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Abstract—Jason is a Java-based platform for the development
of multi-agent systems, which is a particular implementation of
AgentSpeak. While some theoretical proposals have been put
forward to add to Jason both belief revision and the preference
order on the agent’s beliefs, the reasoning on the practical way to
integrate such proposals as well as their implementation have not
been considered. This paper aims to fill those gaps, by adding the
concept of graded beliefs and making use of Jason customisation
features to implement reasoning and belief revision capabilities.
The resulting approach allows agents to reason about the belief’s
degree of certainty, track dependency between them, and revise
the belief set accordingly. A running example will illustrate the
presented work and highlight its added value.

Index Terms—Belief Revision, Graded beliefs, Rule-Based
agents, Jason.

I. INTRODUCTION AND RELATED WORK

Belief revision [1] is the process of handling the agent’s be-
liefs when a new piece of information that is inconsistent with
the current beliefs is added. There are two main approaches
to belief revision: The AGM (Alchourrón, Gärdenfors, and
Makinson) style [2] studies how an ideal rational agent should
revise its beliefs, with minimal changes, when receiving
new information; and the Reason-maintenance belief revision
style [3], considers tracking dependencies between beliefs.

Belief in the real world is a graded concept: an agent might
have beliefs more entrenched than others or ones that are more
reliable than others [4]. The degree of a belief can be seen
as a degree of preference on beliefs that can be considered
during the revision process; it will decide which beliefs have
the preference to be kept and which should be contracted to
maintain consistency.

We focus in this paper on the Jason language [5]: a well
known logic-based agent oriented language that was extended
from AgentSpeak(L) [6] and inspired by the BDI (Belief -
Desire-Intentions) architecture [7]. One of the most interesting
characteristics of Jason is that it is developed in Java and
provides the ability to customise some of its functions. It
has been extended with several features that were made
publicly available 1. Belief revision however is not performed
by the available version(s), which makes the agents poten-
tially believe in contradictory beliefs. Some promising works

1http://jason.sourceforge.net/wp/description/

proposing algorithms for contracting and revising beliefs in
Jason exist in the literature. Alechina et al. proposed in [8]–
[10] some efficient algorithms to be incorporated into the
Jason AgentSpeak interpreter, which perform belief revision
in polynomial-time. However, as it has been confirmed by the
authors themselves, this implementation is not yet available.

When it comes to belief preference order in Jason, the
extension in [9] proposed a preference on beliefs that de-
pends on the source/type of information (preferring perceived
information over communicated information), and on the time
when information was added (preferring new information
over the older one). However, an explicit manipulation of
preference/certainty has not been considered, neither degrees
associated with new arrived beliefs. Here also, the proposed
algorithms have not been integrated into Jason.

Jason plans can potentially serve the representation of
knowledge rules since they are composed of conditions and
pre-conditions to execute the actions in the body. However,
the existing syntax and interpretation lack flexibility for such
representation, especially because of its dependency on the
order in which the plans are presented in the library and
on the conditions’ order in a plan. To our knowledge, there
was no related work in the literature that adapted the plans
to represent knowledge-rules. All of the existing works used
the original syntax of plans to this aim and this may not be
adapted to reason with beliefs. One of the goals behind this
paper is to adapt the plans’ syntax to allow the representation
of knowledge-rules.

The aim of this work is twofold: (i) to propose a rule-based
approach allowing dealing and reasoning with the agent’s
graded beliefs; (ii) to implement into Jason the new extended
belief revision approach supported by existing approaches
in the literature — Jason’s language lacks the necessary
flexibility to represent both rule-based reasoning and graded
beliefs.

The proposed implementation allows Jason agents to rep-
resent the following example of an agent walking outdoors.
The agent’s belief base includes two facts belief and one
knowledge-rule: it believes that it will be cold and rainy
today with the respective preference order on the beliefs of
0.8 and 0.6 (on a scale of 0 to 1); and also that when it is
rainy and cold, it has then to open its umbrella. Knowledge-



rules allow the agent to derive new beliefs or goals (i.e. open
umbrella) using its existing knowledge/beliefs, and by that, to
take decisions/actions. The fact that the umbrella is broken
is added to the agent’s beliefs with the highest preference
order, 1. Supposing the agent has another knowledge-rule that
states not to open the umbrella if it is broken. It should decide
whether to open the umbrella or not. At last, it ends up not
opening it because the belief justifying not to open umbrella
(umbrella is broken) has a higher preference than cold and
rainy (justifying the open umbrella). Unlike what has been
proposed in the literature in [8], when the decision of not
taking the umbrella is taken, our proposal does not remove
the facts that it is rainy and it is cold .

Jensen et al. proposed in [11] a non-graded plan-based
approach showing practical uses of Nguyen et al.’s algo-
rithm [12] and extending Alechina et al.’s [10] to allow for
the revision of plans as well, not just beliefs. Besides the
fact that they do not take into account degrees of belief, we
are not convinced by their proposed non-graded approach. If
we apply their method to our mentioned example, the rule
when it is rainy and cold, it has then to open its umbrella
would be removed to make the decision/belief of taking the
umbrella underivable. We do not agree with that because
if it turns out later that the umbrella got fixed, the agent
will end up not taking the working umbrella although it is
rainy and cold. What we propose here is a graded-based-
approach that ensures, without removing rules, that less certain
beliefs cannot be derived if their consequence contradicts
with more certain beliefs. Biga et al. proposed in [13] G-
Jason, an extension of Jason’s inspired by the framework
developed by Casali et al. [14]. The extension proposes a
graded representation for BDI agents that allows reasoning
under uncertainty using graded mental attitudes. While their
aimed to prioritise the execution of plans, ours is to use
“priorities” to maintain belief consistency.

The remainder of this paper is organised as follows: In
Section II we present the two belief revision styles exist-
ing in the literature. Section III briefly presents the main
features of rule-based agents. Section IV summarises the
linear-time belief revision and contraction algorithms proposed
by Alechina et al.. Section V presents Jason, its current
limitations, our motivations to extend it, and the section ends
with a presentation of Alechina et al.’s proposals to implement
Jason. In Section VI we propose our extended framework, and
finally, some conclusions and perspectives of future work are
presented in Section VII.

II. BELIEF REVISION

Belief revision is, by definition, the process of modifying the
belief base to maintain its consistency whenever new informa-
tion becomes available. The AGM belief revision theory [2]
defines postulates that a rational agent should satisfy when
performing belief revision. In such a theory, a belief base is
closed under logical consequence. We consider a belief base
K and a new piece of information α. K is inconsistent, when
both α and ¬α are in Cn(K), or Cn(K) = ⊥, or both

α and ¬α are logical consequences of K. Three operators
are considered: Expansion K + α: adds a new belief α that
does not contradict with the existing beliefs. Contraction K
÷ α: removes a belief α and all other beliefs that logically
imply/entail it. Revision K ∗ α : adds a belief α as long as
it does not cause a contradiction in K. If the addition will
cause inconsistencies in K, the revision operation starts by
minimal changes in K to make it consistent with α, then adds
α. In particular, if the agent has to contract a belief α, it
does not contract other beliefs that derived α , as long they
are consistent with the remaining beliefs (minimal change) –
coherence approach [1].

The AGM Postulates for Contraction: The contraction of a
formulae α from K should result in a maximal belief base
which does not imply α. Let us consider ÷ the contraction
operator. Given two formulas α and ψ, it must have the
following properties:

(K÷1) The result of a contraction, K ÷ α, is a theory
(Closure)

(K÷2)K ÷ α ⊆ K (Inclusion)
(K÷3) If α /∈ K then K ÷ α = K (Vacuity)
(K÷4) If 6` α then α /∈ K ÷ α (Success)
(K÷5) If α ∈ K then K ⊆ (K ÷ α) + α (Recovery)
(K÷6) If α ≡ ψ then K÷α = K÷ψ (Extensionality)
K÷1 ensures that the result of a contraction is a belief

base (theory); K÷2 ensures that there is no new information
added in the belief base after contraction; K÷3 ensures that
contracting a piece of information that is not believed will not
cause changes in the belief base; K÷4 ensures the success of
contraction which would not work if the piece of information
to be contracted was a tautology; K÷5 ensures that if α is
contracted from K then expanding K with α restores K; K÷6
ensures that the result of a contraction is syntax-independent.

On another side, the Reason-maintenance belief revision
approach [3], considers tracking dependencies between beliefs,
so that the reason(s) for believing in a belief α can be traced.
When α should be given up, the agent must ensure that α
is no longer derivable and give up believing the things that
derived it.

III. RULE-BASED AGENTS

A Rule-based agent [11] has a belief base consisting of
rules (Horn clauses) and facts (ground literals). The facts can
originate from different sources and might change over time
as a result of the inference process itself or of the addition and
deletion of other facts from the agent’s belief base. To ensure
the consistency of the base after the arrival of contradictory
information, a strategy for revising beliefs is necessary: the
agent needs to have a way of removing enough facts from
its belief base to make sure that a contradiction is no longer
derivable.

As in [10], [11] for example, we assume that the agent’s
beliefs are represented in predicate logic, in the form of literals
and Horn clause rules. We fix a set of predicate symbols P , a
set of variables X , and a set of constants D. A literal α is a
predicate symbol of n arguments followed by n variables or



constants and possibly preceded by a negation symbol ¬.
We consider an agent with a finite set R of rules, which are
of the form α1&α2, . . . ,&αn → β where α1, α2, . . . , αn(n ≥
1), β are literals. β is called the derived belief, and each αi is a
premise of the rule. The & represents the logical and operator.

IV. ALECHINA’S BELIEF REVISION AND CONTRACTION

Alechina et al. [8] proposed belief revision and contraction
operations that are efficient in terms of computation cost (lin-
ear time in the size of the agent’s knowledge base) and satisfy
all the AGM postulates but (K÷5), the recovery postulate.
They considered a resource bounded agent of a finite state
and a finite program that consists of a fixed number of rules
used to derive new beliefs from the agent’s existing beliefs.
To overcome the complexity, they weakened the language and
the logic of the agent. The approach associated a preference
order (similar to Williams’ approach [15]) for each belief
and tracked dependencies between them. For every fired rule
instance, a Justification J will record: (i) a belief α, which
corresponds to the derived belief and (ii) a support list, s,
which contains the premises of the rules (contextual beliefs of
a plan used to derive α). The dependency information of a be-
lief had the form of two lists: dependencies and justifications.
A dependencies list records the justifications of a belief, and a
justifications list contains all the Justifications where the belief
is a member of support. The approach represents the agent’s
belief base as a directed graph with two types of nodes: Beliefs
and Justifications. A Justification has one outgoing edge to the
belief it is a justification for, and an incoming edge from each
belief in its support list.

Example 1. Suppose we have four beliefs α, β, γ, and µ,
visualised in Fig. 1, and a rule α & β → γ. The rule means
that if the agent believes in α and β, it will believe in γ.
In the graph, Justification J3 is denoted as (γ,[α, β]); γ is
the derived belief and [α, β] is the support list. J3 is in the
dependencies list of γ and in the justifications list both α
and β. If γ were also derived from µ, i.e. µ → γ, then its
dependencies list would also include another justification J5
denoted as (γ,[µ]).

Definition 1: Independent beliefs are beliefs having at least
one justification with an empty support list (non-inferential
justification). They are usually those in the initial belief base
or those perceived from the environment.
If the belief α were the result of an observation, its dependen-
cies list would include a justification J2 = (α, []) containing
an empty support list.

Preference on Beliefs and Quality of justifications: As
beliefs are associated with preferences, justifications are as-
sociated with qualities. In [8], a quality of a justification is
represented by non-negative integers in the range [0, . . . ,m],
where m is the maximum size of working memory. The lower
the value, the least the quality.

Definition 2: The preference value of a belief α, p(α), is
equal to that of its highest quality justification.

p(α) = max{qual(J0), . . . , qual(Jn)} (1)

Fig. 1. Graph over the beliefs and justifications.

Definition 3: The quality of justification J , qual(J), is equal
to the preference of the least preferred belief in its support list.

qual(J) = min{p(α) : α ∈ support of J} (2)

With an assumption that non-inferential justification is associ-
ated with an a priori quality.

The above formulas allow the identification of the weakest
member w(s) or “preferred contraction” of a support list s i.e.
the member with the smallest preference. The contraction was
defined by a literal α as the removal of α and sufficient literals
(the least preferred one) so that α is no longer derivable.

Algorithm 1 shows how beliefs are contracted in [8], α is
the belief to be contracted, β is a derived belief from α, J
is the justification, s is the support list, w(s) is the weakest
member of the support list.

Algorithm 1 Contraction by α as per Alechina
for each J = (β, s) in α’s justifications list do

remove J from β’s dependencies list
remove J from the justifications list of each literal in s

end
for each J = (α, s) in α’s dependencies list do

if s == [] then
remove J

else
contract by the literal w(s)

end
end
delete α

In the above example, if we want to contract γ, we have to
contract µ (since it is the only member of J5’s support list)
and the least preferred member of J3’s support list (either α
or β) so that γ is not derivable again.

The above algorithm implements the belief revision based
on the coherence theory. According to the authors, the al-
gorithm can be modified to implement reason-maintenance
type contraction by removing all beliefs that are not justified
anymore (have empty dependencies list).



We consider the knowledge base K and the belief α. The
algorithm for revision by Alechina et al. is as follows:

Algorithm 2 Revision by α as per Alechina
Add α to K;
apply all matching plans;
while K contains a pair (β , ¬β) do

contract by the least preferred member of the pair
end

V. JASON: ITS PROPERTIES AND LIMITATIONS–
MOTIVATIONS FOR OUR PROPOSAL

We discuss in this section an overview of the Jason language
architecture, as well as the current state of the features (in
the original Jason v.2.4) we are aiming to extend. We explain
throughout some examples the limitations that prevent it from
being adapted to the use of rules to represent belief reasoning
in particular situations. We finally discuss Alechina et al.’s [9]
proposed inclusion of automatic belief revision in Jason.

A. Architecture

A Jason agent, similarly to other agents modeled in BDI, is
defined by sets of beliefs, goals, and plans.
• Beliefs: represent the information that the agent has

currently obtained about its environment. The set of
beliefs are represented through a belief base.

• Goals or Intentions: represent the states of affair the agent
might like (or has decided) to accomplish.

• Plans: are actions or behaviors defined to accomplish
specific goals or intentions. The set of plans available
to the agent corresponds to the contents of the agent’s
plan library.

Jason’s beliefs are represented by predicates. Their existence
in the belief base express the fact that the agent currently
believes that to be true. The ∼ operator refers to the negation,
which allows the explicit representation that the agent believes
a literal to be false.

Annotations distinguish the Jason syntax: an annotation is a
list of terms placed after a belief, enclosed in square brackets,
revealing details about it. The source is the only standard
annotation that automatically records the name of the source
where the information was obtained. It has a specific meaning
and is understandable by the interpreter. Other annotations can
be developed by programmers to log the meta-information they
want to track about a belief.

A plan is composed of three parts: the triggering event, the
context, and the body. It is expressed as follows:

+ triggering event : context← body. (3)

triggering event represents the condition that might initiate
the execution of a plan; it can be the addition or deletion of a
belief or a goal; context is a conjunction of literals allowing
to check if the current situation makes the plan applicable – a
plan is chosen for execution if (i) its triggered event occurred
and (ii) its context is a logical consequence of the agent’s

Fig. 2. Initial Situation 0

current beliefs; the body is a sequence of actions or goals to
be achieved when the plan is executed. After an occurring
event matches the trigger event, the conditions in the context
are examined. If they are satisfied, the body of the plan is
executed. The syntax of the goals and intentions will not be
elaborated, due to their irrelevance to the purpose of this paper.

We will propose a new version of the Stock Trader agent
example presented in [9], as a running example in the rest
of the paper to illustrate the Jason syntax, its properties, and
limitations, as well as our new proposed features.

Example 2. We consider a Stock Trader agent that commu-
nicates with other agents to receive financial information and
has access to Web Services that provide news about the stock
market. The agent is trying to decide which stocks to buy or
sell, based on its existing beliefs and the information received
or perceived.

We present two initial situations for Trader and the related
operations to be executed. The operations for each situation
are executed sequentially. In the following paragraphs, we will
repeat the execution of the same operations and examine the
different outcomes in the original Jason version in Subsec-
tion V-B and our proposed work in Section VI.

Suppose Trader is represented with the initial beliefs and
plans as in Fig. 2. The agent in Situation 0 has two initial be-
liefs and one plan that will add the belief goodToBuy when it
is executed. Suppose that the belief wellManaged(company1)
has been added after Operation 0.1: Agent Ag2 informs Trader
in Situation 0 that the company1 is wellManaged.

Situation 1.0 represented in Fig. 3 will be the main example
in the paper: The agent believes company1 is well managed,
it trusts the source marketstocksite, the limit order to sell

Fig. 3. Situation 1.0



stocks of company2 is 30 euros and the current price of the
company2’s stocks is 50 euros. The agent’s plan library has
four plans, the first three might be executed when the agent is
informed that the sales of a company increased, the last one
will be executed if the current price of a company’s stock has
reached or bypassed its limit order.

When running the agent in Situation 1.0, the interpreter
will execute the plan p4 since it is the only one satisfying its
conditions, by far. The sellStocks(company2) belief is added
into the agent’s belief base.

We now describe the operations to execute for Situation 1.0:
Operation 1.1: Add salesUp(company1): The agent market-
stocksite informs Trader that salesUp(company1).
Operation 1.2: Add ∼wellManaged(company1): An agent
Trader that a crooked CEO has been fired from company1.
Operation 1.3: Add ∼trust(marketstocksite): A trusted Web
Service broadcasts marketstocksite is not trustworthy anymore.
Operation 1.4: Add ∼sellStocks(company2): A trusted Web
Service informs holding stock sell for company2.

We point here that Situations 0 and 1.0 have the same plan
p1. The difference is that the agent in Situation 0 believes that
the sales of company1 are increasing and then is informed the
company is well managed in Operation 0.1; while in Situation
1.0 it already believes the company1 is well managed and then
acquires that its sales are increasing in Operation 1.1.

B. Limitations

1) Trigger event and plans’ execution: The structure of
Jason’s plans in Fig. 3 is reliant on the triggering event’s
occurrence. A plan is executed if the conditions in its context
are satisfied before its triggering event takes place. The order
of the triggering event and the context conditions matters
for the execution of a plan. For example, the plan p1 will
not be triggered in Operation 0.1; but triggered and exe-
cuted in Operation 1.1 resulting in the addition of goodTo-
Buy(company1)[source(self)]2.

Knowing that our aim is to use Jason’s plans to represent
knowledge-rules; we try to represent salesUp(X)[source(S)]
& wellManaged(X) & trust(S) → goodToBuy(X): the plan p1
should be replaced by three plans with three triggering events
corresponding to the three literals (salesUp, wellManaged,
trust).

To represent a knowledge-rule, we would need a number of
plans equal to the number of literals in the context +1 (for the
trigger condition).

2) Option Selection: Multiple plans in Jason can have the
same triggering condition with different contexts. When the
triggering event occurs, those plans are set as Relevant plans;
Then, Jason examines the context of each Relevant plan and
saves those satisfying their context in a list of Applicable plans
called Options. The selectOption function will return one plan
only for execution, by default the first option according to
the order in which plans were written in the agent code. That
restricts the Jason language from representing knowledge-rules

2Source annotation will be omitted for the rest of the paper.

using its plan syntax. When two or more rules have the same
trigger; and all conditions of the rules are satisfied, only one
rule will be fired.

In our Trader example, we would expect both p1 and p3 to
be executed. Unfortunately, in the available Jason version, it
is not possible to represent knowledge-rules in a way to have
both plans executed.

3) Belief Base Consistency and Preferences on Beliefs:
The default Belief Revision function brf (Literal belieftoadd,
Literal belieftodelete), just updates the belief base with the
literals to be added or deleted, without checking the belief
base consistency. Since contradictory beliefs are accepted in
the belief base and no belief revision is performed, there is
no preference on beliefs either. The customisation of the brf
function to include belief revision was left to be done by the
programmers.

Going back to our example, the addition of beliefs resulting
from Operations 1.2, 1.3, and 1.4 will be accepted, even if
they will lead to inconsistencies in the belief base.

4) Belief certainty: The notion of “believing” in Jason is
Boolean: An agent either believes something is true or false
or is ignorant about it. The concept of a belief’s Degree Of
Certainty was mentioned by Bordini and colleagues in [16]:
An example of an agent Maria believing that another agent
Bob was colorblind with a certainty of 0.7 was expressed as
colourblind(bob)[source(self), degOfCert(0.7)]. However,
the “degOfCert” in the annotations has no well-defined mean-
ing for the interpreter. Considering such a concept was left to
the responsibility of the programmer as well.

C. Alechina’s Belief Revision for Jason

Alechina et al.’s proposal in [9] consisted of modifying the
default brf function to include the revision algorithm proposed
in [8] and explained in Section IV: The attempt to add a
new belief might be discarded or may result in deleting some
other beliefs to maintain consistency. They also determined
user-specified preference order to decide which beliefs should
be deleted to maintain consistency; the preference was given
by default to perceived information over communicated; and
newer information (in terms of time) over older ones.

While that was one of the first attempts to include automatic
belief revision within an interpreter for a practical agent
programming language, the authors confirmed it was not
yet implemented. The proposed framework is with no doubt
promising, as it is efficient and theoretically well-motivated,
the reason why we chose to implement and extend it.

VI. A GRADED BELIEF REVISION EXTENSION OF JASON

We propose an extension to Jason that relies on an efficient
approach to revise graded beliefs. Our aim is to use Jason
to model rule-based agents, considering beliefs are facts and
rules are plans. We also customised Jason plans to allow the
representation of knowledge-rules that will derive new beliefs–
we introduce the concept of trigger-independent plans. Indeed,
as we pointed out in Section V-B, the existing approach allows
triggering a plan only in the presence of a triggering event. If



Fig. 4. Situation 1.0 - New syntax with graded beliefs.

the conditions to execute a plan were completed with a non
triggered literal, the plan will not be executed. This is not
adapted for dealing with belief change.

One of our goals is to make this triggering process more
flexible to allow the representation of knowledge-rules. In ad-
dition, we implemented the dependency approach proposed by
Alechina et al. in [8] and used in [9], to track the dependencies
between beliefs by associating dependency and justifications
lists for each belief. We adapt their algorithm to calculate
the justifications’ qualities and the beliefs’ preferences (see
Equation 1). The result consists of the implementation of a
graded notion of beliefs represented by degreeOfCert and the
proposal of a new algorithm to deal with inconsistency when
a new graded belief arrives.
Example 3. We consider, in Fig. 4, a graded version of Situa-
tion 1.0 described in our new proposed syntax. We will execute
the same operations performed previously and examine the
results when applied to our approach.

A. Dependency and Certainty
Track dependencies between beliefs, we customised the

Jason code to implement the concept of nodes (justifications
and beliefs): a justification is represented by a derived belief,
a support list, and a quality; a belief is represented by a
dependencies list, a justifications list and a degree of Certainty.
Whenever a knowledge-rule, named trigger-independent plan,
is fired and a new belief is added, the code in Jason is
customised to create a justification node that links the context
conditions/rule’s premises with the derived belief. When any
of the beliefs is contracted, the related justifications are over as
well. Justifications with empty support lists are created upon
the addition of initial, communicated, and perceived beliefs.

We consider that all the sources express their certainty
degree, τ , on a belief in the same scale [0, 1], i.e a degree
τ has the same “importance” for the agent even if it comes
from different sources. We do not consider the trust that the
agent could have in a source. This is left for future work.

Definition 4: We define the certainty of a belief α as
representing the degree to which the agent believes the belief is
true. Here, we consider that the preference degree corresponds
to the certainty degree, i.e p(α) = τ .

The degree of certainty associated with theinitial
beliefs, communicated beliefs and perceived beliefs
must be explicitly defined by the source (e.g.
wellManaged(company1)[degOfCert(0.5)] is an initial
belief defined with a degree of 0.5). As for derived beliefs
their related certainty will be automatically calculated by the
interpreter using Equation 1.

As an example, when salesUp is added with a degree of
certainty 1, and p1 is executed, goodToBuy(company1) will
be added. The justification for goodToBuy will have a quality
equal to 0.5 (equal to the least preferred member in its support
list = min(0.5,0.8,1)). Therefore, the certainty of goodToBuy
will be equal to 0.5 since it has only one justification.

Remark 1: Unlike in [8], no a priori qualities are assigned
for the justification of independent beliefs, as the degrees are
explicitly stated.3

B. Trigger Independent Plans

We propose an extension to the existing plans’ syntax to
allow the expression of knowledge-rules. The rules represented
by our syntax will be executed whenever the combination
of several conditions is true, no matter which condition was
satisfied first. We call those rules Trigger-Independent plans,
as they do not wait for one specific trigger condition to occur
to execute the plan. To do so, we needed to specify a plan
syntax having a triggering condition that is always true and
that is constantly triggered; all the plan conditions will be in
the plan’s context part. We define “tei” that stands for trigger
event independent as a reserved word for beliefs and make it
a part of the Trigger-Independent plans’ syntax, as follows:

+ tei : context′ ← body. (4)

context′ is composed of the original trigger event and
context (see for example Plan p1 in Fig. 4).

We modify the addbel4 and brf functions to add the “belief”
tei with the addition of every belief (initial, communicated,
perceived, or derived). As all knowledge rules plans will have
+tei as a trigger event, they will all be made relevant plans
upon the addition of any belief. Next, the interpreter will
examine the conditions in the contexts, and make those having
satisfying contexts as applicable plans or options.

In our example, when any of the beliefs in the context’s
condition is added (trust, wellManaged or salesUp), the belief
tei will be added as well. The plan p1 is triggered, its context
is examined (and is valid in this case since all three conditions
are there) and therefore executed.

Notice that the users will still have the option to use the
original plan’s syntax, and alternate between the two syntaxes
as needed, i.e. the proposed extension is backward compatible.

3We would like to point out that, unlike Alechina’s various proposals
assuming that only the tautologies can have the highest degree, 1, here,
following Dubois and Prade [17], we assume that other formulas are allowed
to have the highest certainty. However, they cannot be questioned by revision
unless the newly arrived belief also has the highest degree of certainty. In this
case, we have chosen the option of keeping the new belief and discard the
old ones.

4A function in the Agent class that adds beliefs in belief base.



C. Select Options - Multiple plan execution for one trigger

We modified the selectOption method to return all the
options, one after the other for execution.

Operation 1.1 : Add salesUp(company1)[degOfCert(1)].
When salesUp(company1) is added, tei was added as well
by the interpreter. The addition of tei will trigger all the
knowledge-rule plans. The context of all four plans is ex-
amined and the plans p1, p3, and p4 are made applicable.
The selectOption function returns first the plan p1 for exe-
cution; goodToBuy(company1)[degOfCert(0.5)] is added. The
addition of goodToBuy will, in its turn, add tei again that will
trigger all four plans and make them applicable. This time
selectOption will return p3 (the second in the list) since p1 has
already been executed; watchlist(company1)[degOfCert(1)] is
added. The later addition will add tei one other time but will
not lead to the execution of any plan as all of them have been
already executed (p4 was executed when the agent initially ran
before adding any operation).

D. Belief Revision

Our contribution here is two-fold: we have modified the brf
function to check if the addition of a new belief will cause
inconsistency in the belief base, and, we integrate the notion
of belief’s certainty into the belief revision decisions. The
belief with the smaller certainty degree in the inconsistency
pair will be contracted/discarded, and the other belief will be
added/kept. In the case of equal certainties, the new belief will
have the preference to be preserved5.

We propose the following contraction Algorithm:

Algorithm 3 Contraction by α as per our new proposal.
for each J = (β, s) in α’s justifications list do

remove J from β’s dependencies list
remove J from the justifications list of each literal in s
remove J from graph

end
for each J = (α, s) in α’s dependency’s list do

remove J from the justifications list of each literal in s
remove J from graph

end
delete α
Remove all beliefs with empty dependencies list.

Our model does not contract a belief α unless a more pre-
ferred contradictory belief ∼ α was added. When contracting a
belief α, we don’t see a need to contract beliefs that derived α:
when the rule deriving α will tempt to add it again, the addition
will be discarded by the brf function because it was faced by ∼
α that is more preferred. In other terms, we contract the belief
in question and the related justifications without contracting
neither the premises of the rules nor the rule itself.

Remark 2: In comparison with Algorithm 1, we observe
that our algorithm does not perform the recursive removal

5Our implementation gives the developer the flexibility to switch the
preference between new and old information.

Original Alechina [8] Our proposal
Beliefs
Dependencies Not tracked Tracked Tracked
Inconsistency Accepted Not accepted Not accepted
Graded No No Yes (degOfCert)
Preference6 No preference High Pref �

Low Pref
High Cert �
Low Cert; New
� Old

Belief Contraction
Contraction of α
with α → β

Contract α Contract α , β Contract α , β

Contraction of α
with γ → α

Contract α Contract α, γ Contract α

Plans
Knowledge-rule
with n conditions

n plans n plans 1 plan

Order of conditions Dependent Dependent Independent
(with +tei)

Options execution 1st option only 1st option only All options

TABLE I
RESULTS OF THE DIFFERENT APPROACHES

of justifications in the second “for loop”. Therefore, the
complexity of our algorithm cannot be greater than that of
Algorithm 1.

Operation 1.2 - Add∼wellManaged(company1)[degOfCert(0.9)].
When this operation is received, it will be treated by the brf
function, that will detect inconsistency with the existing belief
wellManaged(company1)[degOfCert(0.5)], and will
compare the certainties of the pair. As priority
is given to the belief with the higher degree,
the brf function removes wellManaged(company1)
first, then adds ∼wellManaged(company1). Knowing
that wellManaged(company1) was a member of
the sole justification of goodToBuy(company1); the
contraction of wellManaged(company1) will result
in the contraction of goodToBuy(company1) as well.
Finally, p2 is executed as its conditions are satisfied;
sellStocks(company1)[degOfCert(0.9)] is added.

Operation 1.3 : Add ∼trust(marketstocksite)[degOfCert(0.7)].
Similarly to Operation 1.2, when inconsistency occurs, the
agent prefers to keep the belief with the highest degree. In this
case, the addition of ∼trust(marketstocksite) will be discarded.

Operation 1.4 : Add ∼sellStocks(company2)[degOfCert(0.4)].
sellStocks has a certainty of 0.2 in the belief base. When
∼sellStocks(company2) is added, it would be more preferred
than sellStocks(company2). The agent would then contract
sellStocks(company2) and add ∼sellStocks(company2). On the
next reasoning cycle, the plan p4 is made applicable and
will attempt to add sellStocks with a degree of 0.2 again.
However, the addition will be discarded because the agent
believes ∼sellStocks with a degree of 0.4 higher than 0.2. The
rule deriving it will be kept, unlike in [18].

We finally summarize our proposal with a comparative table
showing the difference between the original Jason, Alechina’s
approach, and ours.



VII. CONCLUSION AND FUTURE WORK

We have proposed a framework that extends Jason to allow
revising graded beliefs. To this aim, we have first extended the
framework proposed by Alechina et al. [8], [9], with the intro-
duction of the concept of triggering independent plans, which
allows the representation and reasoning of the knowledge-
rules. In particular, we have addressed the following issues: (i)
The original version of Jason does not perform belief revision
and accepts inconsistency in its belief base. (ii) The notion of
“believing” is not gradual: An agent either believes something
is true, or false or is ignorant about it. While in real life,
belief is a gradual concept. (iii) Representing knowledge-rules
using Jason plans needs more flexibility as the plan syntax
in Jason depends on the order of conditions (satisfaction of
the triggering event and the context of the plan) and executes
only one applicable plan per triggering event. Therefore, we
presented an implemented extension of the Jason language
allowing agents to perform belief revision for graded beliefs:
We used the belief revision algorithms proposed in [8] for
resource-bounded agents which do AGM style belief revision,
adapted the work by [9] to Jason, and proposed our own
contraction algorithm. We introduced a qualitative order of
preference on beliefs as a Degree of Certainty representing the
extent to which an agent believes a belief is true. This notion
of Certainty was integrated with the belief revision and used to
decide which beliefs to keep and which to contract in case of
inconsistency. An important result is that the complexity of our
contraction algorithm is not greater than Alechina’s. Finally,
our implementation adapted the syntax of plans to accept
trigger independent plans, or condition order independent, that
would be beneficial for rule-based agents. We compared our
proposed approach with the original Jason through a running
example illustrating the advantages of our proposal.

As future work, we plan to go ahead improving the rep-
resentation of the uncertainty related to the agent’s beliefs in
Jason. Indeed, we are aware that the belief revision process
should not be the same for all types of agents. Depending on
the type of agents (the reason why it has been programmed
for), or on the context in which the agent will behave/act,
different adaptations to revision could be suitable. In what
we have proposed here, we dealt with a qualitative order on
belief preferences. However, we might need to deal with a
quantitative order on belief preferences to represent the fact
that the agent can change its beliefs only if a “sufficient
number” of other trusted sources claim the same contradictory
(with respect to the agent’s current beliefs) information. In
this case, we could adopt the idea of improvement operators
proposed by Konieczny et al. in [19], or the formal model of
belief dynamics recently proposed by Hansson in [20], that
can be used as another alternative to the primacy of new
information followed by AGM belief revision.

Another possible extension could be to take into account
confidence in sources, adapting what has been proposed
in [21]. In this case, a commensurability hypothesis should

7� refers to “more preferred”.

be made to address both the certainty about the content of the
information, and trust in the source providing the information.
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