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Abstract. This paper presents a finite element model for sound transmission anal-

ysis through a double sandwich panels with viscoelastic core inserted in an infinite

baffle. The proposed model is derived from a multi-field variational principle in-

volving structural displacement of the panels and acoustic pressure inside the fluid

cavity. To solve the vibro-acoustic problem, the plate displacements are expanded as

a modal summation of the plate’s real eigenfunctions in vacuo. Similarly, the cavity

pressure is expanded as a summation over the modes of the cavity with rigid bound-

aries. Then, an appropriate reduced-order model with mode acceleration method

by adding quasi-static corrections is introduced. The structure is excited by a plane

wave. The radiated sound power is calculated by means of a discrete solution of

the Rayleigh Integral. Fluid loading is neglected. Various results are presented in

order to validate and illustrate the efficiency of the proposed reduced finite element

formulation.

Keywords: double-wall, viscoelastic, vibroacoustic, finite element, modal reduc-

tion.

1 Introduction

Double-wall structures are widely used in noise control due to their superiority over

single-leaf structures in providing better acoustic insulation. Typical examples in-

clude double glazed windows, fuselage of airplanes and vehicles, etc. Various the-

oretical, experimental and numerical approaches have been investigated to predict

the sound transmission through double walls [1, 2, 3].

By introducing a thin viscoelastic interlayer within the panels, a better acous-

tic insulation is obtained. In fact, sandwich structures with viscoelastic layer are

commonly used in many systems for vibration damping and noise control. In such

structures, the main energy loss mechanism is due to the transverse shear of the

viscoelastic core [4, 5].

1



In the first part of this paper, a non-symmetric finite element formulation of

double-wall sandwich panels with viscoelastic core is derived from a variational

principle involving structural displacement and acoustic pressure in the fluid cav-

ity. Since the elasticity modulus of the viscoelastic core is complex and frequency

dependent, this formulation is complex and nonlinear in frequency. Therefore, the

direct solution of this problem can be considered only for small size models. This

has severe limitations in attaining adequate accuracy and wider frequency ranges

of interest. An original reduced order-model is then proposed to solve the problem

at a lower cost. The proposed methodology, based on a normal mode expansion,

requires the computation of the uncoupled structural and acoustic modes. The un-

coupled structural modes are the real and undamped modes of the sandwich panels

without fluid pressure loading at fluid-structure interface, whereas the uncoupled

acoustic modes are the cavity modes with rigid wall boundary conditions at the

fluid-structure interface. It is shown that the projection of the full-order coupled fi-

nite element model on the uncoupled bases, leads to a reduced order model in which

the main parameters are the classical fluid-structure and residual stiffness complex

coupling factors. Moreover, the effects of the higher modes of each subsystem is

taken into account through an appropriate so-called static correction. Despite its re-

duced size, this model is proved to be very efficient for simulations of steady-state

and frequency analyses of the coupled structural-acoustic system with viscoelastic

damping and the computational effort is significantly reduced.

In the last part, numerical examples are presented in order to validate and analyse

results computed from the proposed formulation.

2 Finite Element Formulation of the Coupled Problem

2.1 Local Equations

Consider a double-wall structure coupled to an acoustic enclosure shown in Fig. 1.

Each wall occupies a domain ΩSi, i ∈ {1, 2} such that ΩS = (ΩS1, ΩS2) is a

partition of the whole structure domain. A prescribed surface force density Fd is

applied to the external boundary Γt of ΩS and a prescribed displacement ud is

applied on a part Γu of ΩS . The acoustic enclosure is filled with a compressible and

Σ

Ωs1

Ωs2

ΩF

F
d

Γt

u
d

u
d

Γu
Sandwich panel with 

    viscoelastic core

Fig. 1 Double sandwich wall structure coupled to an acoustic enclosure
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inviscid fluid occupying the domain ΩF . The cavity walls are rigid except those in

contact with the flexible wall structures noted Σ.

The harmonic local equations of this structural-acoustic coupled problem can be

written in terms of structure displacement u and fluid pressure field p [6]

divσ(u) + ρSω
2u = 0 in ΩS (1)

σ(u)nS = Fd on Γt (2)

σ(u)nS = pn on Σ (3)

u = ud on Γu (4)

Δp+
ω2

c2F
p = 0 in ΩF (5)

∇p · n = ρFω
2u · n on Σ (6)

where ω is the angular frequency, nS and n are the external unit normal to ΩS and

ΩF ; ρS and ρF are the structure and fluid mass densities; cF is the speed of sound

in the fluid; and σ is the structure stress tensor.

2.2 Constitutive Relation for Viscoelastic Core

In order to provide better acoustic insulation, damped sandwich panels with a thin

layer of viscoelastic core are used in this study (Fig. 1). When subjected to mechanical

vibrations, the viscoelastic layer absorbs part of the vibratory energy in the form of

heat. Another part of this energy is dissipated in the constrained core due to the shear

motion.

The constitutive relation for a viscoelastic material subjected to a sinusoidal

strain is written in the following form:

σ = C∗(ω)ε (7)

where ε denotes the strain tensor and C∗(ω) is the complex elasticity tensor. It is

generally complex and frequency dependent (∗ denotes complex quantities). It can

be written as:

C∗(ω) = C
′

(ω) + iC
′′

(ω) (8)

where i =
√
−1.

Furthermore, for simplicity, a linear, homogeneous, viscoelastic constitutive

equation will be used in this work. In the isotropic case, the viscoelastic material

is defined by a complex and frequency dependence shear modulus in the form:

G∗(ω) = G
′

(ω) + iG
′′

(ω) (9)

where G
′

(ω) is know as shear storage modulus, as it is related to storing energy and

G
′′

(ω) is the shear loss modulus, which represents the energy dissipation effects.
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With these assumptions, the stress tensor of the sandwich structure is complex and

frequency dependent.

2.3 Finite Element Equation

After variational formulation using the test-function method [6, 7] and discretiza-

tion by the finite element method, we obtain the following matrix system of the

fluid/elastic structure with viscoelastic damping coupled problem:

[(

K∗

u(ω) −Cup

0 Kp

)

− ω2

(

Mu 0

CT
up Mp

)](

U

P

)

=

(

F

0

)

(10)

where U and P are the vectors of nodal values of u and p respectively; Mu and

K∗

u(ω) are the mass and stiffness matrices of the structure; Mpand Kp are the mass

and stiffness matrices of the fluid; Cup is the fluid-structure coupled matrix; F is

the applied mechanical force vector. Note that since the elasticity modulus of the

viscoelastic core of the sandwich panels is complex and frequency dependent, the

stiffness matrix K∗

u(ω) is also complex and frequency dependent.

3 Reduced Order Model

In this section, we introduce a reduced-order formulation based on a normal mode

expansion with an appropriate static correction.

3.1 Eigenmodes of the Structure in Vacuo

In a first phase, the first Ns eigenmodes of the structure in vacuo are obtained from

[

K∗

u(ω)− ω2Mu

]

U = 0 (11)

Due to the frequency dependent of the stiffness matrix, this eigenvalue problem is

complex and nonlinear. It is assumed that vibrations of the damped structure can be

represented in terms of the real modes of the associated undamped system if appro-

priate damping terms are inserted into the uncoupled modal equations of motion.

Thus, the complex stiffness matrix is decomposed in the sum of two matrices:

K∗

u(ω) = Ku0 + δK∗

u(ω) (12)

where Ku0 = Re[K∗

u(0)] is the real and frequency-independent stiffness matrix

calculated with a constant Young module’s of the viscoelastic core and δK∗

u(ω) is

the residual stiffness matrix.

The ith real eigenmode is obtained from the following equation

[

Ku0 − ω2

siMu

]

Φsi = 0 for i ∈ {1, · · · , Ns} (13)

where (ωsi,Φsi) are the natural frequency and eigenvector for the ith structural mode.
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3.2 Eigenmodes of the Internal Acoustic Cavity with Rigid Walls

In this second phase, the first Nf eigenmodes of the acoustic cavity with rigid

boundary conditions are obtained from the following equation

[

Kp − ω2

fiMp

]

Φfi = 0 for i ∈ {1, · · · , Nf} (14)

where (ωfi,Φfi) are the natural frequency and eigenvector for the ith acoustic

mode.

It is important to note that the physical acoustic modes in a rigid fixed cavity

are such that
∫

ΩF
p dv = 0 which excludes the ωfi = 0, p = constant solution

which is not physical but had to be introduced in the formulation of the coupled

problem. Thus, the variational formulation of this kind of system, in order to be

regularized for zero frequency situation, i.e. valid for a static problem, has to be

modified by adding the following constraint ρF c
2

F

∫

Σ
u.n ds +

∫

ΩF
p dv = 0 (see

[6] for details). When doing this, on one hand the static pressure is defined precisely

by

ps = −ρF c
2

F

|ΩF | Σ

u.n ds (15)

and on the other hand, the reduced order formulation will be carried only by projec-

tion on the physical acoustic modes.

3.3 Modal Expansion of the General Problem

By introducing the matrices Φs = [Φs1 · · · ΦsNs
] of size (Ms × Ns) and Φf =

[

Φf1 · · · ΦfNf

]

of size (Mf × Nf ) corresponding to the uncoupled bases (Ms

and Mf are the total number of degrees of freedom in the finite elements model

associated to the structure and the acoustic domains respectively), the displacement

and pressure are sought as

U = Φsqs(t) and P = Φfqf (t) (16)

where the vectors qs = [qs1 · · · qsNs
]T and qf =

[

qf1 · · · qfNf

]T
are the modal

amplitudes of the structure displacement and the fluid pressure respectively.

Substituting these relations into Eq. (10) and pre-multiplying the first row by ΦT
s

and the second one by ΦT
f , we obtain

• Ns mechanical equations

−ω2qsi +

Ns

k=1

γ∗

ik(ω)qsi + ω2

siqsi −
Nf

j=1

βijqfj = Fi (17)
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• Nf acoustic equations

−ω2qfi + ω2

fiqfi − ω2

Ns

j=1

βijqsj = 0 (18)

whereFi(t) = Φ
T
siF is the mechanical excitation of the ithmode;βij = ΦT

siCupΦfj

is the fluid structure coupling coefficient and γ∗

ik(ω) = ΦT
siδK

∗

u(ω)Φsk the reduced

residual stiffness complex coefficient.

At each frequency step, the reduced system (Eqs. (17) and (18)) is solved by

updating γ∗

ik(ω). After determining the complex amplitude vectors qsi and qfi,

the displacement and pressure fields are reconstructed using the modal expansion

(Eqs. (16)).

3.4 Static Corrections

The process of mode truncation introduces some errors in the response that can

be controlled or minimized by a modal truncation augmentation method. In this

method, the effects of the truncated modes are considered by their static effect only.

First the applied loading vector F is composed as:

F =

L

i=1

αi(t)F0i (19)

where F0i is the invariant spatial portion and αj(t) is the time varying portion. For

each invariant spatial load, the static modal eigenvector Ψsi is given by:

Ψsi = K−1

u0F0i (20)

The truncated basis containing the real and undamped structure modes is enriched

by the static modal eigenvectors such that

Φ̄s = [Φs1 · · · ΦsNs
,Ψsi, · · · Ψsl] = [Φs Ψs] (21)

The truncated fluid basis is enriched with the static pressure Ps computed from

Eq. (15):

Φ̄f = [Φf Ps] (22)

Thus, the displacement and pressure are sought as

U = Φsqs(t) +Ψsq
0

s(t) and P = Φfqf (t) +Psq
0

f (t) (23)

where the vectors q0

s and q0f are the quasi-static modal amplitudes of the structure

displacement and the fluid pressure respectively. Similar coupled differential equa-

tions than Eqs. (17) and (18) can of course be obtained after modal projection on

the enriched bases Φ̄s and Φ̄f .
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4 Numerical Examples

4.1 Sound Transmission through an Elastic Double-Panel System

In this section, the validation of the proposed coupled finite elements formulation for

sound radiation is presented. The problem under consideration is shown in Fig. 2. A

normal incidence plane wave excites a double-plate system filled with air (density

ρF = 1.21 kg/m3 and speed of sound cF = 340 m/s). The plane wave has a pressure

amplitude of 1 N/m2 and is applied to plate 1 as the only external force to the system.

The plates are identical and simply supported with thicknesses of 1 mm. The density

of the plates is 2814 kg/m3, the Youngs modulus is 71 GPa, the Loss factor is 0.01

and Poisson ratio 0.33. The surrounding fluid is the air. This example was originally

proposed by Panneton in [2].

Air Cavity

Plate 1

Plate 2

Rigid baffle

Normal plane 

     wave

a=0.35 m

b
=

0
.2

2
 m

c=
0.

07
64

 m

Fig. 2 Double-plate system filled with air: geometric data

When the excitation is applied to the first plate, the second one vibrates and

radiates sound caused by the coupling of air and plate 1. The normal incidence sound

transmission loss is then computed using the Rayleigh’s integral method [1] which

needs the finite element solution of surface velocities of plate 2. For this purpose,

the resolution of the coupled system is done with a modal reduction approach using

the first 10 in vacuo structural modes and the first 10 acoustic modes of the fluid in

rigid cavity. The truncated bases are enriched by the static modal eigenvectors.

Fig. 3 shows the normal incidence transmission loss through a simply supported

plate (dashed line). Due to the modal behavior of the plate, dips in the transmission

loss curve are observed at its resonance frequencies (modes (1, 1), (3, 1) and (1,

3)). When a second plate is used to form an airtight cavity (continuous line), an

increase in the transmission loss is achieved except in the region of the so-called

plate-cavity-plate resonance (mode (1, 1)*). At this frequency, the two plates move
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Fig. 3 Comparison of the normal incidence sound transmission (nSTL) through an air-filled

double panel and a simple panel

out of phase with each other and the effect of the cavity on the plates is mostly

one of added stiffness. This frequency is similar to the mass-air-mass resonance of

unbounded double panels.

In addition, the variation of the nSTL of an air-filled panels and a simple panel is

in very good agreement with the published date from [2].

4.2 Sound Transmission through a Double Laminated Glazing

Window

The proposed reduced order finite-elements formulation is applied now to calculate

the transmission loss factor of a double laminated glazing window. The system con-

sists of two identical clamped laminated panels of glass separated by an air cavity

of 12 mm thickness. Each laminated glass is composed of two glass plates bonded

together by a Polyvinyl Butyral (PVB) interlayer. The thickness of outer and inner

glass ply is h1 = h3 = 3 mm and those of the PVB interlayer is h2 = 1.14 mm.

The glass ply is modeled as linear elastic material (density 2500 kg/m3, Youngs

modulus 72 GPa, and Poisson ratio 0.22). The material properties of the PVB are

both thermal and frequency dependent. From dynamic and thermal tests, Havrillak

and Negami have found an empirical law describing this dependence. The resulting

complex frequency dependent shear modulus of the PVB is given at 20◦C as [8]:

G∗(ω) = G∞ + (G0 −G∞)
[

1 + (iωτ0)
1−α0

]

−β0

(24)

where G∞ = 0.235 GPa, G0 = 0.479 Mpa, α0 = 0.46, β0 = 0.1946, τ0 =
0.3979. The Poisson ratio of the PVB is 0.4 and density is 999 kg/m3. Concerning

the excitation and the finite element discretization, we used the same ones as in the

previous example.
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Fig. 4 Comparison of radiated sound power from a simple glass pane and a laminated glass

with the same mass

A comparison between a simple glass and a laminated glass with PVB inter-

layer with an equivalent surface mass is shown in Fig. 4. Calculation was limited

to 2000 Hz maximum. This comparison shows that laminated glass has a much

lower acoustic radiation compared to conventional glass at resonance frequencies

du to the effect of the viscoelastic layer. The reduction of sound radiation power

is around 10 dB in lower frequencies and around 20 dB in higher frequencies. In

fact, at low frequencies, the viscoelastic material is soft and the damping is small.

At higher frequencies, the stiffness decreases rapidly and the damping is highest.

Moreover, flexural vibrations causes shear strain in the viscoelastic core which dis-

sipates energy and reduces vibration and noise radiation. Note that the thickness of

the viscoelastic layer has a significant influence in terms of attenuation.
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Fig. 5 nSTL through an air-filled double panel: comparison between the modal reduction

approach and the direct nodal method
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Fig. 5 shows a comparison between the nSTL of the coupled problem, obtained

with the proposed accelerated modal reduction approach with a truncation on the

first twenty structural modes (Ns = 20) and first twenty acoustic modes (Nf = 20)

and the direct nodal method (Eq. (10)) where the displacement and pressure vectors

are calculated for each frequency step. The structural modes are calculated from

Eq. (13) using the constant shear storage modulus G∞. As can be seen, a very good

agreement between the two methods is proved. In this respect, it should be noted

that the resulting reduction of the model size and the computational effort using the

reduced order method are very significant compared to those of the direct approach.

5 Conclusions

In this paper, a finite element formulation for sound transmission through double

wall sandwich panels with viscoelastic core is presented. A reduced-order model,

based on a normal mode expansion, is then developed. The proposed methodology

requires the computation of the eigenmodes of the undamped structure, and the

rigid acoustic cavity. Quasi-static corrections are introduced in order to accelerate

the convergence. Despite its reduced size, this model is proved to be very efficient

for simulations of steady-state analyses of structural-acoustic coupled systems with

viscoelastic interlayers when appropriate damping terms are inserted into the modal

equations of motion.
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