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Abstract: Strategies for developing and implementing discrete gradient methods for 

aeroelastic optimization for structured meshes are presented. For shape optimization of 

aerodynamic functions, discrete linear and adjoint techniques taking into account structural 

flexibility are introduced. To this end, all routines of the block-structured elsA/Aeroelastic 

solver have been systematically differentiated by hand. All operations are performed on-the-

fly for linear and tangent mode without any data storage or transposing thus leading to a very 

memory efficient implementation. These techniques are demonstrated on a flexible gradient 

computation exercise for the Onera M6 wing. Comparisons between rigid and flexible 

gradients are presented for Euler and Navier-stokes fluid. A second part of this paper presents 

a non-intrusive strategy for the computation of flexible gradients with respect to structural 

design parameters. To this end, a modal projection technique associated to a linearized 

frequency response solver is proposed. Alternatives to reduce the associated computational 

overhead are discussed. An illustration of this approach is presented for the M6 wing Euler 

test case. 

1 INTRODUCTION 

Design of aeroelastic and aerodynamic performance has benefited not only from recent 

achievements in terms of numerical tools for computation of flexible gradients through 

tangent or adjoint approach but also from the re-organization of the optimization process itself 

to deal with high-fidelity aerodynamic and structural models [1, 2]. 

It is now recognized that rigid aerodynamic shape optimization for drag reduction has to 

consider the impact of structural flexibility on the performance especially in the context of 

multi-point optimization. On the other hand, aeroelastic design (i.e. structural weight 

optimization by tailoring static or dynamic aeroelastic loads) has evolved towards CFD 

modelling for flexible loads prediction [1]. 

This paper presents the latest achievements about the development of a high-fidelity based 

aero-structure gradient computation capability in the framework of the elsA software [3, 4]. 
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By aero-structure we mean gradient of any function of interest with respect to aerodynamic 

shape or structural design parameters. 

Up to now, structural modelling for flexible gradient computation was limited to a beam-like 

equivalent model for the wing box [5]. More recently this approach was extended to get 

sensitivities of an aerodynamic function of interest (drag component, lift coefficient, L/D ratio 

…) with respect to structural design parameters such as wall thicknesses of skins and spars for 
an ideal rectangular wing section, but still limited to an equivalent beam model kinematics [6, 

7]. 

Although useful for preliminary design studies and design space exploration, this structural 

modelling is not able to tackle complex aeroelastic couplings, nor deal with composite 

structures for efficient aeroelastic tailoring design, and is obviously limited to large aspect 

ratio wings. 

The objective of the present work was to relief all these limitations by re-developing an aero-

structure gradient capability from scratch by systematic differentiation of discretized aero-

elastic equations, and all associated operators, in the elsA aeroelasticity module (elsA/Ael). 

This way, the new capability inherits the structural paradigm embedded into the elsA/Ael 

module (structural flexibility matrix), the whole catalogue of fluid-structure transfer methods, 

as well as the underlying parallel architecture. High-fidelity aero-structure gradient 

computations and optimization studies using the adjoint approach have been reported in the 

literature for structured and unstructured grids [8-12]. However, none of them seems to have a 

core memory efficient on-the-fly implementation for deriving algebra manipulations such as 

matrix-vector product involving the geometric or state residual Jacobian matrix. 

In the following, equations and solving procedure for the aeroelastic gradient are discussed as 

well as the numerical control parameters and their impact on the solution convergence.  

Preliminary results for static aeroelastic gradient computations with respect to aerodynamic 

shape parameters, in linear and adjoint mode, for the Onera M6 wing will be presented. Euler 

and RANS fluid modelling will be considered. 

On going extension work of the aeroelastic gradient tool in order to consider structural 

variables will also be presented. Two approaches can be considered. The first one, called 

intrusive approach, needs a substantial modification of the elsA source code. The second one, 

called non-intrusive, considers a projection of the static displacement field on the structural 

mode shapes in order to benefit from the classical harmonic forced response mode of 

linearized Euler or RANS simulation tools. Preliminary results for this second approach will 

be presented for the Onera M6 wing with respect to stiffness parameters of the primary wing 

box structure. 

2 SENSITIVITY OF A STRONGLY COUPLED AEROELASTIC SYSTEM 

In order to introduce notations and remind typical solving techniques, a brief review of 

sensitivity analysis methods for aerodynamic and structural systems of discretized equations 

is given first. The interested reader should refer to [13] for a complete review of numerical 

sensitivity analysis. 

As the subsequent derivations will always be related to discretized equations, it will not be 

reminded elsewhere in the following discussion. The generalization to a strongly coupled 

fluid-structure system will then be presented. The subsequent derivations are valid for any set 

of design parameters (i.e. impacting local aerodynamic shape only, structural stiffness only or 

both aerodynamic shape and stiffness as global design variables). 
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2.1 Gradient evaluation for a mono-disciplinary system 

Any discretized set of steady-state nonlinear equilibrium equations can be written in the 

following residual form 

             (1) 

Where   and      represent the vector of     design variables and the corresponding 

dependent state vector.   represents either a second-order accurate cell-centered finite volume 

spatial discretization of the fluid residual or a finite element spatial discretization of the 

structural residual. Note that Eq. (1) has an implicit dependency on the computational 

aerodynamic grid       or structural grid      . To simplify notations, this dependency is 

only reproduced when necessary in subsequent expressions.   is supposed to be once 

continuously differentiable with respect to the state variables and computational mesh in the 

vicinity of      and     . 
We are interested in the sensitivity derivatives of any set of function             with 

respect to a design variable. Applying the chain rule differentiation to   yields: 

 
                   (2) 

The total sensitivity derivatives       are computed from the differentiation of the discrete 

residual Eq. (1) 

   (      )                         [    ]       (3) 

where the Jacobian matrix       is assumed invertible. Note that the gradient vanishes 

because the residual equation has to be satisfied for any value of  . Usually terms like       ,        or       are obtained analytically (full differentiation by hand) or numerically 

(automatic differentiation, finite differences or complex step). 

Adjoint equations for a scalar function of interest are derived from Eq. (2) by substituting for       from Eq. (3) to obtain  

 
                 (4) 

where   is a vector of adjoint variables that satisfies 

 [    ]         
 (5) 

This expression is independent of the design variables  , which makes it particularly 

attractive for aerodynamic optimization problems with a large number of design parameters 

and relatively few responses of interest. 
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Considering an aerodynamic problem Eq. (1) is a system of     nonlinear equations with    

unknowns. As an example, let’s consider the functional dependency of a drag coefficient with 
respect to a set of shape design parameters: 

                                   (6) 

where   represents the fluid conservative variables. Functional    is the surface mesh 

parameterization that links design parameters to wetted surface grid positions.    is the 

volumic mesh deformation operator that propagates the surface displacements to the interior 

fluid domain:             . The fluid states            are obtained by solving the 

discretized fluid equations under prescribed boundary conditions. Eq. (6) exhibits an 

additional direct dependency to the grid    and is thus a generalization of Eq. (1). Direct 

differentiation of Eq. (6) wrt.   gives 

 
                                        (7) 

Then differentiating the discrete residual         wrt.   leads to the following expression 

for the total derivatives of the fluid states: 

                                        [    ]       (8) 

Terms         and         are computed analytically around the equilibrium solution 

that satisfies          . 

The adjoint counterpart of Eq. (7) reads  

             [    ]                                       (9) 

with   the vector of adjoint variables that satisfies 

 [     ]         
 (10) 

A standard Backward Euler iterative scheme is used to solve for the static equilibrium. The 

discrete residual is linearized around the flow solution    at current iteration and a pseudo 

time step    is introduced along with a suitable approximation of the Jacobian matrix [14] to 

form the implicit term in the following preconditioned fixed point iterative scheme: 

 (            )                  (11) 

Applying this algorithm to the linearized form of the residual (around the steady state 

solution) in Eq. (8) gives the following iterative scheme for the total derivative of the flow 

field      :  
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 *            + (             )                       
 (12) 

In a similar manner the iterative formula for the adjoint vector is derived, 

 *            +                  [    ]    (13) 

Clearly expressions in Eq. (12) and (13) are very similar and it is straightforward to show that 

the following property holds  

                          (14) 

An exact dual algorithm has been proposed in [15] to enforce this property at every iteration. 

Let’s now consider the classical structural mechanics example of finding the total gradient of 

a constraint response in a finite element. The system is discretized by the finite element 

method to give the residual discrete system of equations 

                                 (15) 

where      and      represent the nodal displacements and the applied loads. The stiffness 

matrix      is positive semi-definite and self-adjoint. 

Assuming a general linear elastic behavior, the relationship between stresses and strains will 

be linear of the form             , where   denotes the elasticity matrix and    and    the initial strain and stress fields. The deformation field is obtained from the nodal 

displacements through the usual relation                  ,   being a linear differential 

operator and   the matrix of shape functions. Finally the constraint function reads  

                         (16) 

Direct differentiation of Eq. (16) wrt. a scalar parameter   yields 

 
                         (               ) (17) 

In the above expressions the geometric dependency of the structural mesh to the design 

parameter has been emphasized. Once again, for sake of clarity and without any loss of 

generality it will be omitted in the following when necessary.  

From Eq. (15) direct differentiation gives 

 
           (             ) (18) 

leading to the adjoint form of the sensitivity equation: 
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   (      )    (  ) (19) 

where, using the symmetric property of   , the adjoint matrix satisfies 

(20) 

Unlike the aerodynamic systems of equations, Eq. (15) and (20) are usually solved efficiently 

using direct parallel sparse multifrontal algorithms, see [16]. 

2.2 Extension to an aeroelastic problem 

For an aeroelastic system the state vector is defined as  and the objective function 

is of the form     . Design parameters   are linked to structural 

properties,   control the aerodynamic shape and global variables   affect simultaneously 

stiffness and shape. The design parameter vector is denoted as   . The vector of 

state equations reads 

(  ) (21) 

Direct differentiation of Eq. (21) wrt.  gives 

[    ](  ) (      ) (22) 

and solving for  allows the computation of the objective function gradient 

    
(23) 

The two blocks in Eq. (22) are coupled through aerodynamic loads applied on the 

structural skin, which induce an elastic deformation which in turn alters fluid grid positions. 

A suitable transferring technique is applied to  to compute structural loads  of the form 

(24) 

The reference aerodynamic mesh     aligned with the unloaded configuration (i.e. the jig-

mesh) has been introduced. This distinction is useless for the structural mesh which always 

matches the jig-shape.       denotes the linear load transfer operator. Knowing updated 

structural grid positions from displacements  , it is possible to transfer them back as   
on the aeroelastic interface through the linear splining step 
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                                             (25) 

Once again, the linear displacement transfer operator        only depends on reference 

meshes. Finally the fluid interior domain deformation is attained in a second step by 

propagating the surface deformation with 

                                                (26) 

where the volumic operator           merely depends on the reference aerodynamic mesh. 

Thanks to Eq. (24) through (26) it is possible to expand Eq. (22) and (23) in terms of  

unknown vectors       and      . Firstly Eq. (26) is linearized wrt.   to give 

 
                                            (27) 

From Eq. (25) the total derivative of the boundary displacement field is written as 

 
                                                              (28) 

Substituting for        and              from Eq. (27) and (28) into Eq. (23) leads to the 

following expanded form of the objective function: 

 

                   *(                            )           (                            )+ (29) 

Terms       and        only depend on the equilibrium steady state and are calculated 

analytically in a pre-processing step. Grid sensitivity terms         and         represent 

the geometric parameterization which is also part of an external dedicated procedure. Other 

terms like        and      and their associated partial derivatives are related to the transfer 

techniques used during the aeroelastic steady state computation. 

By performing similar algebra manipulations, the discrete block system in Eq. (22) can be 

cast into the compact form  

 {  
                        ([ ]         [ ]        [ ]      )
                 [ ]           [ ]         [ ]        [ ]       [ ]  (30) 

Constant matrices [A], …, [H] are defined analytically with the following formulas 
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[ ]             [ ]                               

(31) 

[ ]              [ ]  [ ][ ] 
[ ]  [ ][ ]          [ ]                   

[ ]  [ ][ ]         [ ]       

where the utility matrix                  has been introduced. 

The system in Eq. (30) is presented in a form suitable for an iterative block scheme resolution 

similar to the lagged-block strategy formerly proposed in [17, 18], superscript k being the 

current iteration number. 

Following the same notations Eq. (29) becomes  

 
                   ([ ]      [ ]        [ ]      ) 

(32) 

Yet again, for each residual state equation in Eq. (21) an adjoint vector is introduced which 

multiplies the linearization of that equation, and used to formulate the augmented objective 

function derivative such that for any vector    and    

 
                   ([ ]      [ ]        [ ]      )                    (33) 

Expanding         and         and factorizing out the difficult terms     ⁄  et     ⁄  

yields 

 

     (                  [ ])      (      [ ]           [ ]        [ ] )           ([ ]        [ ]      )          ([ ]        [ ]      )     ([ ]        [ ]       [ ] )
 (34) 

where adjoint vectors    and    are chosen such that the following system is satisfied: 

 [   
 [     ]  [ ] [ ] [      ]    [ ] ]   

 (    )  ( 
  [     ]  [ ] [      ] ) 

 
 (35) 

Finally, once adjoint unknowns are determined, the total gradient is obtained with 
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          ([ ]        [ ]      )          ([ ]        [ ]      )     ([ ]        [ ]       [ ] ) (36) 

3 GRADIENT COMPUTATION FOR AERODYNAMIC SHAPE OPTIMIZATION 

The different test cases for inviscid and viscous flow are based on the ONERA M6 wing 

which has been extensively used for three-dimensional transonic CFD validation purposes,  

see [19]. 

3.1 Aeroelastic analysis and design models 

The computational structured meshes depicted in Figure 1 contain 1.11 million cells divided 

into five blocks for the Euler grid and 3.8 million cells divided into 42 blocks for the Navier-

stokes grid.  

  

Figure 1: M6 wing Euler and RANS mesh. 

The finite element model has a classical wing box layout with spars, ribs and stiffeners. 

Member thicknesses and sections have been designed in a pre-processing optimization step. 

This model can be easily tuned in order to control flexibility and consequently aeroelastic 

effects. 

  
 

Figure 2: M6 wing structural mesh and selected displacement/force nodes for flexibility matrix construction. 
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The Mach number for this case is M=0.734 and the incidence is 2.08°. The wing tip 

displacement is 6.27cm (i.e. 5.14% of span) and the associated lift coefficient is Cz=0.196 

compared to a rigid coefficient of Cz=0.221. An upwind Roe scheme with a MUSCL 

interpolation associated to a Van Albada limiting function is applied. The Spalart-Allmaras 

turbulence model has been selected. 

Figure 3 below shows the pressure distribution at equilibrium and the residual norm 

convergence for density and turbulent variables. A first step of 600 fluid iterations is 

performed followed by a coupling every 200 iterations. The aeroelastic simulation exhibits an 

excellent convergence up to machine precision. The idea is to ensure as much as possible the 

cancellation of the residual that is the basic assumption for accurate discrete gradient 

computations. 

 

 

Figure 3: Cp distribution (left), convergence of density and turbulence residual norm for RANS aeroelastic 

simulation (right). 

Three design parameters have been defined for specific assessment of gradient accuracy. First 

parameter x01 controls the section camber at 50% span and affects linearly the region from 

root to 90% of wing span. Second parameter x02 is the quarter chord twist angle at the wing 

tip section, and the last parameter x03 is the angle of attack. 

3.2 Inviscid flow – Euler computations 

Two gradient computations have been carried out in tangent and adjoint mode for the Euler 

test case. The objective is to compute total gradients for lift and pressure drag coefficients 

wrt. the three design parameters previously defined. The convergence of the discrete residual 

norm of the fluid block equations is reported in Figure 4. In direct mode, three right hand 

sides are considered, i.e. one for each design parameter whereas only two right hand sides are 

considered in adjoint mode, i.e. one for each objective function. In both direct and adjoint 

mode an excellent convergence is reached. 

Table 1 summarizes the gradient values and allows a comparison with rigid results and finite 

differences. It is worth noting that flexibility effects dramatically change rigid gradient values 

and even reverse the sign of the drag sensitivity wrt. the camber parameter. One can observe a 

residual duality gap between direct and adjoint results. This is because some geometrical 

terms are still approximately linearized in the adjoint formulation. These approximations are 

currently being removed. 
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Figure 4: Convergence of  linear density residual norm for three parameters (left) and adjoint density residual 

norm for two objective functions (right).        Rigid Adjoint FD Flex. Tangent Flex. Adjoint 

x01 +1.56e+00 +8.13e-01 +8.141e-01 +8.057e-01 

x02 +5.95e-03 +8.51e-04 +8.539e-04 +9.688e-04 

x03 +1.30e-01 +7.13e-02 +7.142e-02 +6.943e-02 

             Rigid Adjoint FD Flex. Tangent Flex. Adjoint 

x01 +1.92e-01 -1.30e-02 -1.415e-02 -1.900e-02 

x02 +2.85e-04 +5.62e-05 +5.648e-05 +5.367e-05 

x03 +1.14e-02 +3.37e-03 +3.386e-03 +3.000e-03 

Table 1: Euler gradients for lift and pressure drag coefficients wrt. camber (x01), tip twist (x02) and angle of 

attack (x03). Comparison between rigid, finite difference and flexible gradients in tangent and adjoint mode. 

3.2.1 Viscous flow - RANS computations 

The same transonic flow conditions M=0.734 and =2.08° have been retained for the viscous 

test case. 

Figure 5 presents the convergence histories for the density residual in tangent mode. All 

computations have been performed using a constant eddy and turbulent viscosity, i.e. using 

the standard  “frozen t approximation”. Gradient values are summarized in Table 2 and can 

be directly compared with Euler values in Table 1. Obviously viscous effects significantly 

alter inviscid gradient values even changing the sign of the lift coefficient derivative with 

respect to the camber design variable. Finite difference values compare quite well with 

tangent results. Currently, the viscous adjoint mode is still in a validation phase and we were 

not able to provide reference results for the M6 wing in this paper. 
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Figure 5: Convergence of linear gradient density residual for three parameters.        Rigid Adjoint FD Flex. Tangent 

x01 +1,437e+00 -6,48e-01 -6.760e-01 

x02 +1,950e-02 +1,90e-02 +1.844e-02 

x03 +7,350e-02 +6,60e-02 +6.661e-02 

            Rigid Adjoint FD Flex. Tangent 

x01 +5,24e-02 -4,41e-02 -4.707e-02 

x02 +9,05e-04 +7,18e-04 +7.240e-04 

x03 +3,81e-03 +2,73e-03 +2.786e-03 

Table 2: Navier-Stokes gradients for lift and pressure drag coefficients wrt. camber (x01), tip twist (x02) and 

angle of attack (x03). Comparison between rigid, finite difference and flexible gradients in tangent mode. 

4 GRADIENT COMPUTATION FOR STRUCTURAL SIZING 

The adjoint approach developed in section three is efficient whenever a reduced number of 

responses is considered compared to a large set of design parameters. Typically for an 

aerodynamic design dedicated to performance improvement, drag components and lift 

coefficient gradients for several flight points might be needed [20, 21]. The set of design 

parameters for controlling a wing shape will not exceed a few hundreds. Unlikely, structural 

sizing for certification has to consider failure criteria at many locations under a large set of 

load cases. Typically an industrial wing box sizing for preliminary design considers up to 

several hundreds of design parameters and up to several tens of thousands of constraints. 

Nonetheless, in order to still benefit from the elegant adjoint formulation, some authors have 

proposed a constraint aggregation approach as an attempt to reduce the size of the set of 

admissible constraints, and thus the number of gradients to compute. However, this technique 

has several drawbacks and may lead to sub-optimal designs. 

Instead we propose a gradient reconstruction based on a modal approach. This technique 

allows a complete decoupling of the structure and aerodynamic blocks. The idea stems from 

the (frequency) linearized Euler or RANS solvers used in the construction of state-space 

models for flutter stability analysis in aeroelasticity. These solvers compute complex 

harmonic responses (pressure coefficients, generalized harmonic forces) to prescribed 

boundary displacement fields (i.e. structural mode shapes in our case). 
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4.1 Modal reconstruction of loads sensitivity around the steady state solution 

Using previous notations, the steady equilibrium corresponding to a fluid state  ̅, a mesh 

position  ̅  and a structural displacement field   is written as 

                 ̅  ̅   (37) 

If the full set   of structural eigenvectors were available, the modal projection      holds 

and then substituting in Eq. (37) gives the corresponding generalized coordinates as  

           (38) 

where         denotes the diagonal generalized stiffness matrix.  

In practice only a restricted set of first    eigensolutions is computed and the modal 

approximation to   becomes 

      ∑      
            with       ∑         

  
    (39) 

However, remind that   is computed exactly from Eq. (37) such that the residual term in Eq. 

(39) is known from the simple difference          . Now Eq. (37) can be reformulated 

as  

               (40) 

Pre-multiplying this equation by   , then substituting for    and subsequently 

differentiating wrt. a single design parameter p gives 

                                        (41) 

In the above expression it is assumed that the sensitivity of the residual load vector is zero. 

This makes sense if the residual vector is thought of being an assumed deformation under a 

prescribed static load thus leading to               . 

From linearized Euler or Navier-Stokes equations theory, see for instance [22, 23], it is 

possible to introduce a suitable first order approximation to the aerodynamic loads     ̅  ̅   
in terms of a small perturbation         of the steady state equilibrium. 

Recalling that only design parameters linked to physical properties are considered here, the 

system in Eq. (30) simplifies to 

 { 
                  [ ]                 [ ]      [ ]            (42) 
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Solving for  from the first block of equations and then substituting in the structural 

block gives the following system for the displacement derivatives 

{  [ ] [ ] [ ]  [ ] (43) 

Now direct differentiation of Eq. (37) yields 

(44) 

and from direct comparison with the first block in Eq. (43) the gradient of  structural loads 

takes the simple form 

(45) 

Inserting the modal decomposition of  in this expression leads to 

 (  ) (46) 

In order to exploit this relation, the gradient of the generalized coordinates has to be 

determined first. This is done by inserting Eq. (46) into Eq. (41) to obtain 

[    ]  ( ) (47) 

where the generalized aerodynamic forces matrix is defined as   . 

This equation can be simplified further if we introduce the additional assumption that design 

parameters only affect the stiffness matrix, i.e.        ,   being the mass matrix. Then 

assuming that eigenmodes are mass-normalized, the following property is easily demonstrated 

(48) 

Recognizing that  , then the first term in brackets in the right hand side 

of  Eq. (47) vanishes. Finally the expression for  reads 

[    ]  ( ) (49) 

The residual vector gradient is approximated from the usual static sensitivity equation 
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            (        ) (50) 

To summarize the proposed strategy for the gradient reconstruction of aerodynamic forces, 

each vector        requires at least      linearized rigid aerodynamic responses:    

responses to mode shapes plus one response to the generalized vector              . It 

is possible to reduce this cost to    linearized simulations by taking advantage of the work by 

Wang in [24], who proposed an accurate approximation of an eigenvector derivative that is 

assumed to be spanned by a truncated set of normal modes augmented by a residual static 

mode such that 

       ∑      
                      (51) 

where 

                  and                          
(52) 

and the pseudo-load matrix         . Note that in this case      under previous 

assumption        . If a sufficient number of retained modes is considered, then the 

residual term becomes negligible and the linearized aerodynamic response is readily obtained 

from a linear combination of already available responses to mode shapes. 

4.2 Aeroelastic analysis and design models 

The structural and Euler fluid meshes have already been presented in Figure 2, but the Mach 

number for this case is M=0.83 and the incidence is 3.0°. Only an inviscid Euler flow is 

considered here. The wing tip displacement is 9.13 cm (i.e. 7.48% of span) and the associated 

lift coefficient is Cz=0.232. The steady aeroelastic computation uses an upwind Roe scheme 

with a Van Albada limiter. The time scheme is a Backward-Euler, with a classical pseudo 

time step. The density residual convergence history is presented in the figure below along 

with the pressure coefficient distribution at equilibrium. 

 
 

Figure 6 : Aeroelastic equilibrium shape colored by pressure coefficient (left). History of density residual norm 

during the fixed-point aeroelastic computation (right) 
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The first aeroelastic coupling is done at iteration n. 600, then the coupling operation repeats 

every 200 iterations, for a total number of 3000 iterations. 

  

Figure 7 : Comparison between rigid and flexible Cp distribution at section y=50% and y=75% span. 

Two design parameters have been defined for the structural model. First parameter    controls 

the thickness of the linked lower and upper skin, and second parameter    affects the 

thickness of the spar webs. Finally, the smoothed mode shapes used to approximate the 

structural displacements are presented in Figure 9. 

 

Figure 8 : Structural design parameters.  

   

   

Figure 9 : First six structural mode splined on the wetted surface. 

Skins 

Spars 
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4.3 Gradient computation and results 

Figure 10 and Figure 11 represent the results obtained respectively for the reconstruction of 

the pressure coefficient gradient w.r.t first and second design parameter, compared with the 

gradients obtained by finite difference method. 

  

Figure 10 : Reconstruction of the pressure coefficient gradient wrt.    compared to finite differences (dashes). 

  

Figure 11 : Reconstruction of the pressure coefficient gradient wrt.    compared to finite differences (dashes). 

For both parameters the reconstruction is very close to the finite difference results, which 

validates the linearized approach proposed in this study. In order to reduce the number of 

computations, the accuracy of the gradient reconstruction is assessed without the contribution 

of eigenvector derivatives in Eq. (46) and (49). Corresponding results are presented in Figure 

12 for parameter   . Table 3 below summarizes the reconstructed gradients for  lift 

coefficient.        FD (Ael)                -1.85E-02 -1.68E-02 -2.08E-02    +7.01E-03 +7.52E-03 +8.65E-03 

Table 3 : Gradients for lift coefficient wrt. wing skin and spar thickness. Values with and without eigenvector 

derivatives contribution. Reference finite difference values are provided. 
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Obviously, this reconstruction is of less quality which points out the relevant contribution of 

eigenvector derivatives. 

  

Figure 12 : Reconstruction of the pressure gradient wrt. second design parameter compared to finite difference 

computation, without eigenvector derivatives contribution 

In order to understand the relevancy of adding eigenvector derivatives to the equations, the 

distance between subspaces spanned by the eigenvectors and their derivatives has been 

calculated. As these subspaces are of the same dimension, the Grassmann distance using the 

principal angles can be computed [25] to give:       

0.479 0.493 

Table 4 : Relative Grassmann distance between subspaces spanned by eigenvectors and  eigenvector derivatives 

wrt. skin thickness    and spar web thickness   . 

The relative Grassmann distance (i.e. normalized by maximum value) for    is less than the 

one for   . This means that the information provided by the eigenvector derivatives is more 

useful in the latter case than in the former. 

5 CONCLUSION 

The elsA block-structured highly scalable software has been enriched with a new capability 

for aeroelastic gradient computation for aerodynamic shape optimization. This new module is 

no more restricted to simplified structural models and benefits from the highly parallel 

architecture of elsA. Theoretical details of the proposed direct and adjoint formulation are 

provided as well as numerical preliminary results for the M6 wing test case for inviscid and 

viscous fluid models. Thanks to advanced relaxation and acceleration techniques, excellent 

convergence rates have been observed. 

In addition, a non-intrusive modal approach is proposed to obtain an accurate reconstruction 

of gradients with respect to structural stiffness parameters. This technique only requires 

harmonic responses to prescribed boundary displacements on the wetted area and benefits 

from the existing linearized Euler or RANS solvers used in the construction of state-space 

models for flutter stability analysis in aeroelasticity. Results for an inviscid transonic test case 

are reported for the M6 wing. 
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Additional complex 3D geometry aircraft applications such as wing-body and complete 

aircraft are currently being considered to assess the full potentiality of the new module and 

will be reported elsewhere. Further developments will extend the embedded aeroelastic 

gradient module to support structural design parameters as well.  
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