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Abstract. For noise and vibration attenuation, various approaches can be employed depend-
ing on the frequency range to attenuate. Generally, active or passive piezoelectric techniques 
are effective in the low frequency range, while dissipative materials, such as viscoelastic or 
porous treatments, are efficient for higher frequency domain. In this work, a reduced order 
model is developed for the resolution of a fully coupled electro-mechanical-acoustic system 
using modal projection techniques. The problem consists of an elastic structure with surface-
mounted piezoelectric patches coupled with an inviscid and compressible fluid. The piezoelec-
tric elements, connected with a resistive or resonant shunt circuit, are used for the vibration 
damping of the coupled system. Numerical examples are presented in order to illustrate the 
accuracy and the versatility of the proposed reduced order models,notably in terms of predic-
tion of attenuation.. 
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1 INTRODUCTION 

For noise and vibration reduction, various approaches can be employed depending on the 
frequency range to attenuate. Generally, active or passive piezoelectric techniques are effec-
tive in the low frequency range, while dissipative materials (such as viscoelastic treatments or 
porous insulations) are efficient for higher frequency domain. In this work, we propose a re-
duced order model to describe a fully coupled electro-mechanical-acoustic problem in the low 
frequency range. The system consists of an elastic structure with surface-mounted piezoelec-
tric patches coupled with an inviscid, compressible and barotropic fluid, gravity effects being 
neglected. The piezoelectric elements, connected with a resonant shunt circuit, are used for 
the vibration damping of the coupled system.  

First, a non-symmetric finite element formulation of the coupled system is derived from a 
variational principle involving structural displacement, electrical voltage of piezoelectric ele-
ments, and acoustic pressure inside the fluid cavity. This formulation, with only one couple of 
electric variables per patch, is well adapted to practical applications since realistic electrical 
boundary conditions, such that equipotentiality on the electrodes and prescribed global elec-
tric charges, naturally appear. The global charge/voltage variables are intrinsically adapted to 
include any external electrical circuit into the electromechanical problem and to simulate the 
effect of resistive or resonant shunt damping techniques.  

The second part of this work is devoted to the introduction of a reduced-order model of the 
coupled problem. The proposed methodology, based on a normal mode expansion, requires 
the computation of the eigenmodes of the structure with short-circuited piezoelectric patches, 
and the rigid acoustic cavity. It is shown that the projection of the full-order coupled finite 
element model on the uncoupled bases, leads to a reduced order model in which the main pa-
rameters are the classical fluid-structure and electromechanical modal coupling factors. De-
spite its reduced size, this model is proved to be very efficient for simulations of steady-state 
and transient analyses of the coupled structural-acoustic system with shunt damping.  

In the last part of the paper, a three-dimensional numerical example is investigated. The 
problem consists of an elastic plate equipped with piezoelectric elements and coupled with an 
acoustic cavity. This example is analyzed in order to show that the reduced order model is ca-
pable of capturing the main characteristics of the system dynamic behavior, notably in terms 
of attenuation. 

2 FINITE ELEMENT FORMULATION OF THE STRUCTURAL ACOUSTIC 
PROBLEM WITH PIEZOELECTRIC PATCHES 

We briefly recall in this section the variational formulation of a fluid/piezoelectric-
structure interaction problem in terms of structural mechanical displacementu , electric poten-
tial in the structure   and fluid pressure p  of the inviscid acoustic fluid (for more details, we 
refer the reader to [1, 2]). Secondly, this coupled formulation is adapted to the general case of 
an elastic structure equipped with P  piezoelectric patches (see Fig. 1) as done for structural 
vibrations in [3]. This modified formulation allows taking into account realistic electrical 
boundary conditions such as equipotentiality on patches electrodes and prescribed global 
charges. Finally, the resulting finite element formulation is applied to a structural acoustic 
problem with one piezoelectric patch connected to a RL  series shunt circuit. 



J.-F. Deü, W. Larbi and R. Ohayon 

 3

 

Figure 1: Fluid/piezoelectric-structure coupled system. 

It should be noted that standard indicial notations are adopted throughout the paper: sub-
scripts i, j, k and l denote the three-dimensional vectors and tensor components and repeated 
subscripts imply summation. In addition, a comma indicates a partial derivative. 

2.1 Variational formulation of the fluid/structure/piezo-patches coupled system  

We consider a piezoelectric structure occupying the domain S  filled with an inviscid lin-

ear acoustic fluid occupying the domain F . We denote by   the fluid-structure interface 

and by S
in  and F

in  the unit normal external to S  and F , respectively.  

The structure is clamped on a part u  and subjected (i) to a given surface force density d
iF  

on the complementary part   of its external boundary and (ii) to a pressure field p  due to 

the presence of the fluid on its internal boundary  . The electric boundary conditions are de-
fined by a prescribed electric potential d  on   and a surface density of electric charge dq  

on the remaining part D . Thus, the total structure boundary, denoted S , is such that 

S u D          with u D        .  

The linearized deformation tensor is 1
2ij i j j iu u  
   

   and the stress tensor is denoted by 

ij . Concerning the electric field variables, iD  is the electric displacement verifying the elec-

tric charge equation for a dielectric medium 0i iD    in S  and the electric boundary condi-

tions S d
i iD n q   on D ; iE  denotes the electric field vector such that i iE   .  

The linear piezoelectric constitutive equations write:  

 ( ) ( ) ( )ij ijkl kl kij ku c u e E       (1) 

 ( ) ( ) ( )i ikl kl ik kD u e u E      (2) 

where ijklc  denotes the elastic moduli at constant electric field, kije  the piezoelectric constants 

and ik  the dielectric permittivity at constant strain. Moreover, we denote by S  the mass 

density of the structure.  
Let us introduce the admissible spaces uC  and C  of regular functions iu  and   defined 

in S . We then consider the subspaces  0onu i u i uC u C u      , ond dC C     
 
 

      
and 

0onC C     
 
 

     . 
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The variational formulation, corresponding to the response of the piezoelectric structure 
subjected to the prescribed boundary conditions and to the pressure field p  on the interface 
  writes:  

Find i uu C  and dC   such that: 

i uu C   :  

 
2

2
d d d d d

S S S

d Fi
ijkl kl ij kij k ij S i i i i i

u
c v e E v u v F u s p n u s

t 

      
    


   

      (3) 

where 1
2 ( )ij i j j iu u     , kl  and kE  being functions of iu  and  , and 

C   :  

 d d d
S S D

d
ikl kl i ik k ie E v E E v q s   

  
      (4) 

where i iE    , kl  and kE  being functions of iu  and  . 

This formulation must be completed by appropriate initial conditions.  
 
We consider now the special case of an elastic structure (domain E ) equipped with P  

piezo-electric patches and completely filled with an internal fluid (domain F ). Each piezo-

electric patch has the shape of a plate with its upper and lower surfaces covered with a very 
thin layer of conducting material to obtain electrodes. The p-th patch,  1p P   , occupies 

a domain ( )p  such that (1) ( )( )P
E     is a partition of the all structure domain S . A 

set of hypotheses, which can be applied to a wide spectrum of practical applications, are now 
formulated: 

 
 The piezoelectric patches are thin, with a constant thickness ( )ph  for the p-th patch;  
 The thickness of the electrodes is much smaller than ( )ph  and is thus neglected;  
 The piezoelectric patches are polarized in their transverse direction (i.e. the direction 

normal to the electrodes). 
 The electric field vector, of components kE , is normal to the electrodes and uniform in 

the piezoelectric patch, so that for all  1p P   :  

 
( )

( )
( )

in
p

p
k kp

V
E n

h
    (5) 

where ( ) ( ) ( )p p pV      is the potential difference between the upper and the lower electrode 

surfaces of the p-th patch which is constant over ( )p  and kn  is the k-th component of the 

normal unit vector to the surface of the electrodes.  
 
Under those assumptions and by considering successively each of the 2P   subdomains 

(1) ( )( )P
F E     , the variational formulation of the fluid/structure/piezoelectric-patches 

coupled system can be written in terms of the structural mechanical displacement iu , the elec-

tric potential difference ( )pV  constant in each piezoelectric patch, and the fluid pressure p : 
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 Mechanical equation : i uu C   , 

 
( )

( )

( )
1

2

2

d d d

d d

p
S

S

pP
F

ijkl kl ij kij k ij i ip
p

di
S i i i

V
c v e n p n u s

h

u
u v F u s

t 

   

  

  


 

 


 



  

 
 (6) 

 Electrical equation : ( )pV R  , 

 
( )

( )
( ) ( ) ( ) ( ) ( )

( )
1 1 1

d
p

pP P P
p p p p p

ikl kl ip
p p p

V
V C V e n V Q

h

  


  

      (7) 

where ( ) ( ) ( )
33

p p pC S h   defines the capacitance of the p-th piezoelectric patch ( ( )pS  

being the area of the patch and 33 ik i kn n   the piezoelectric material permittivity in 

the direction normal to the electrodes) and ( )pQ  is the global charge in one of the elec-
trodes (see [3]).  

 Acoustic equation : pp C  , 

 
22

2 2 2

1 1
d d d 0

F F

Fi
i i i

F F F

up
p p v p v n p s

c t t
  

    


  

     (8) 

The first two equations are directly derived from Eqs. (3) and (4) using the procedure de-
scribed in [3]. The last equation corresponds to the variational formulation of the Helmholtz 
equation in the acoustic cavity 2

ii Fp p c    in F  together with the boundary condition 
F F

i i F i ip n u n     on  . This relation expresses the continuity of the normal displacements of 

the fluid and the structure on  . Fc  is the constant speed of sound in the fluid and F  the 

mass density of the fluid. pC  is the admissible space of regular functions p  defined in F .  

Thus, the variational formulation of the fluid/structure/piezo-patches coupled problem 
writes as follows: given ( d d dF q  ), find ( i uu C , dC  , pp C ) such that Eqs. (6) to (8) 

are satisfied. The formulation must be completed by appropriate initial conditions. 
This formulation, with only a couple of electric variables per patches, is well adapted to 

practical applications since (i) realistic electrical boundary conditions such that equipotential-
ity on the electrodes and prescribed global charges naturally appear, (ii) the global 
charge/voltage variables are intrinsically adapted to include any external electrical circuit into 
the electromechanical problem and to simulate shunted piezoelectric patches. 

2.2 Finite element formulation of the fluid/structure/piezo-patches coupled system 

Let us introduce U  (of length sN ) and P  (of length fN ) corresponding to the vectors of 

nodal values of iu  and p  respectively, and (1) (2) ( )( )P TQ Q QQ   and (1) (2) ( )( )P TV V VV   

the column vectors of electric charges and potential differences. The submatrices correspond-
ing to the various linear and bilinear forms involved in Eqs. (6) to (8) are defined by  
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( )

( )

( )

( )
1

( )

( )
1

2

d d

d d

1
d d

1
d d

p
S

p
S

F

F

pP
T T

ijkl kl ij u kij k ij uVp
p

pP
T T T

S i i u ikl kl i uVp
p

T F T
i i p i i up

F

T F T
p i i up

F F

V
c v e n

h

V
u u v e n

h

p p v p n u s

p p v u n p s
c

    

    

   


   


 


 


  

 

 

 

 

 

 

 

 

 

U K U U C V

U M U V C U

P K P U C P

P M P P C

( ) ( ) ( ) ( ) ( )

1 1

d

T

P P
p p p T p p T

V
p p

d T
i i

V C V V Q

F u s


   

 

 



 



 



U

V K V V Q

U F

 (9) 

where uM  and uK  are the mass and stiffness matrices of the structure; uVC  is the electric 

mechanical coupled stiffness matrix; (1) (2) ( )diag P
V C C C 

 
 

K   is a diagonal matrix filled 

with the P  capacitances of the piezoelectric patches; pM  and pK  are the mass and stiffness 

matrices of the fluid; upC  is the fluid-structure coupled matrix; F  is the applied mechanical 

force vector.  
 

Thus, the variational equations (6) to (8) for the fluid/structure/piezo-patches coupled prob-
lem can be written, in discretized form, as the following unsymmetrical matrix system: 

 

0 0

0 0 0 0

0 0 0 0

u u uV up

T
uV V

T
up p p

   
   
   
   
   
   
   
      

      
            
         

M U K C C U F

V C K V Q

C M P K P







 (10) 

with appropriate initial conditions. 

2.3 Structural acoustic problem with piezo patches connected to RL shunt circuit 

The above discretized formulation (Eq. (10)) can be used for a wide range of applications 
of mechanicals structure coupled with acoustic domain and associated with piezoelectric 
patches. It is particularly adapted to the case where the piezoelectric patches are shunted, i.e. 
connected to a passive electrical network [3]. In this case, neither V nor Q are prescribed by 
the electrical network but the latter imposes only a relation between them. In the case of a 
resonant shunt connected to the p-th patch and composed of a resistance ( )pR  and an induc-
tance ( )pL  in series (Fig. 1), we have the following relation between electrical potential differ-
ence ( )pV  and the electric charge ( )pQ :  

 0  LQ RQ V   (11) 
 
where (1) ( )diag PR R 

 
 

R   and (1) ( )diag PL L 
 
 

L   are diagonal matrices filled with the P  re-

sistances and inductances of the shunt circuits. 
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Figure 2: Piezoelectric patch connected to RL shunt circuit. 

Due to the direct piezoelectric effect, the piezoelectric patch converts a fraction of the me-
chanical energy of the vibrating structure into electrical energy which can be dissipated 
through the resistive components of the RL  circuit. It is well known that the damping effect 

due to this circuit is maximal when the resonance circular frequency 1 LC  of the shunt cir-
cuit is tuned on the circular frequency of the structural-acoustic eigenmode to be controlled. 
The resistance R  and the inductance L  can be adjusted and properly chosen so as to maxi-
mize the damping effect. Therefore, the optimal resistance and inductance for a series reso-
nant shunt can be calculated by [4, 5] 

 
2
effopt

2
eff

2

(1 )
i

i i

k
R

C k







 (12) 

 opt
2 2

eff

1

(1 )i i

L
C k 




 (13) 

where i  is the short circuit natural frequency of the i-th mode and eff ik   is the effective elec-

tromechanical coupling coefficient [3]. 
Using the second row of Eq. (10), the degrees-of-freedom associated with the electrical po-

tential difference V  can be expressed in terms of structural displacements U  and electric 
charge Q  as 

 1 1T
V uV V
  V K C U K Q  (14) 

 
Thus, after substitution of V  into Eq. (11) and using Eq. (10), we get the following elec-

tro-mechanical-acoustic system: 
 

 

1 1

1 1

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

T
u u uV V uV uV V up

T
V uV V

p

   
  
  
    
  
  
  
     

          
                  
                

T
up p

M U U K C K C C K C U F

L Q R Q K C K Q

C M P P K P

 

 

 
 (15) 

 
Note that this (U, Q, P) formulation is well suited for switch shunting applications. 
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3 REDUCED ORDER MODEL 

In this section, we introduce a reduced-order formulation of the discretized problem ob-
tained in the previous section. This formulation, based on a modal superposition method, con-
sists in expanding (i) the structural displacement over the in vacuo structure modes in short 
circuited configuration, (ii) the acoustic pressure over the acoustic modes of the fluid in rigid 
cavity. This approach is widely used and effective for structural acoustic systems with weak 
coupling. It can be noted that the acoustic basis is enriched by a static mode ([6]) and that the 
main motivation of choosing the structural modes with short-circuited patches is that they can 
be computed using a classical elastic formulation.  

3.1 Eigenmodes of the structure in vacuo with short-circuited patches 

In a first phase, the first sM  eigenmodes of the structure in vacuo with all patches short-

circuited are obtained from the following equation  

  2 0 for 1u si u si si M 
 
 

     K M   (16) 

where ( )si si   are the natural frequency and eigenvector for the i-th structural mode. These 

modes verify the following orthogonality properties  
 2andT T

si u sj ij si u sj si ij       M K  (17) 

where si  have been normalized with respect to the structure mass matrix. 

3.2 Eigenmodes of the internal acoustic cavity with rigid walls 

In this second phase, the first fM  eigenmodes of the acoustic cavity with rigid boundary 

conditions are obtained from the following equation  

 2 0 for 1p fi p fi fi N   
  
  

     K M   (18) 

where ( )fi fi   are the natural frequency and eigenvector for the i-th acoustic mode. These 

modes verify the following orthogonality properties  
 2andT T

fi p fj ij fi p sj fi ij       M K  (19) 

where fi  have been normalized with respect to the fluid mass matrix. 

3.3 Modal expansion of the general problem 

By introducing the matrices 1 ss s sN

 
 
 
 

     of size s sN M  and 1 ff f fN

 
 
 
  

     of 

size f fN M  corresponding to the uncoupled bases, the displacement and pressure are sought 

as  
 ( ) and ( )s s f ft t   U q P q  (20) 

where the vectors 1 s

T

s s sNq q
 
 
 
 

q   and 1 f

T

f f fNq q
 
 
 
  

q   are the modal amplitudes of the 

structure displacement and the fluid pressure respectively.  
Substituting these relations into Equations (15) and pre-multiplying the first row by T

s  

and the third one by T
f , we obtain the equation  
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1 1

1 1 0

0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

T T T T
s u uV V uV s s uV V s up f s

T
V uV s V

T
f p f f

T
s u ss s

f

                                

 
 
 
 
 
 
 
  

     

 
 

    
     
         

T T T
f up s f p f

K C K C C K C q

K C K Q

K q

Mq

R Q L

C Mq

 




0

0

T
s

f

   
      
     

Fq

Q

q





 (21) 

This matrix equation represents the reduced order model of the structural acoustic problem 
with piezoelectric shunt damping treatments. If only few modes are kept for the projection, 
the size of this reduced order model ( s fM P M  ) is much smaller than the initial one 

( s fN P N  ) (see examples below). 

Equation (21) can be also written in the following form of coupled differential equations  
 sN  mechanical oscillators 

 
( ) ( ) ( )

2 ( )
( ) ( )

1 1 1 1

2
fs

NN p p pP P
pi k i

i si si si si ij fj isi si p p
p k p j

q q Q q Fq q
C C

     
   

          (22) 

 fN  acoustic equations 

 2

1

0
sN

fi fi ij sjfi
j

q qq  


    (23) 

 P  electric equations  

 
( )

( ) ( )( ) ( )
( ) ( )

1

0
sNp

p pp p i
sip p

i

Q
L R qQ Q

C C




      (24) 

where ( ) T
i siF t   F  is the mechanical excitation of the i-th mode; T

ij si up fj   C  are the fluid 

structure coupling coefficients and T
i si uV   C  the electromechanical coupling factors.  

We can note that modal damping coefficients i  have been added in Equation (22) in order 

to take into account the structural damping which can be measured experimentally.  
The initial finite element formulation previously introduced has been replaced by the mo-

dal formulation of Equations (22), (23), (24) whose unknowns are the sN  structure modal co-

ordinates siq , the fN  fluid modal coordinates fiq  and the P  charges ( )pQ  associated with the 

piezoelectric patch. Its major interest, and especially the choice of the short-circuit eigen-
modes as the expansion basis, is that the above computations of the parameters necessitate 
only a modal analysis of an elastic problem. This operation can thus be done by any standard 
finite elements code.  

4 NUMERICTLA EXAMPLES 

We consider a 3D acoustic cavity completely filled with air (density = 1.2 kg/m3; speed of 
sound = 340 m/s). The cavity walls are rigid except the top one which is a flexible aluminium 
plate of thickness 1 mm clamped at its four edges. The density of the plate is 2700 kg/m3 the 
Young modulus 72 GPa and the Poisson ratio 0.34. On the top surface of the plate, two iden-
tical piezoelectric patches of thickness 0.5 mm are bounded. For the mechanical characteris-
tics of the piezoelectric material PIC151, the reader can be referred to [7]. The geometrical 
data and mesh are presented in Fig. 3. 
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Figure 3: Acoustic/structure/piezo-patches coupled system: (a) geometrical data (in m) and (b) mesh. 

Concerning the finite element discretization, we have used, for the structural part, 200 
four-node plate elements based on Mindlin theory with five degrees-of-freedom per node 
( Ns=1155). The portions of the plate covered by the PZT patches have been modelled accord-
ing to the first-order shear deformation laminated theory [8]. As discussed in the previous sec-
tions, only one electrical degree of freedom is used to represent the electrical charge Q in each 
patch. The acoustic cavity is discretized using 2600 hexahedric elements with one degree-of-
freedom per node corresponding to the acoustic pressure ( N f =3234). Note that the structural 

and acoustic meshes are compatible at the interface. 

4.1 Modal analysis of the acoustic/struc-ture/piezo-patches coupled problem  

Table 1 presents the eigenfrequencies in three following cases: (i) the 3D rigid acoustic 
cavity; (ii) the clamped plate with the two patches short circuited; and (iii) the plate/acoustic-
cavity coupled system in the short circuit case. All coupled frequencies, except the sixth, are 
associated with the first vibration modes of the structure (lower than 450 Hz), and the sixth 
coupled frequency corresponds to the first acoustic mode in rigid cavity. It can be confirmed 
by comparing the mode shapes in case (iii) with those obtained in cases (i) or (ii) which are 
not shown here for sake of brevity. Moreover, as expected, the natural frequencies of the cou-
pled modes (structure dominated) are lower than those for the structure in vacuum (except for 
the first mode) due to the ”added-mass effect” of the fluid. 

 

Fluid 
in rigid cavity 

Structure 
without fluid 

Coupled 
problem 

Type of coupled mode 
S: Structure / F: Fluid 

297.94 77.93 85.40 S 
561.56 123.64 122.53 S 
569.00 194.29 192.79 S 
614.82 212.29 211.94 S 
642.29 237.12 236.14 S 
681.94 316.11 298.31 F 
799.44 346.32 315.59 S 
837.71 383.89 346.24 S 
875.22 434.73 382.23 S 
881.62 451.03 433.61 S 

Table 1: Computed frequencies (in Hz) of the structural-acoustic coupled system. 
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For illustration purpose, Fig. 4 shows the deformed plate and the pressure field for the first 
ten vibration modes in the coupled case. 

 
Figure 4: First 4 fluid-structure coupled modes: pressure level in the cavity and plate displacement. 

4.2 Transient analysis of the acoustic/structure/piezoelectric-patch coupled problem 

In this part, a multiple-mode shunt system with two piezoelectric patches as shown in Fig.5 
is used in order to get an optimal multi-modal damping of the coupled system. The patches 
are tuned simultaneously on the second and the fourth modes of the plate. For each mode, the 
optimal values of the shunt electrical parameters are computed using Equations (27) and (28) 
(with R1  632.73   L1  9.47 H  for the second mode and R2  735.56   and L2  3.17 H  for the 
fourth mode). The plate is excited by a mechanical force of intensity 1 N located at (x = 
0.14 m, y = 0.06 m, z = 0.3 m). The system vibratory response is obtained with the modal re-
duction approach defined by Equation (36) with a truncation on the first M s 10 structural 
modes and the first 10fM   acoustic modes. 

 
Figure 5: Vibration plate coupled with an acoustic cavity and connected to RL shunt circuit. 
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Figures 6 and 7 present the frequency response of the system with and without shunt. The 
mechanical transverse displacement in the plate at the point of coordinates (x = 0.14 m, y = 
0.06 m, z = 0.3 m) is presented in Fig. 6 and the sound pressure level in the acoustic cavity at 
the point of coordinates (x = 0.15 m, y = 0.09 m, z = 0.1 m) in Fig. 7. These Figures show that 
the modal resonant magnitude for each considered mode have been significantly reduced si-
multaneously. In fact, the strain energy present in the piezoelectric material is converted into 
electrical energy and hence dissipated into heat using the RL  shunt device.  

 
Figure 6: Frequency response function: transverse displacement amplitude in dB at the excited point. 

 

Figure 7: Frequency response function: pressure level in dB at x = 0.15 m, y = 0.09 m, z = 0.1 m. 

5 CONCLUSIONS 

In this work, an original finite element formulation of structural acoustic problems with 
piezoelectric patches is presented. This formulation, involving only a couple of electric vari-
ables by patch, allows take into account naturally realistic electric boundary conditions. A re-
duced-order model, based on a normal mode expansion, is then developed. The proposed 
methodology requires the computation of the eigenmodes of the structure with short-circuited 
piezoelectric patches, and the rigid acoustic cavity. It is shown that the projection of the full-
order coupled finite element model on the uncoupled bases, leads to a reduced order model in 
which the main parameters are the classical fluid-structure and electromechanical modal cou-
pling factors. Despite its reduced size, this model is proved to be very efficient for simulations 
of steady-state analyses of structural-acoustic coupled systems with shunt damping.  
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