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Abstract. In this paper, we present a coupled finite element/boundary element

method (FE/BE) for control of noise radiation and sound transmission of vibrat-

ing structure by active piezoelectric techniques. The system consists of an elastic

structure (with surface mounted piezoelectric patches) coupled to external/internal

acoustic domains. The passive shunt damping strategy is employed for vibration

attenuation in the low frequency range.
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1 Introduction

During the last two decades there has been an accelerating level of interest in the

control of noise radiation and sound transmission from vibrating structures by ac-

tive piezoelectric techniques in the low frequency range. In this context, resonant

shunt damping techniques have been recently used for interior structural-acoustic

problems [1, 2]. The present work concerns the extension of this technique to

internal/external vibroacoustic problems using a finite-element/boundary-element

method (FEM/BEM) for the numerical resolution of the fully coupled electro-

mechanical-acoustic system.

First, a finite element formulation of an elastic structure with surface-mounted

piezoelectric patches and subjected to pressure load due to the presence of an

external fluid is derived from a variational principle involving structural displace-

ment, electrical voltage of piezoelectric elements and acoustic pressure at the fluid-

structure interface. This formulation, with only one couple of electric variables per

patch, is well adapted to practical applications since realistic electrical boundary

conditions, such that equipotentiality on the electrodes and prescribed global elec-

tric charges, naturally appear. The global charge/voltage variables are intrinsically

adapted to include any external electrical circuit into the electromechanical problem

and to simulate the effect of resistive or resonant shunt techniques.
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In the second part of this work, the direct boundary element method is used for

modeling the scattering/radiation of sound by the structure coupled to an acoustic

domain. The BEM is derived from Helmholtz integral equation involving the surface

pressure and normal acoustic velocity at the boundary of the acoustic domain. The

coupled FE-BE model is obtained by using a compatible mesh at the fluid-structure

interface. The present coupling procedure is quite general and suitable for model-

ing any three-dimensional geometry for bounded or unbounded structural-acoustic

radiation problems.

2 Finite Element Formulation of Elastic Structure

with Piezoelectric Shunt Systems

2.1 Harmonic Equations

An elastic structure occupying the domain ΩE is equipped with P piezoelectric

patches and coupled to an inviscid linear acoustic fluid occupying the domain ΩF

(figure 1). Each piezoelectric patch has the shape of a plate with its upper and lower

surfaces covered with a very thin layer electrodes. The pth patch, p ∈ {1, · · · , P},

occupies a domain Ω(p) such that (ΩE , Ω
(1), · · · , Ω(P )) is a partition of the all

structure domain ΩS . In order to reduce the vibration amplitudes of the coupled

problem, a resonant shunt circuit made up of a resistance R(p) and an inductance

L(p) in series is connected to each patch [3, 1, 4].

We denote by Σ the fluid-structure interface and by nS and nF the unit normal

external to ΩS and ΩF , respectively. Moreover, the structure is clamped on a part

Γu and subjected (i) to a given surface force density Fd on the complementary part

Γσ of its external boundary and (ii) to a pressure field p due to the presence of the

fluid on its boundaryΣ. The electric boundary condition for the pth patch is defined

by a prescribed surface density of electric charge Qd on Γ
(p)
D .

The linearized deformation tensor is ε = 1
2

(

∇u+∇Tu
)

and the stress tensor

is denoted by σ. Moreover, D denotes the electric displacement and E the electric

ΩF

ΩE

Fd

ΓD

ΓN

Γσ
Ω(p)

R (1)

L(1)

Ω(1)

Σ Γu

nF

nS

Fig. 1 Vibrating structure with piezoelectric shunt systems coupled to an acoustic domain
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field such that E = −∇ψ where ψ is the electric potential. ρS is the mass density

of the structure. The linear piezoelectric constitutive equations write:

σ = c ε− eT E (1)

D = e ε+ ǫE (2)

where c denotes the elastic moduli at constant electric field, e denotes the piezo-

electric constants, and ǫ denotes the dielectric permittivities at constant strain.

The local equations of elastic structure with piezoelectric patches and submitted

to an acoustic pressure are [5]

divσ + ω2ρSu = 0 in ΩS (3a)

σ nS = Fd on Γσ (3b)

u = 0 on Γu (3c)

σ nS = pn on Σ (3d)

divD = 0 in Ω(p) (4a)

D · nS = Qd on Γ
(p)
D (4b)

where ω is the angular frequency.

For each piezoelectric patch, a set of hypotheses, which can be applied to a wide

spectrum of practical applications, are formulated [1, 4].

Under those assumptions, the electric field vector E(p) can be considered normal

to the electrodes and uniform in the piezoelectric patch [6], so that for all p ∈
{1, · · · , P}:

E(p) = −
V (p)

h(p)
n(p) in Ω(p) (5)

where V (p) is the potential difference between the upper and the lower electrode

surfaces of the pth patch which is constant over Ω(p) and where n(p) is the normal

unit vector to the surface of the electrodes.

2.2 Finite Element Formulation

After applying variational formulation to Eqs. (3) and (4) (see [1]) and discretiza-

tion by finite element method and using the following additional relation between

electrical potential differences and electric charges due to the shunt circuits:

−ω2LQ − iωRQ+V = 0 (6)

we find the following matrix equation:
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[

Ku +CuV K
−1
V CT

uV CuV K
−1
V −Cup

K−1
V CT

uV K−1
V 0

]

⎡

⎣

U

Q

PΣ

⎤

⎦− iω

[

0 0 0

0 R 0

]

⎡

⎣

U

Q

PΣ

⎤

⎦+

− ω2

[

Mu 0 0

0 L 0

]

⎡

⎣

U

Q

PΣ

⎤

⎦ =

[

F

0

]

(7)

where Q = (Q(1) Q(2) · · · Q(P ))T and V = (V (1) V (2) · · · V (P ))T are the col-

umn vectors of electric charges and potential differences; R = diag
(

R(1)R(2) · · ·

R(P )
)

and L = diag
(

L(1) L(2) · · · L(P )
)

are the diagonal marices of the resis-

tances and inductances of the patches; U and PΣ are the vectors of nodal values

of u and p; Mu and Ku are the mass and stiffness matrices of the structure (elastic

structure with piezoelectric patches); CuV is the electric mechanical coupled stiff-

ness matrix; KV = diag
(

C(1) C(2) · · · C(P )
)

is a diagonal matrix filled with the P
capacitances of the piezoelectric patches; Cup is the fluid-structure coupled matrix;

F is the applied mechanical force vector.

3 Boundary Element Formulation for External/Internal

Acoustic Fluid

3.1 Harmonic Equations

In this section, the direct boundary element method for exterior/interior acoustic

domain is presented. The governing equations of the acoustic fluid are [7, 8]

∆p+ k2p = 0 in ΩF (8a)

∂p

∂n
= 0 on ΓD (8b)

∂p

∂n
= ρFω

2u · n on Σ (8c)

∂p

∂r
+ ikp = θ(

1

r
) for r → ∞ (8d)

Eq. (8a) represents the Helmholtz equation where k = ω/c is the wave number,

i.e. the ration of the circular frequency ω and the sound velocity c; Eq. (8b) is the

rigid boundary condition on ΓD; Eq. (8c) is the kinematic interface fluid-structure

condition on Σ; Eq. (8d) represents the Summerfield condition at infinity.

3.2 Boundary Element Formulation

The boundary element formulation for acoustic problems can be used for the interior

and exterior problems. The Helmholtz equation is valid for the pressure p at the

arbitrary collocation point x within the acoustic domain ΩF . A weak form of this

equation is obtained by weighting with the fundamental solution:
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G(x,y) =
eik|x−y|

4π|x− y|
(9)

where |x−y| denotes the distance between the arbitrary point x and the load source

point y.

Applying Green’s second theorem, the Helmholtz equation can be transformed

into a boundary integral equation, which can be expressed as follows

c(x)p(x) =

∫

∂ΩF

p(y)
∂G(x,y)

∂ny

dS −

∫

∂ΩF

∂p(y)

∂ny

G(x,y)dS (10)

where c(x) is the corner coefficient.

The fluid boundary is divided into N quadrilateral elements (∂ΩF =
∑N

j=1 Sj)

and Eq. (10) is discretized. After using the relation between the acoustic pressure

and the fluid normal velocity ∂p
∂n

= −iρFωv (where v = vF · n) and numerical

evaluation, the discrete Helmholtz equation can be written in the following matrix

form:

HP = iρFωGv (11)

where P and v are the vectors with sound pressure and velocity in the normal di-

rection to the boundary surface at the nodal position of the boundary element mesh.

4 FE/BE Formulation for the Fluid-Structure with Shunt

Systems Coupled Problem

The fluid boundary domain ∂ΩF is divided into two parts including ΓD (where

the rigid boundary condition is applied) and the interface Σ (for the fluid-structure

interface) such as ∂ΩF = ΓD ∪Σ and ΓD ∩Σ = ∅. The boundary conditions given

in Eqs. (8b) and (8c) can be expressed in discretized form

vD = 0 on ΓD (12a)

vΣ = iωTU on Σ (12b)

where T is the global coupling matrix that transforms the nodal normal displace-

ment of the structure to the normal velocity of the acoustic fluid at the interface.

Substituting Eqs. (12) into the BE matrix expression (Eq. (11)) yields

[

H11 H12

H21 H22

] [

PΣ

PD

]

=

[

G11 G12

G21 G22

] [

iρFω
2TU

0

]

(13)

By combining Eq. (7) with Eq. (13), we find the following coupled FE/BE matrix

equation
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⎡

⎢

⎢

⎣

Ku +CuV K
−1
V CT

uV − ω2Mu CuV K
−1
V −Cup 0

K−1
V CT

uV K−1
V − iωR− ω2L 0 0

iρFω
2G11T 0 H11 H12

iρFω
2G21T 0 H21 H22

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

U

Q

PΣ

PD

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

F

0

0

0

⎤

⎥

⎥

⎦

(14)

5 Numerical Example

We consider a 3D hexaedric acoustic cavity of size A= 0.3048 m, B=0.1524 m and

C=0.1524 m along the directions x, y, and z, respectively. The cavity is completely

filled with air (density ρ= 1.2 kg/m3 and speed of sound c=340 m/s). The cavity

walls are rigid except the top one, which is a flexible aluminum plate of thickness

1 mm. The density of the plate is 2690 kg/m3, the Youngs modulus is 70 GPa and

Poisson ratio 0.3. On the top surface of the plate, a PIC 151 patch is bonded, whose

in plane dimensions are 0.0762×0.0508 m2 along x and y and 0.5 mm thick (see

figure 2). The mechanical characteristics of the piezoelectric material PIC 151 are

given in [2].

The plate is excited by an unit distributed time harmonic pressure load. The

coupled FEM/BEM results are compared with those obtained from a FEM/FEM

analysis. As can be seen in figure 3, the sound pressure level is calculated on the

plate center. The results for the two methods are very similar at sound level peaks

R

L

A B 

0.2032m

0.0762 m

Acoustic cavity

patch

Plate

C

0

x

y z

0.0762m 0.0508 m

Fig. 2 Electromechanical-acoustic coupled system: geometrical data
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Fig. 3 Sound pressure level on plate center: comparison between FEM/FEM and FEM/BEM

approaches
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Fig. 4 Sound pressure level on plate center with and without shunt system

(resonance frequencies) which enable us to check the validity of the proposed

FEM/BEM coupled formulation.

In order to achieve maximum vibration dissipation of the third coupled mode,

the patch is tuned now to an RL shunt circuit. The optimal values of the shunt

electrical circuit are taken R=348 Ω and L=0.61 H. The system vibratory response

is obtained with the proposed BEM/FEM approach. Figure 4 presents the sound

pressure level on plate center with and without shunt system. This figure shows that

the resonant magnitude for the third mode has been significantly reduced due to

the shunt effect. In fact, the strain energy present in the piezoelectric material is
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converted into electrical energy and hence dissipated into heat using the RL shunt

device.

6 Conclusions

In this work, a coupled finite element/boundary element method (FEM/BEM) for

control of noise radiation and sound transmission of vibrating structure by active

piezoelectric techniques is presented. The passive shunt damping strategy is em-

ployed for vibration attenuation in the low frequency range. Work in progress con-

cerns the optimization of piezoelectric patches positioning and form.
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5. Deü, J.-F., Larbi, W., Ohayon, R.: Piezoelectric structural acoustic problems: Symmetric

variational formulations and finite element results. Computer Methods in Applied Me-

chanics and Engineering 197(19-20), 1715–1724 (2008)
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