of the following problem

KmΦ − ω2MmΦ = 0, (14)

which depends only on the mechanical properties of the system,

i.e. the stiffness and mass of the structure and patches. In addi-

tion, the modes verify the orthogonality properties and are nor-

malized with respect to the mass matrix: ΦTMmΦ = 1.

2.3.2 Modal Expansion The mechanical displace-

ment vector is sought as: U(t) =
∑N

i=1 Φi qi(t). The main

benefit of choosing this particular basis is that it can be computed

from a classical elastic mechanical problem, whereas open-

circuit modes depend also on the piezoelectric system properties.

As a result, the problem consists in solving the following coupled

system [8, 18]

{

q̈i + 2ξiωiq̇i + ω2
i qi +

∑P

p=1 χ
(p)
i V (p) = Fi, ∀i ∈ {1 . . . N},

C(p)V (p) −Q(p) −∑N

i=1 χ
(p)
i qi = 0, ∀p ∈ {1 . . . P},

(15)

with Fi = ΦT
i F the forcing of the i-th mode and χ

(p)
i the cou-

pling coefficient associated to the i-th mode and the p-th patch,

defined by

(

χ
(1)
i χ

(2)
i . . . χ

(P )
i

)

= ΦT
i Kc, ∀i ∈ {1 . . . N}. (16)

These modal coupling coefficients χ
(p)
i are related to the

MEMCF, denoted k
(p)
i , [3,8,17,18], which characterize, for each

mode i, energy exchange between the mechanical structure and

the piezoelectric patch p

k
(p)
i =

χ
(p)
i√

C(p)ωi

. (17)

Under the assumption the modal truncation to one mode is

valid around the i-th mode, one can obtains an approximation

of the well known effective electromechanical coupling factor

(EEMCF), denoted keff,i by the following relation given in [8]

k2
eff,i =

ω̂2
i − ω2

i

ω2
i

≃
P
∑

p=1

(

k
(p)
i

)2

, (18)

with ω̂i the open-circuit angular frequency.

To summarize, the initial finite element formulation given

by Eq. (10) has been replaced by the modal formulation Eq. (15),

whose unknowns are the N modal coordinates qi and the P volt-

age/charge pairs
(

V (p), Q(p)
)

associated with the P piezoelec-

tric patches. Its major interest is the computation of the coupling

parameters requires only a single modal analysis of the elastic

problem. This operation can be done by any standard finite ele-

ment code. Then, the MEMCF can be calculated from Eq. (17)

3



if one is able to compute the electromechanical coupling matrix

for curved patches.

The most important parameter of the study is k
(p)
i because

the electrical components of the shunt only depend on it [8].

Then, it is proportional to the fraction of the system modal energy

which is converted into electrical energy by the p-th open-circuit

piezoelectric patch. As such, it is a direct measurement of the

influence of the piezoelectric patch on the system.

3 THE ELECTROMECHANICAL COUPLING MATRIX
In the electromechanical coupling matrix definition

(Eq. (6)), the quantities ekijnk and εij are expressed in the

global frame of the system. However, it is more convenient,

as shown below, to compute Kc in the local frame of the

piezoelectric patch. A curved patch polarized in the normal

direction (Fig. 1) is considered here. Henceforth, the indices i,

FIGURE 1. DISCRETIZED CURVED PATCH

j and k refer to the three directions of a frame attached to the

piezoelectric patch and varying along it. Direction k is oriented

according to the patch direction of polarization. Moreover, aij

is defined as the transformation matrix (size 3 × 3) between the

global and the local frame. Therefore, the equation (6) can be

recasted as follows

P
∑

p=1

V (p)

h(p)

∫

Ω(p)

ekijnkapiaqjεpq (δu) dΩ =⇒ δUTKcV,

(19)

where apiaqjεpq is the strain tensor expressed in the local frame.

The reason for having chosen the local frame comes from ekijnk

has a very simple expression while computed in it. According

to the fact the piezoelectric material is transverse isotropic, and

using Voigt notation, we have

e = ekαnk = (e31 e31 e33 0 0 0)
T

with α = 1, . . . , 6, (20)

e is the vector of piezoelectric constants. In the same way, the

discretized gradient operator B, expressed in the global frame,

and the transformation matrix M (size 6 × 6) applied to B, are

introduced. The classical discretization scheme allow writing

εα = Du = DNU = BU. The gradient operator and the in-

terpolation functions matrix are denoted, respectively, D and N.

Consequently, the elementary electromechanical coupling matrix

for the p-th patch is given by

Ke
c =

1

h(p)

∫

Ωe

eTMTB dΩ, (21)

with Ωe the volume of the finite element e. For the numerical

applications, a quadratic tetrahedral element (TET10) was used.

Four Gauss points allow to approximate Ke
c by

Ke
c =

1

h(p)
eTMT

(

1

4

4
∑

i=1

Bi

)

Ωe, (22)

noting Bi the matrix B evaluated at the i-th Gauss point.

In order to validate the coupling matrix calculation method

in 3D, a cantilever beam partially covered with 2 collocated

piezoelectric patches, polarized in opposite directions, has been

modeled with TET10 finite elements [19]. The EEMCF values,

approximated by equation (18) for the first three bending modes

(1B, 2B and 3B), are then compared to those coming from a 1D

finite element model and to experimental measurements [8]. The

short and open-circuit relative errors are listed in the table 1 and

the EEMCF relative errors are given in the table 2. The EEMCF

short-circuit freq. open-circuit freq.

Modes ∆fi/f
1D
i ∆fi/f

exp.
i ∆f̂i/f̂

1D
i ∆f̂i/f̂

exp.
i

1B 0.61% 5.44% 0.89% 5.77%

2B 0.42% -0.08% 0.71% 0.07%

3B 0.22% 2.47% 0.43% -2.68%

TABLE 1. 3D FE SHORT AND OPEN-CIRCUIT FREQUENCIES

RELATIVE ERRORS COMPARED TO THE 1D MODEL AND THE

EXPERIMENTAL MEASUREMENTS

relative error between 3D FE and 1D models is around 14% for

the three modes. Although this is a relatively large error, it can

be seen this error does not come from the fact that the 3D model

is false but from the fact that a very small deviation of 0.5% on

the open and short-circuit frequencies causes an EEMCF relative

error of approximately 15%. The good agreement between 1D

and 3D FE and between experimental results and 3D FE, with

regards to the short and open-circuit frequencies, allows to vali-

date the finite element developments.
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EEMCF

Modes ∆keff/k
1D
eff ∆keff/k

exp.
eff

1B 16.06% 19.58%

2B 14.48% 8.82%

3B 13.14% -19.00%

TABLE 2. 3D EEMCF RELATIVE ERRORS

4 OPTIMIZATION

The case of a single piezoelectric patch is considered in the

rest of the study, for this reason the superscript p is omitted.

Since the size and location of the piezoelectric patch

strongly influence the vibration reduction performance [16, 20],

the mechanical optimization is of primary importance. More pre-

cisely, finding the design of a patch that maximize ki is a combi-

natorial optimization problem. Such problem is characterized by

search space growing exponentially with the number of configu-

rations. In order to approach the optimum design in a reasonable

amount of time, the mechanical optimization is split up into two

steps.

4.1 FE Model and Parameterization

Some practical restrictions are made on the FE model char-

acteristics in order to simplify the problem (Fig. 2): the meshes

of the structure and the patch have to be compatible, the mesh of

the structure is fixed (it won’t be remeshed in the optimization

procedure) and have to be regular, and the patch is rectangular.

The size and location of one patch is entirely determined through

5 parameters: 2 curvilinear coordinates, denoted x− and y− for

the location on the outer surface of the structure and 3 geomet-

ric parameters, denoted Lx, Ly and h. The figure 2 defines the

new parameters notations. The patch is allowed to move inside

(0,0)

Ly

Lx

y+

y−
x−

x+

FIGURE 2. PATCH PARAMETERS

an area defined by the user which corresponds in the figure 2 to

the fine mesh zone. Hence, the number of values the parame-

ters x−, y−, Lx and Ly can take is limited by the quality of the

mesh. Therefore, the search space, denoted A, is a discrete and

finite subset of R
5 and the elements of A, denoted D, are called

feasible solutions or designs here (Eq. (23)).

D = {x−, y−, Lx, Ly, h}. (23)

4.2 First Step of the Optimization Procedure
The main idea is to derive a modal coupling indicator from

the plate analytical theory and to use it for the 3D problem with

an assumption consisting to say slightly curved patch modal cou-

pling is roughly the same whether the curvature is taken into ac-

count or not.

4.2.1 Coupling Indicator Derivation The differen-

tial equation for transverse motion of a plate with a flat piezo-

electric patch bonded onto its surface is given by [21]

Dp∆∆w + ∆Mp + ρphpẅ = q. (24)

Dp is the bending stiffness of the plate, w the transverse dis-

placement, ρp and hp are the plate density and thickness and q
the externally applied transverse force. ∆ is the Laplacian oper-

ator and Mp is the moment term coming from the forces exerted

by the piezoelectric patch. The equation (24) is derived from

the Kirchhoff-Love plate theory where the transverse shear stress

and rotational inertia are neglected.

In the case of an uniformly polarized flat rectangular piezo-

electric patch, the moment term Mp is given by

Mp = Θ [H(x− x−) − H(x− x+)] [H(y − y−) − H(y − y+) V,
(25)

where Θ is a constant that depends on stiffness parameters and

the piezoelectric constant e31 and the potential difference V . The

Heavyside function H and the coordinates x−, x+, y− and y+
are used to describe the spatial footprint of the patch in the di-

rections x and y. To introduce the modal coupling indicator, the

transverse displacement w is expanded onto the transverse nor-

mal modes basis of the plate (ψi, ωi)

w(x, y, t) =

∞
∑

i=1

ψi(x, y)qi(t). (26)

By injecting Eq. (26) in Eq. (24) and using the orthogonality

properties of the modes, one obtains

q̈i + 2ξiωiq̇i + k̃iV + ω2
i qi = qi i ∈ N, (27)
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with

k̃i =

∫∫

S

∆Mp ψi dS, (28)

where S is the surface of the piezoelectric patch footprint. If the

plate is discretized with 3D finite elements, then the transverse

modal displacement ψi(x, y) at each node can be obtained by

computing the scalar product between the finite element eigen-

modes Φi (computed with Nastran for example, sizeN×1, with

N the dof number) and the normal vectors to the surface at each

node, denoted n. As a result, on can rewrite k̃i as

k̃i =

∫∫

S

∆Mp (Φi.n) dS. (29)

Inserting Eq. (25) in Eq. (29) leads to the following developed

expression of k̃i

k̃i = Θ

∫ x+

x
−

(

∂ (Φi.n)

∂y |y=y+

− ∂ (Φi.n)

∂y |y=y
−

)

dx

+ Θ

∫ y+

y
−

(

∂ (Φi.n)

∂x |x=x+

− ∂ (Φi.n)

∂x |x=x
−

)

dy. (30)

k̃i is the coupling coefficient within the frame of the plate

theory. It depends only on the patch geometric parameters x−,

x+, y− and y+, the modes Φi and a constant parameter Θ. The

constant has no importance since the purpose is to study the vari-

ations of k̃i according to the patch design. Thus, the goal is to

find four out of the five design parameters that maximize k̃i. At

last, only one normal computation is required since the coupling

indicator works with the modes of the naked structure.

4.2.2 Simulated Annealing Algorithm For the fan

blade application and according to its mesh refinement, the or-

der of magnitude is 105p feasible designs for p patches. Thus,

using exhaustive enumeration to find the better design is an un-

practicable method. In the hope of obtaining a more efficient

procedure to solve this combinatorial optimization problem, the

simulated annealing (SA) algorithm is adopted. It is a proba-

bilistic metaheuristic commonly used when the search space is

discrete [9–11, 22, 23]. The goal is to find a good approximation

to the global minimum of a cost function, denoted Ci. A simple

cost function, which quantify the performance of a piezoelectric

patch for the i-th mode, can be defined by

Ci = −k̃2
i , (31)

with k̃i defined by Eq. (30). By analogy with the annealing pro-

cess, each step of the SA algorithm replaces the current design

by a random neighbor design, chosen with a probability that de-

pends on a global parameter T (called the temperature), that is

gradually decreased during the process. The dependency is such

that the current design changes almost randomly when T is large,

but increasingly local as T goes to zero. The new generated de-

signs are then evaluated and submitted to an acceptance test. If

the cost function has to be minimized, transformations with cost

decrement are always accepted while transformations increasing

the cost are accepted according to a probability based on Boltz-

mann factor. The probabilistic nature of SA allows it to tempo-

rally accept worse solutions to escape from local minima. For

further explanations and details about the SA algorithm, we refer

the reader to [24]. In spite of the SA success [15], the algo-

rithm demands a careful adjustment of the annealing schedule to

achieve high performance in solving a combinatorial optimiza-

tion problem. Therefore, a version of the SA called Thermody-

namic Simulated Annealing (TSA) was chosen to perform the

numerical simulations. Its main advantage is the temperature

drop (cooling schedule) is not externally controlled by the user

but continuously computed from the measurement of state func-

tions variation (cost function variation). The TSA algorithm is

detailed in [9] and its output is a designD as defined by Eq. (23).

4.2.3 Working Schedule of the First Step From a

practical point of view, defining the design of a piezoelectric

patch (4 parameters in the first step) is equivalent to select a num-

ber of finite elements belonging both to the area inside which the

patch is allowed to move and to the patch footprint. The values of

the mode at the nodes located at the patch boundary are then used

to derive k̃i and so Ci. All these calculations are very fast with

Matlab and allow testing a huge number of design (one modal

analysis only). As shown in the figure 3, a loop on the TSA al-

gorithm is applied to generate several ”good” starting designs for

the second step of the optimization procedure.

4.3 Second Step of the Optimization Procedure

The main hypothesis of the first part is now released and

the new problem is to perform an optimization when the mass

and the stiffness of the patch are taken into account. It means to

compute the eigenmodes problem Eq. (14) for each new tested

design. Solving Eq. (14) is time consuming for an industrial FE

mesh and cannot be done more than few thousand times in a

reasonable amount of time. Consequently, the idea is to start the

search from good solutions (coming from the TSA algorithm) to

avoid testing too many designs before reaching a configuration

that minimize the cost function. The purpose is now to look after

the influence of patch’s mass and stiffness on the optimal design

found previously. In other word, one has to find the five design

parameters that minimize the following new cost function

Ci = −k2
i . (32) 
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FIGURE 3. WORKING SCHEDULE, FIRST STEP

Where ki is defined by Eq. (17). To achieve this goal, a tabu

search algorithm [13,25] is chosen. It is a local search technique

using a memory structure to enhance the performance of local

search method.

4.3.1 Tabu Search With a tabu search, the movement

through search space (i.e. the set of feasible designs) is via local

neighborhoods of the current design.

For a design D = {ai}, i = (1, 2, ..., λ), with λ = 5
(Eq. (23)). A neighborhood of D, denoted N(D), is considered

here to be the following set of designs [13]

N(D) = {Di} i = 1, · · · , 2λ, (33)

where, if aj = sk with k ∈ (1, 2, · · · ,m), m ranging de-

pending on whether sk is a particular design variable, then, for

j = (1, · · · , λ)

Dj = {a1, · · · , aj−1, sk−1, aj+1, · · · , aλ}, (34)

and again for j = 1, 2, · · · , λ

Dj+λ = {a1, · · · , aj−1, sk+1, aj+1, · · · , aλ}, (35)

with k ± 1 modulo m ∈ (1, 2, · · · ,m). The neighborhood ex-

pressed by Eq. (33), with design given by equations Eq. (34) and

Eq. (35) is considered to have depth 1. To broaden the neighbor-

hood to a depth β, sk−1 and sk+1 are replaced by sk−β and sk−β .

Hence, a β-depth neighborhood is such that i = 1, 2, · · · , 2βλ.

If D is the current design and N(D) its neighborhood, then the

search moves to the allowed design D′ in N(D) with the high-

est MEMCF. D′ is allowed if it does not belong to the tabu list.

The latter is a one-dimensional array which acts as a short-term

memory in that it contains a specific number (tabu length) of the

most recently accepted designs. Once the search has moved to

D′, it is included in the tabu list. The procedure of generating

a neighborhood, accepting the allowed design and then updating

the tabu list is the most basic tabu search technique and may be

repeated until a maximum number of iterations is reached or a

specified computation time is exceeded. A merit of the tabu list

is the prevention, to a degree, of cycling within a small subset of

the search space [13]. A detailed description of the tabu search

can be found in [25, 26].

Nonetheless, as we start the tabu search with a ”good” de-

sign, the depth of the neighborhood is set to one because the

purpose is to optimize locally the design. This second step of the

optimization procedure is performed as follows.

1. creation of N(D) from a starting design

2. structural eigenmodes computation thanks to Nastran for all

the designs belonging to the neighborhood

3. selection of the better allowed design (D′ → D)

4. loop on the first step of the algorithm.

4.3.2 Working Schedule of the Second Step As

viewed above, the only time consuming operation is the com-

putation of the short-circuit eigenmodes (ωi,Φi). This step,

mandatory to calculate the MEMCF, is done with the commer-

cial finite element analysis program Nastran. It is a widely used

software in the industry and is efficient for eigenmodes compu-

tation of large systems (several tens of thousands dofs). Some

technical difficulties have to be overcomed to realize the second

step of the tabu search:

1. create the volumic mesh of the patch on the outer surface of

a 3D structure,

2. associate to each finite element belonging to a piezoelectric

patch a local frame oriented according to its direction of po-

larization,

3. compute Kc and then ki,

4. loop the procedure for the set of designs (the neighborhood)

The calculation procedure used to evaluate ki for each design

is shown schematically in the diagram Fig. 4. The Matlab soft-

ware is exploited here as a shell to manage Patran and Nastran.

For each new design, the patch mesh is recreated with Patran

and a new normal mode computation is launched with Nastran.

Throughout the procedure, much information is exchanged be-

tween Matlab, Patran and Nastran, for this reason, the program-

ming language Awk is used because it allows reading and writing

very fast. The assembly of M and Kc and the computations of

7



the MEMCF and the frequency response function (FRF) are the

only operations done in Matlab. The main requirement to be able

2nd step of TS

Matlab/Patran

3D meshing of P patches

Nastran

(ωi,Φi) computation

Matlab/Awk, Data extraction

computation of M, Kc, χi, ki and Ci

N(D)

∀D ∈ N(D)

FIGURE 4. 2nd STEP OF THE TABU SEARCH

to deal with hundreds simulations is to cut back the time passed

out of Nastran. Some results about the performance of the work-

ing schedule (Fig. 4) are summarized in Tab. 3.

Time used by Nastran / Total time

patches 10
3 dofs 10

4 dofs 10
5 dofs

2 98 96 91

4 98 95 91

TABLE 3. TIME RATIOS [%]

5 APPLICATION TO A TURBOJET FAN BLADE
The fan blade used for the numerical simulations is a struc-

ture of approximately 560 mm×250 mm×7 mm for a weigth of

4.86 kg. It is discretized with 21,616 TET10 elements which cor-

respond to 124,614 dofs. The targeted modes are the first free-

free bending mode (1B, 132 Hz), the second bending mode (2B,

350 Hz) and the first torsion mode (1T, 512 Hz).

5.1 Validation of the Optimization Procedure
Despite the brute-force search (exhaustive enumeration) is

not the right method, it is useful to benchmark an optimization al-

gorithm on a search space of manageable size. Therefore, to vali-

date the optimization procedure exposed above, the search space

is limited to three design parameters (x−, y− and h): one piezo-

electric patch with its length and width fixed (100× 60 mm). The

(a) Mode 1B (b) Mode 2B (c) Mode 1T

FIGURE 5. FREE-FREE MODES SHAPES

result produced by the exhaustive search method is then com-

pared to the one coming from the optimization procedure.

5.1.1 Exhaustive Search In order to find the better

design, a path is applied to the patch so that it scans the entire

area that was bounded. Given the size of the patch, 195 different

locations are explored and six thicknesses (0.5, 1, 2, 3, 4 and

5 mm) are tested for each of them. The exhaustive search leads to

solve 1170 eigenvalue problems for a CPU time around 18 hours.

The results for the first bending mode are shown in the figure 6.

The k1 (MEMCF for the mode 1B) value corresponding to the

FIGURE 6. EXHAUSTIVE SEARCH RESULTS FOR THE 1B

optimal thickness hopt is plotted for each position. A black dot

indicates the best location. It can be noticed that computing the

optimal value for the thickness h is of major importance, since

hopt = 4 mm for this position leads to double k1, as compared to

h = 0.5 mm. The so determined patch, of mass that represents

3% of the total fan mass, has a MEMCF of 5.5%. The placement

and optimal thickness are also calculated for the modes 2B and

1T.
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FIGURE 7. EXHAUSTIVE SEARCH RESULTS

5.1.2 Optimization Algorithms The optimization

procedure leads to the same optimal location and optimal thick-

ness but the CPU time is reduced to around half an hour per tar-

geted mode. If the mode 1B is considered (Fig.8), all the designs

given by the TSA algorithm indicate a patch location in the area

on the fan blade surface where the von Mises equivalent strain

is maximum (patch with dashes). Then, the tabu search, start-

ing with these designs, moves the patch along different locations

and allows to find the optimal placement after approximately 40

eigenvalue problems resolutions.

FIGURE 8. OPTIMIZATION ALGORITHMS RESULT, MODE 1B

Many other validation test can be conducted, as long as a

reference solution can be found. In our case, given the large

computational time, only one patch with 3 free parameters can

be fully simulated and thus provide a reference solution.

5.2 Resonant Shunt Application

In this section, a resonant shunt is succesively connected on

the piezoelectric patch determined for the modes 1B, 2B et 1T

and tuned for each of them. When the modes are quite distinct

from each other, the optimal electrical components of the res-

onant shunt are calculated directly from ki and the frequency

of the mode [3]. Moreover, if the modal damping ξi associated

to each mode is known, the attenuation bring by the resonant

shunt is a function of ki [3]. The optimal electrical parameters

and the corresponding estimated attenuation are given in the ta-

ble 4. The values of L might seem very important, but they are

mode ki [%] R [Ω] L [H] ξ Att. [db]

1B 5.5 8429 136 10
−4 45

2B 8.0 4409 18 10
−4 50

1T 2.0 777 9 6 · 10
−4 20

TABLE 4. EXPECTED ATTENUATION

easily attainable using a simulated inductor (gyrator). If a gyra-

tor is employed then the system becomes semi-passive (electric

supply) but remains unconditionally stable since no energy is in-

jected into the structure. Finally, the frequency response func-

tions (FRF) for the three modes are computed with a modal basis

truncated to the first ten modes. An harmonic forcing is applied

at the tip of the fan blade and the driving point FRF modulus are

plot at the same point.
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FIGURE 9. FAN BLADE TIP FRF
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6 CONCLUSION
This study presents three novel aspects. The first one is the

use of an original FE model to solve the electromechanical pro-

blem of an industrial complex structure equipped with a piezo-

electric patch. The second is the decomposition of the mechan-

ical optimization in two steps in order to have a less expensive

computation time. At last, it is the derivation of an analytic cou-

pling indicator allowing to evaluate a huge number of patch de-

sign.

Three main results have to be stressed. The first one is the

optimization procedure for one patch can be done on a 3D mesh

of around 105 dofs within a reasonable time (30 min) if some

optimization algorithms are used. Then the MEMCF is very sen-

sitive to the thickness of the patch, which is an often overlooked

parameter in the optimization procedure. Finally, it was shown

that the additional stiffness provided by the patch modifies sig-

nificantly the optimal position found at the end of the first opti-

mization step.

The future work is about the experimental validation of the

FE model on the fan blade itself. This validation will be con-

ducted for the free-free boundary conditions but also for the

clamped-free to approach the mechanical operating conditions.

Then, the natural extension of this work is to apply the optimiza-

tion procedure to the case of several patches but new problems

arise like, for instance, the definition of a relevant cost function.

Lastly, it is important to mention this method is applied here

to a resonant shunt but remains valid for a resistive shunt or

switch techniques since the mechanical and electrical optimiza-

tions are uncoupled.
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