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THE MULTI-PATCH LOGISTIC EQUATION WITH3

ASYMMETRIC MIGRATION4

ELBETCH BILEL, BENZEKRI TOUNSIA, MASSART DANIEL, SARI TEWFIK5

Abstract. This paper considers a multi-patch model, where each patch fol-

lows a logistic law, and patches are coupled by asymmetrical migration terms.

First, in the case of perfect mixing, i.e when the migration rate tends to infin-
ity, the total population follows a logistic law with a carrying capacity which

in general is different from the sum of the n carrying capacities, and depends
on the migration terms. Second, we determine, in some particular cases, the

conditions under which fragmentation and asymmetrical migration can lead to

a total equilibrium population greater or smaller than the sum of the carrying
capacities. Finally, for the three-patch model, we show numerically the exis-

tence of at least three critical values of the migration rate for which the total

equilibrium population equals the sum of the carrying capacities.

1. Introduction6

The study of the dynamics of a fragmented population is fundamental in theo-7

retical ecology, with potentially very important applied aspects: what is the effect8

of migration on the general population dynamics ? What are the consequences of9

fragmentation on the persistence or extinction of the population ? When is a single10

large refuge better or worse than several small ones (this is known as the SLOSS11

debate; see Hanski [18]) ?12

The theoretical paradigm that has been used to treat these questions is that of13

a single population fragmented into patches coupled by migration, and the sub-14

population in each patch follows a local logistic law. This system is modeled by a15

non linear system of differential equations of the following form:16

dx

dt
= f(x) + βΓx, (1.1)

where x = (x1, . . . , xn)T , n is the number of patches in the system, xi represents17

the population density in the i-th patch, f(x) = (f1(x1), . . . , fn(xn))T , and18

fi(xi) = rixi(1− xi/Ki), i = 1, . . . n. (1.2)

The parameters ri and Ki are respectively the intrinsic growth rate and the carrying19

capacity of patch i. The term βΓx on the right hand side of the system (1.1)20
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describes the effect of the migration between the patches, where β is the migration21

rate and Γ = (γij) is the matrix representing the migrations between the patches.22

For i 6= j, γij > 0 denotes the incoming flux from patch j to patch i. If γij = 0,23

there is no migration. The diagonal entries of Γ satisfy the following equation24

γii = −
n∑

j=1,j 6=i

γji, i = 1, · · · , n, (1.3)

which means that what comes out of a patch is distributed between the other n−125

patches.26

In the absence of migration, (β = 0), the system (1.1) admits (K1, . . . ,Kn) as
a non trivial equilibrium point. This equilibrium is globally asymptotically stable
(GAS) and the total population at equilibrium is equal to the sum of the carrying
capacities. The problem is whether or not the equilibrium continues to be positive
and GAS, for any β > 0, and whether or not the total population at equilibrium
can be greater than the sum of the carrying capacities. The case n = 2 and Γ
symmetric

Γ =

[
−1 1

1 −1

]
where γ12 = γ21 is normalized to 1 has been considered by Freedman and Waltman
[14] and Holt [19]. They analyzed the model in the case of perfect mixing (β → +∞)
and showed that the total equilibrium population can be greater than the sum of
the carrying capacities K1 + K2, so that patchiness has a beneficial effect on the
total equilibrium population. More recently, Arditi et al. [1] analyzed the behaviour
of the system for all values of β. They showed that only three situations occur:
either for any β > 0, patchiness has a beneficial effect, or this effect is always
detrimental, or the effect is beneficial for lower values of the migration coefficient
β and detrimental for higher values. Arditi et al. [2] extended these results to the
case of two patches coupled by asymmetric migration, corresponding to the matrix

Γ =

[
−γ21 γ12
γ21 −γ12

]
.

DeAngelis et al. [8, 11] considered the case of n > 2 patches in a circle, with27

symmetric migration between any patch and its two neighbours :28

dxi
dt

= rixi

(
1− xi

Ki

)
+ β(xi−1 − 2xi + xi+1), i = 1, . . . , n, (1.4)

where we denote x0 = xn and xn+1 = x1, so that the same relationships hold
between xi, xi−1 and xi+1 for all values of i. This model corresponds to the matrix
Γ whose non-zero off-diagonal elements are given by

γ1n = γn1 = 1 and γi,i−1 = γi−1,i = 1, for 2 ≤ i ≤ n.

The system (1.4) is a one-dimensional discrete-patch version of the standard reaction-29

diffusion model. In [8, 11] the perfect mixing case is described.30

The case of the general symmetric migration was considered by the authors in31

[12]. We studied the system:32

dxi
dt

= rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

γij(xj − xi), i = 1, . . . , n, (1.5)
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where βγij is the rate of migration between patches i and j. This system can33

be written in the form of System (1.1) with Γ = (γij), the symmetric matrix34

whose diagonal entries are defined by (1.3). We studied the total population at35

equilibrium, as a function of the migration rate β. We gave conditions on the36

system parameters that ensure that migration is beneficial or detrimental, and37

extended several results of [1, 8, 11].38

The aim of this work is to consider the case of n patches connected by asymmetric39

migration. Thus, we extend [2] by considering the case n ≥ 2, and we extend [12]40

by considering the case where Γ is non symmetric.41

An important extension of (1.1) is the so called source-sink model, where the42

patches are of two types: the source patches, 1 ≤ i ≤ m, with logistic dynamics,43

and the sink patches, m+ 1 ≤ i ≤ n, with exponential decay44 {
fi(xi) = rixi(1− xi/Ki), i = 1, . . . ,m,
fi(xi) = −rixi, i = m+ 1, . . . , n.

(1.6)

The main problem is the number of source patches required for population per-45

sistence. For a recent study and bibliographical references the reader can consult46

Arino et al. [4] and Wu et al. [29].47

There is another important extension of (1.1,1.2), where the dynamics on patch48

i is of the form49

fi(xi) = rixi(1− xi/Ki)− γixi, i = 1, . . . , n, (1.7)

with γi > 0. This model is the limit system (when t → +∞) of an SIS model50

in n patches connected by human migration. For details and further reading, see51

Section 5. Note that, when ri < γi for some patches, system (1.1,1.7) is a source-52

sink model. Countrary to (1.6), the mortality in sink patch is density-dependent.53

For more details and bibliographical references the reader is referred to [15].54

Another example of source-sink model is the system considred by Nagahara et55

al. [24], called the “island chain” model, which is of the form:56

dxi
dt

= xi (mi − xi) + β(xi−1 − 2xi + xi+1), i = 1, . . . , n, (1.8)

where we denote x0 = x1 and xn+1 = xn. This model is of the form (1.1), Γ being
the matrix which verifies 1.3, and whose non-zero off-diagonal elements are given
by

γi,i−1 = γi−1,i = 1, for 2 ≤ i ≤ n.
In the model (1.8) the ratios αi = ri/Ki in (1.2) are equal and are normalized to 1.57

The constant mi represents both the intrinsic growth rate of the species in patch i58

and the carrying capacity of the patch. If mi > 0, then patch i is favorable to the59

species. It is a source. The case mi = 0 is permitted and corresponds to a sink.60

The main purpose is to find the resource allocation (m1, ...,mn) that maximizes61

the total population at equilibrium, under the constraint that
∑
imi = m > 0 is62

fixed. For more details and information on the maximization of the total population63

with logistic growth in a patchy environment, the reader is referred to [24] and the64

references therein.65

For general information of the effects of patchiness and migration in both con-66

tinuous and discrete cases, and the results beyond the logistic model, the reader is67

referred to the work of Levin [21, 22], DeAngelis et al. [8, 9, 10, 11], Freedman et68

al. [13], Zaker et al. [31].69
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It is worth noting that System (1.1) appears in metapopulation dynamics, in-70

volving explicit movements of the individuals between distinct locations. For the71

graph theoretic and dynamical system context in which metapopulation models are72

formulated, the reader is referred to Arino [3, Section 2].73

The paper is organized as follows. In Section 2, the mathematical model of n74

patches, and some preliminaries results, are introduced. In Section 3, the behavior75

of the model is studied when the migration rate tends to infinity. In Section 4, we76

compare the total equilibrium population with the sum of the carrying capacities77

in some particular cases. In Section 5, the SIS patch model is considered, and the78

links with the logistic patch model are investigated. In Section 6 the three-patch79

model is considered, and by numerical simulations we show the existence of a new80

behavior for the dynamics of the total equilibrium population as a function of the81

migration rate. In Appendix A, we recall some results for the two-patch model with82

asymmetrical migration. In Appendix B, we prove some useful auxiliary results.83

2. The mathematical model and preliminaries results84

We consider the model of multi-patch logistic growth, coupled by asymmetric85

migration terms86

dxi
dt

= rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

(γijxj − γjixi) , i = 1, · · · , n, (2.1)

where γij ≥ 0 denotes the incoming flux from patch j to patch i, for i 6= j. The87

system (2.1) can be written in the form (1.1), where f is given by:88

f(x) = (r1x1(1− x1/K1), · · · , rnxn(1− xn/Kn))
T
, (2.2)

and Γ := (γij)n×n is the matrix whose diagonal entries are given by (1.3). The
matrix

Γ0 := Γ− diag(γ11, · · · , γnn)

which is the same as Γ, except that the diagonal elements are 0, is called the89

connectivity matrix. It is the adjacency matrix of the weighted directed graph G,90

which has exactly n vertices (the patches), and has an arrow from patch j to patch91

i, with weight γij , precisely when γij > 0.92

As to the non-negativity of the solution, we have the following proposition:93

Proposition 2.1. The domain Rn+ = {(x1, . . . , xn) ∈ Rn/xi ≥ 0, i = 1, . . . , n} is94

positively invariant for the system (2.1).95

Proof. The proof is the same as in the symmetrical case [12, Prop 2.1]. �96

When the connectivity matrix Γ0 is irreducible, System (2.1) admits a unique97

positive equilibrium (x∗1(β), . . . , x∗n(β)), which is GAS, see [3, Theorem 2.2], [4,98

Theorem 1] or [12, Theorem 6.1]. In all of this work, we denote by E∗(β) the99

positive equilibrium and by X∗T (β) the total population at equilibrium:100

E∗(β) = (x∗1(β), . . . , x∗n(β)), X∗T (β) =

n∑
i=1

x∗i (β). (2.3)

Remark 2.2. The matrix Γ0 being irreducible means that the weighted directed101

graph G is strongly connected, which means that every patch is reachable from every102

other patch, either directly or through other patches. The matrix Γ is assumed to103

be irreducible throughout the rest of the paper.104
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3. Perfect mixing105

In this section our aim is to study the behavior of E∗(β) and X∗T (β), defined by106

(2.3), for large migration rate, i.e when β →∞.107

3.1. The fast dispersal limit. The following lemma was proved in [4, Lemma 2],108

we include a proof for the ease of the reader.109

Lemma 3.1. Let Γ be the migration matrix. Then, 0 is a simple eigenvalue of Γ110

and all non-zero eigenvalues of Γ have negative real part. Moreover, the kernel of111

the matrix Γ is generated by a positive vector.112

If the matrix Γ is symmetric, then ker Γ is generated by u = (1, ..., 1)T .113

Proof. Let s = maxi=1,...,n(−γii) and let B be the matrix defined by

B = Γ + sI.

First, we note that since the matrix Γ verifies the property (1.3), then Γ is a114

singular matrix and the vector u = (1, ..., 1)T is an eigenvector of ΓT associated to115

the eigenvalue 0. Thus u is an eigenvector of BT , with eigenvalue s.116

The matrix BT is non negative and irreducible, so by the Perron-Frobenius
theorem the spectral radius

ρ(BT ) = max
{
|λ| : λ is an eigenvalue of BT

}
,

is a simple eigenvalue of the matrix BT and it is the only eigenvalue of BT which117

admits a positive eigenvector, so s = ρ(BT ) = ρ(B). Therefore, Γ = B − ρ(B)I118

and dim(ker Γ) = dim(ker ΓT ) = 1.119

All other eigenvalues of B have modulus < ρ(B), so their real parts are < ρ(B).120

Since each eigenvalue of Γ is λ− ρ(B), for some eigenvalue λ of B, all eigenvalues121

of Γ have negative real part.122

Furthermore, according to the Perron-Frobenius theorem, there exists a positive123

vector δ such that Bδ = ρ(B)δ, that is, Γδ = (B − ρ(B)I)δ = 0. In particular, if124

the matrix Γ is symmetric then we may take δ = u, that is, δi = 1, for all i. �125

In all of this paper, we denote by δ = (δ1, . . . , δn)T a positive vector which126

generates the vector space ker Γ.127

Remark 3.2. The existence, uniqueness (mod. multiplicative factor), and posi-128

tivity of δ were also proved in Lemma 1 of Cosner et al. [7]. On the other hand,129

it is shown in Guo et al. [17, Lemma 2.1] and Gao and Dong [16, Lemma 3.1]130

that the vector (Γ∗11, . . . ,Γ
∗
nn)T is a right eigenvector of Γ associated with the zero131

eigenvalue. Here, Γ∗ii is the cofactor of the i-th diagonal entry of Γ. Therefore,132

we have explicite formulae for the components of the vector δ, as functions of the133

coefficients of Γ, at our disposal. For two patches we have δ = (γ12, γ21)T , and for134

three patches we have δ = (δ1, δ2, δ3)T , where135  δ1 = γ12γ13 + γ12γ23 + γ32γ13,
δ2 = γ21γ13 + γ21γ23 + γ31γ23,
δ3 = γ21γ32 + γ31γ12 + γ31γ32.

(3.1)

The following result asserts that when β →∞, the equilibrium E∗(β) converges136

to an element of ker Γ.137
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Theorem 3.3. For the system (2.1), we have

lim
β→+∞

E∗(β) =

∑n
i=1 δiri∑n
i=1 δ

2
i αi

(δ1, . . . , δn) ,

where αi = ri/Ki.138

Proof. Denote

E∗(∞) =

(
δ1

∑n
i=1 δiri∑n
i=1 δ

2
i αi

, . . . , δn

∑n
i=1 δiri∑n
i=1 δ

2
i αi

)
.

Dividing Equation 1.1 at the equilibrium E∗(β) by β, for β > 0, yields139

for all β > 0,
1

β
f(E∗(β)) + ΓE∗(β) = 0.

Thus any limit point, when β →∞, of the set {E∗(β) : β > 0} lies in the kernel of140

Γ. Now, taking the sum of all equations in141

rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

(γijxj − γjixi) = 0, i = 1, · · · , n,

we see that E∗(β) lies in the ellipsoid

En−1 =

{
x ∈ Rn : Θ(x) :=

n∑
i=1

rixi

(
1− xi

Ki

)
= 0

}
.

The ellipsoid En−1 is compact, so the equilibrium E∗(β) has at least one limit point142

in En−1, when β goes to infinity. Since the kernel of Γ has dimension 1, and En−1143

is the boundary of a convex set, En−1 ∩ ker Γ consists of at most two points. Since144

the origin and E∗(∞) both lie in En−1 ∩ ker Γ, we get that145

En−1 ∩ ker Γ = {0, E∗(∞)} .

Therefore, to prove the convergence of E∗(β) to E∗(∞), it suffices to prove that
the origin cannot be a limit point of E∗(β). We claim that for any β, there exists i
such that x∗i (β) ≥ Ki, which entails that E∗(β) is bounded away from the origin.
The coordinates of the vector ΓE∗(β) sum to zero, hence at least one of them, say,
the i-th, is non negative. Then

rix
∗
i (β)

(
1− x∗i (β)

Ki

)
≤ 0,

and since x∗i (β) cannot be negative or 0, we have x∗i (β) ≥ Ki.146

�147

As a corollary of the previous theorem, we obtain the following result, which148

describes the total equilibrium population for perfect mixing:149

Proposition 3.4. We have150

X∗T (+∞) = lim
β→+∞

n∑
i=1

x∗i (β) =

(
n∑
i=1

δi

) ∑n
i=1 δiri∑n
i=1 δ

2
i αi

. (3.2)

Denote K = (K1, . . . ,Kn)T . If K = λδ with λ > 0, that is to say K ∈ ker Γ, then151

X∗T (+∞) = λ
∑n
i=1 δi =

∑n
i=1Ki.152
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Proof. For the proof of (3.2), it suffices to sum the n components of the point153

E∗(∞). For the case K ∈ ker Γ, it suffices to replace Ki by λδi in (3.2). �154

Actually, when K ∈ ker Γ, we have X∗T (β) =
∑
iKi for all β > 0, see Prop. 4.6.155

In the case n = 2, one has δ1 = γ12 and δ2 = γ21, as shown in Remark 3.2.
Therefore (3.2) becomes

X∗T (+∞) = (γ12 + γ21)
γ12r1 + γ21r2
γ212α1 + γ221α2

,

which is the formula [2, Equation 7] given by Arditi et al.156

If the matrix Γ is symmetric, one has δi = 1, for all i, as shown in Lemma 3.1.
Therefore (3.2) specializes to the formula given in [12, Equation (24)]:

X∗T (+∞) = n

∑n
i=1 ri∑n

i=1 ri/Ki
.

3.2. Two time scale dynamics. In [12] the authors also obtained the formula157

(3.2), in the symmetrical n-patch case (i.e the matrix Γ is symmetric), by using158

singular perturbation theory, see [12, Theorem 4.6].159

We showed that, if (x1(t, β), . . . , xn(t, β)) is the solution of (1.5), with initial160

condition (x01, . . . , x
0
n), then, when β → ∞, the total population

∑
xi(t, β) is ap-161

proximated by X(t), the solution of the logistic equation162

dX

dt
= rX

(
1− X

nK

)
, where r =

∑n
i=1 ri
n

, K =

∑n
i=1 ri∑n
i=1 αi

and αi =
ri
Ki

(3.3)

with initial condition X0 =
∑
x0i . Therefore the total population behaves like163

the solution of the logistic equation given by (3.3). In addition, one obtains the164

following property: with the exception of a small initial interval, the population165

densities xi(t, β) are approximated by X(t)/n, see [12, Formula (37)]. Therefore,166

this approximation shows that, when t and β tend to ∞, the population density167

xi(t, β) tends toward
∑
ri∑
αi

, and in addition, xi(t, β) quickly jumps from its initial168

condition x0i to the average X0/n and then is very close to X(t)/n. Our aim is to169

generalize this result for the asymmetrical n-patch model (2.1) (i.e the matrix Γ is170

non symmetric). We have the following result171

Theorem 3.5. Let (x1(t, β), . . . , xn(t, β)) be the solution of the system (2.1) with172

initial condition (x01, · · · , x0n) satisfying x0i ≥ 0 for i = 1 · · ·n. Let Y (t) be the173

solution of the logistic equation174

dX

dt
= rX

(
1− X

[
∑n
i=1 δi]K

)
, (3.4)

where175

r =

∑n
i=1 δiri∑n
i=1 δi

,K =

∑n
i=1 δiri∑n
i=1 δ

2
i αi

and αi =
ri
Ki
, (3.5)

with initial condition X0 =
∑n
i=1 x

0
i . Then, when β →∞, we have176

n∑
i=1

xi(t, β) = Y (t) + o(1), uniformly for t ∈ [0,+∞) (3.6)

and, for any t0 > 0, we have177

xi(t, β) =
δi∑n
i=1 δi

Y (t) + o(1), i = 1, . . . , n, uniformly for t ∈ [t0,+∞). (3.7)
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Proof. Let X(t, β) =
∑n
i=1 xi(t, β). We rewrite the system (2.1) using the variables178

(X,x1, · · · , xn−1), and get:179 
dX

dt
=

n∑
i=1

rixi

(
1− xi

Ki

)
,

dxi
dt

= rixi

(
1− xi

Ki

)
+ β

n∑
j=1,j 6=i

(γijxj − γjixi), i = 1, · · · , n− 1.

(3.8)

This system is actually a system in the variables (X,x1, · · · , xn−1), since, whenever180

xn appears in the right hand side of (3.8), it should be replaced by181

xn = X −
n−1∑
i=1

xi. (3.9)

When β →∞, (3.8) is a slow-fast system, with one slow variable, X, and n−1 fast
variables, xi for i = 1 · · ·n − 1. As suggested by Tikhonov’s theorem [20, 27, 28],
we consider the dynamics of the fast variables in the time scale τ = βt. We get

dxi
dτ

=
1

β
rixi

(
1− xi

Ki

)
+

n∑
j=1,j 6=i

(γijxj − γjixi), i = 1, · · · , n− 1.

where xn is given by (3.9). In the limit β →∞, we find the fast dynamics

dxi
dτ

=

n∑
j=1,j 6=i

(γijxj − γjixi), i = 1, · · · , n− 1.

This is an (n − 1)-dimensional linear differential system in the variable Z :=182

(x1, · · · , xn−1), which can be rewritten in matricial form:183

Ż = LZ +XV, with L := L− U, (3.10)

where L := (γij)n−1×n−1 is the sub matrix of the matrix Γ, obtained by dropping184

the last row and the last column of Γ, V is the vector defined by V := (γin)n−1×1185

and U = (V ; . . . ;V ).186

By Lemma B.1, the matrix L is stable, that is, all of its eigenvalues have negative
real part. Therefore, it is invertible and the equilibrium of the system (3.10) is GAS.
This equilibrium is given by(

δ1∑n
i=1 δi

X, . . . ,
δn−1∑n
i=1 δi

X

)T
.

Indeed, we denote by L(i), U (i) and V (i) the i-th row of the matrix L,U and the
vector V respectively. We have:

δn∑n
i=1 δi

(
L(i) − U (i)

)( δ1
δn
X . . .

δn−1
δn

X

)T
= − δn∑n

i=1 δi
Xγin −

∑n−1
i=1 δi∑n
i=1 δi

Xγin

= −Xγin = −XV (i).

Thus, the slow manifold of System (3.8) is given by187

xi =
δi∑n
i=1 δi

X, i = 1, . . . , n− 1. (3.11)

As this manifold is GAS, Tikhonov’s theorem ensures that after a fast transition
toward the slow manifold, the solutions of (3.8) are approximated by the solutions
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of the reduced model, which is obtained by replacing (3.11) into the dynamics of
the slow variable, that is:

dX

dt
=

n∑
i=1

ri
X∑n
i=1 δi

δi

(
1− X

(
∑n
i=1 δi)Ki

δi

)
= rX

(
1− X

(
∑n
i=1 δi)K

)
,

where r and K are defined in (3.5). Therefore, the reduced model is (3.4). Since
(3.4) admits

X∗ =

(
n∑
i=1

δi

)
K =

(
n∑
i=1

δi

) ∑n
i=1 δiri∑n
i=1 δ

2
i αi

as a positive equilibrium point, which is GAS in the positive axis, the approximation188

given by Tikhonov’s theorem holds for all t ≥ 0 for the slow variable and for all189

t ≥ t0 > 0 for the fast variables, where t0 is as small as we want. Therefore, letting190

Y (t) be the solution of the reduced model (3.4) with initial condition Y (0) =191

X(0, β) =
∑n
i=1 x

0
i , then, when β → ∞, we have the approximations (3.6) and192

(3.7). �193

In the case of perfect mixing, the approximation (3.6) shows that the total popu-194

lation behaves like the solution of the single logistic equation (3.5) and then, when195

t and β tend to ∞, the total population
∑
xi(t, β) tends toward (

∑n
i=1 δi)K =196

(
∑n
i=1 δi)

∑
δiri∑
δ2iαi

as stated in Prop. 3.4. The approximation (3.7) shows that, with197

the exception of a thin initial boundary layer, where the population density xi(t, β)198

quickly jumps from its initial condition x0i to δiX0/
∑n
i=1 δi, each patch of the199

n-patch model behaves like the logistic equation200

du

dt
= ru

(
1− u

δiK

)
where r =

∑n
i=1 δiri∑n
i=1 δi

, K =

∑n
i=1 δiri∑n
i=1 δ

2
i αi

, αi =
ri
Ki
.

(3.12)
Hence, when t and β tend to ∞, the population density xi(t, β) tends toward201

δi
∑
δiri∑
δ2iαi

, as stated in Theorem 3.3.202

Remark 3.6. The single logistic equation (3.12) gives an approximation of the pop-203

ulation density in each patch in the case of perfect mixing. The intrinsic growth rate204

r in (3.12) is the arithmetic mean of the r1, . . . , rn, weighted by δ1, . . . , δn, and the205

carrying capacity K is the harmonic mean of Ki/δi, weighted by δiri, i = 1, . . . , n.206

We point out the similarity between our expression for the carrying capacity in the207

limit β → ∞, and the expression obtained in spatial homogenization, see e.g [30,208

Formula 81] and also [31, Formula 28].209

3.3. Comparison of X∗T (+∞) with
∑
iKi. According to Formula (3.2), it is210

clear that the total equilibrium population at β = 0 and at β = +∞ are different211

in general.212

In the remainder of this section, we give some conditions, in the space of param-213

eters ri,Ki, αi and δi, for limit of the total equilibrium population when β → ∞214

to be greater or smaller than the sum of the carrying capacities. We show that all215

three cases are possible, i.e X∗T (+∞) can be greater than, smaller than, or equal216

to X∗T (0). First, we start by giving some particular values of the parameters for217

which equality holds.218
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Proposition 3.7. Consider the system (2.1). If the vector
(

1
α1
, . . . , 1

αn

)T
lies in219

ker Γ, then X∗T (+∞) =
∑
iKi.220

Proof. Direct consequence of the equation (3.2). �221

Note that, if the matrix Γ is symmetric, then by Lemma 3.1, Prop. 3.7 says that222

if all αi are equal, then X∗T (∞) =
∑
iKi, which is [12, Prop 4.4].223

In the next proposition, we give two cases which ensure that X∗T (0) can be greater224

or smaller than X∗T (+∞). This result can be stated as the following proposition:225

Proposition 3.8. Consider the system (2.1).226

(1) If
K1

δ1
≤ . . . ≤ Kn

δn
and δ1α1 ≤ . . . ≤ δnαn, or if

K1

δ1
≥ . . . ≥ Kn

δn
and227

δ1α1 ≥ . . . ≥ δnαn, then X∗T (+∞) ≥ X∗T (0).228

(2) If
K1

δ1
≥ . . . ≥ Kn

δn
and δ1α1 ≤ . . . ≤ δnαn, or if

K1

δ1
≤ . . . ≤ Kn

δn
and229

δ1α1 ≥ . . . ≥ δnαn, then X∗T (+∞) ≤ X∗T (0).230

In both items, if at least one of the inequalities in
K1

δ1
≤ . . . ≤ Kn

δn
or

K1

δ1
≥ . . . ≥231

Kn

δn
is strict, then the inequality is strict in the conclusion.232

Proof. Apply Lemma B.2 with the following choice: wi = δi, ui =
Ki

δi
, and vi =233

δiαi, for all i = 1, . . . , n. �234

If the matrix Γ is symmetric, one has δi = 1, for all i, as shown in Lemma 3.1.235

Therefore Prop. 3.8 becomes236

Corollary 3.9. Consider the system (2.1). Assume that Γ is symmetric.237

(1) If K1 ≤ . . . ≤ Kn and α1 ≤ . . . ≤ αn, or if K1 ≥ . . . ≥ Kn and α1 ≥ . . . ≥238

αn, then X∗T (+∞) ≥ X∗T (0).239

(2) If K1 ≥ . . . ≥ Kn and α1 ≤ . . . ≤ αn, or if K1 ≤ . . . ≤ Kn and α1 ≥ . . . ≥240

αn, then X∗T (+∞) ≤ X∗T (0).241

This result implies Items 1 and 2 of [10, Theorem B.1], which were obtained for242

the model (1.4) in the particular case ri = Ki.243

4. Influence of asymmetric dispersal on total population size244

In this section, we will compare, in some particular cases of the system (2.1), the245

total equilibrium population X∗T (β) = x∗1(β)+ . . .+x∗n(β), with the sum of carrying246

capacities denoted by X∗T (0) = K1 + . . .+Kn, when the rate of migration β varies247

from zero to infinity. We show that the total equilibrium population, X∗T (β), is248

generally different from the sum of the carrying capacities X∗T (0). Depending on249

the local parameters of the patches and the kernel of the matrix Γ, X∗T (β) can250

either be greater than, smaller than, or equal to the sum of the carrying capacities.251

4.1. Asymmetric dispersal may be unfavorable to the total equilibrium252

population. When Γ is symmetric, we have already proved that if all the growth253

rates are equal then dispersal is always unfavorable to the total equilibrium popu-254

lation, see [12, Prop. 3.1]. We also noticed that the result still holds in the general255

case when Γ is not necessarily symmetric, see [12, Prop. 6.2]. Hence we have the256

following257
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Proposition 4.1. If r1 = . . . = rn then258

X∗T (β) =

n∑
i=1

x∗i (β) ≤
n∑
i=1

Ki, for all β ≥ 0.

For a two-patch logistic model, this result has been proved by Arditi et al. [1,259

Prop. 2, item 3] for symmetric dispersal and for asymmetric dispersal [2, Prop. 1,260

item 3].261

4.2. Asymmetric dispersal may be favorable to the total equilibrium pop-262

ulation. In this section, we give a situation where the dispersal is favorable to the263

total equilibrium population. Mathematically speaking:264

Proposition 4.2. Assume that for all j < i, αiγij = αjγji. Then

X∗T (β) ≥
n∑
i=1

Ki for all β ≥ 0.

Moreover, if there exist i0 and j0 6= i0 such that ri0 6= rj0 , then X∗T (β) >
∑n
i=1Ki,265

for all β > 0.266

Proof. The equilibrium point E∗(β) satisfies the system267

0 = αix
∗
i (β) (Ki − x∗i (β)) + β

n∑
j=1,j 6=i

(γijx
∗
j (β)− γjix∗i (β)), i = 1 · · ·n. (4.1)

Dividing (4.1) by αix
∗
i , one obtains

x∗i (β) = Ki + β

n∑
j=1,j 6=i

γijx
∗
j (β)− γjix∗i (β)

αix∗i (β)
.

Taking the sum of these expressions shows that the total equilibrium population
X∗T satisfies the following relation:

X∗T (β) =

n∑
i=1

Ki + β

n∑
i=1

n∑
j=1,j 6=i

γijx
∗
j (β)− γjix∗i (β)

αix∗i (β)

=

n∑
i=1

Ki + β
∑
j<i

(
γijx

∗
j (β)− γjix∗i (β)

αix∗i (β)
+
γjix

∗
i (β)− γijx∗j (β)

αjx∗j (β)

)

=

n∑
i=1

Ki + β
∑
j<i

(
γijx

∗
j (β)− γjix∗i (β)

) (
αjx

∗
j (β)− αix∗i (β)

)
αjαix∗j (β)x∗i (β)

. (4.2)

The conditions αiγij = αjγji can be written κij := αi/γji = αj/γij for all j < i,
such that γij 6= 0 and γji 6= 0. Therefore, there exists κij > 0 such that

αj = κijγij and αi = κijγji for all i, j with γij 6= 0 and γji 6= 0.

Replacing αi and αj in (4.2), one obtains268

X∗T (β) =

n∑
i=1

Ki + β
∑
j<i

κij
(
γijx

∗
j (β)− γjix∗i (β)

)2
αjαix∗j (β)x∗i (β)

≥
n∑
i=1

Ki. (4.3)

Equality holds if and only if β = 0 or γijx
∗
j (β)−γjix∗i (β) = 0, for all i and j. Let us269

prove that if at least two patches have different growth rates, then equality cannot270
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hold for β > 0. Suppose that there exists β∗ > 0 such that the positive equilibrium271

satisfies272

∀i, j, γijx
∗
j (β
∗) = γjix

∗
i (β
∗). (4.4)

Replacing the equation (4.4) in the system (4.1), we get that x∗i (β
∗) = Ki, for all273

i. Therefore, from (4.4), it is seen that, for all i and j, Kjγij = Kiγji. From these274

equations and the conditions αiγij = αjγji, we get ri = rj , for all i and j. This275

is a contradiction with the hypothesis that there exists two patches with different276

growth rates. Hence the equality in (4.3) holds if and only if β = 0. �277

When the matrix Γ is irreducible and symmetric, the hypothesis of Prop. 4.2278

implies that αi = αj for all i and j. Indeed if two patches i and j are connected279

(i.e γij = γji 6= 0), then we have αi = αj . As the matrix Γ is irreducible, for280

two arbitrary patches, there exists a finite sequence (i, . . . , j) which begins in i and281

ends in j, such that γab 6= 0 for all successive patches a and b in (i, . . . , j). Hence282

αa = αb for all a and b in (i, . . . , j). Hence, αi = αj . So, when the matrix Γ is283

symmetric, Prop. 4.2 says that if all αi are equal, dispersal enhances population284

growth, which is [12, Prop. 3.3].285

Note that, when n = 2, Prop 4.2 asserts that if α2/α1 = γ12/γ21, then X∗T (β) >286

K1 +K2, which is a result of Arditi et al. [2, Prop. 2, item b]. See also Prop. A.1,287

and note that the condition α2/α1 = γ12/γ21 implies that (γ12, γ21) ∈ J0.288

For three patches or more, if the matrix Γ does not verify the condition (∀i, j, γij =
0 ⇐⇒ γji = 0), then the hypothesis of Prop. 4.2, that for all j < i, αiγij = αjγji
cannot be satisfied. Note that the hypothesis αiγij = αjγji implies that, for all
i = 1, . . . , n, one has

n∑
j=1

γij
αj

=

n∑
j=1,j 6=i

γij
αj
−

n∑
j=1,j 6=i

γji
αi

=

n∑
j=1,j 6=i

αiγij − αjγji
αiαj

= 0.

Therefore we can make the following remark:289

Remark 4.3. The hypothesis of Prop. 4.2 implies that ( 1
α1
, . . . , 1

αn
)T ∈ ker Γ.290

We make the following conjecture:291

Conjecture 4.4. If ( 1
α1
, . . . , 1

αn
)T ∈ ker Γ then

X∗T (β) ≥
n∑
i=1

Ki, for all β ≥ 0.

This conjecture is true for the particular case of Prop. 4.2. It is also true for292

two-patch models and for n-patch models with symmetric dispersal. It agrees with293

Prop. 3.7.294

Proposition 4.5. The derivative of the total equilibrium population X∗T (β) at β =295

0 is given by:296

dX∗T
dβ

(0) =

n∑
i=1

 1

ri

n∑
j=1

γijKj

 . (4.5)

In particular, if K ∈ ker Γ, where K = (K1, . . . ,Kn)T , then
dX∗

T

dβ (0) = 0.297
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Proof. By differentiating the equation (4.2) at β = 0, we get:

dX∗T
dβ

(0) =

n∑
i=1

n∑
j=1,j 6=i

γijx
∗
j (0)− γjix∗i (0)

αix∗i (0)
,

which gives (4.5), since x∗i (0) = Ki for all i = 1, . . . , n.298

If K ∈ ker Γ, then
∑n
j=1 γijKj = 0 for all i, so that

dX∗
T

dβ (0) = 0. �299

Actually, when K ∈ ker Γ, we prove that X∗T (β) is constant, so that
dX∗

T

dβ (β) = 0300

for all β ≥ 0, not only for β = 0, see Proposition 4.6.301

4.3. Independence of the total equilibrium population with respect to302

asymmetric dispersal. In the next proposition we give sufficient and necessary303

conditions for the total equilibrium population not to depend on the migration rate.304

Proposition 4.6. The equilibrium E∗(β) does not depend on β if and only if305

(K1, . . . ,Kn)T ∈ ker Γ. In this case we have E∗(β) = (K1, . . . ,Kn) for all β > 0.306

Proof. The equilibrium E∗(β) is the unique positive solution of the equation307

f(x) + βΓx = 0, (4.6)

where f is given by (2.2). Suppose that the equilibrium E∗(β) does not depend on308

β, then we replace in Equation (4.6):309

f(E∗(β)) + βΓE∗(β) = 0. (4.7)

The derivative of (4.7) with respect to β gives310

ΓE∗(β) = 0. (4.8)

Replacing the equation (4.8) in the equation (4.7), we get f(E∗(β)) = 0, so E∗(β) =311

(K1, . . . ,Kn). From the equation (4.8), we conclude that (K1, . . . ,Kn)T ∈ ker Γ.312

Now, suppose that (K1, . . . ,Kn)T ∈ ker Γ, then (K1, . . . ,Kn) satisfies the equa-313

tion (4.6), for all β ≥ 0. So, E∗(β) = (K1, . . . ,Kn), for all β ≥ 0, which proves314

that the total equilibrium population is independent of the migration rate β. �315

If the matrix Γ is symmetric, the previous proposition asserts that the Ki, for316

i = 1, . . . , n, are equal if and only if E∗ = (K, . . . ,K), where K is the common317

value of the Ki. This is [12, Proposition 3.2]. For n = 2 , Prop. 4.6 asserts that if318

K1/K2 = γ12/γ21 then X∗T (β) = K1 +K2 for all β, which is [2, Proposition 2, item319

c ]. See also the last item of Prop. A.1.320

4.4. Two blocks of identical patches. We consider the model (2.1) and we321

assume that there are two blocks, denoted I and J , of identical patches, such that322

I ∪ J = {1, · · · , n}. Let p be the number of patches in I and q = n − p be the323

number of patches in J . Without loss of generality we can take I = {1, · · · , p} and324

J = {p + 1, · · · , n}. The patches being identical means that they have the same325

specific growth rate ri and carrying capacity Ki. Therefore we have326

r1 = · · · = rp, K1 = · · · = Kp,
rp+1 = · · · = rn, Kp+1 = · · · = Kn.

(4.9)

For each patch i ∈ I we denote by γiJ the flux from block J to patch i, and for327

each patch j ∈ J we denote by γjI the flux from block I to patch j, as defined in328

Table 1. For each patch i we denote by Ti the sum of all migration rates γji from329

patch i to another patch j 6= i (i.e. the outgoing flux of patch i) minus the sum of330
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the migration rates γik from patch k to patch i, where k belongs to the same block331

as i. Hence, we have:332 
If i ∈ I, then Ti =

∑
j∈J

γji +
∑

k∈I\{i}

(γki − γik).

If j ∈ J, then Tj =
∑
i∈I

γij +
∑

k∈J\{j}

(γkj − γjk).
(4.10)

We make the following assumption on the migration rates:333

γ1J = · · · = γpJ , γ(p+1)I = · · · = γnI
T1 = · · · = Tp, Tp+1 = · · · = Tn

(4.11)

where γiJ , for i ∈ I and γjI , for j ∈ J are defined in Table 1 and Ti are given by334

(4.10).

Table 1. Definitions and notations of fluxes

Flux Definition

γiJ =
∑
j∈J

γij
For i ∈ I, γiJ is the flux from block J to patch i, i.e. the sum
of the migration rates γij from patch j ∈ J to patch i.

γjI =
∑
i∈I

γij
For j ∈ J , γjI is the flux from block I to patch j, i.e. the sum
of the migration rates γji from patch i ∈ I to patch j.

γIJ =
∑

i∈I,j∈J
γij

γIJ is the flux from block J to block I, i.e. the sum
of the migration rates γij from patch j ∈ J , to patch i ∈ I.

γJI =
∑

i∈I,j∈J
γji

γJI is the flux from block I to block J , i.e. the sum
of the migration rates γji from patch i ∈ I, to patch j ∈ J .

335

We have the following result:336

Lemma 4.7. Assume that the conditions (4.11) are satisfied, then for all i ∈ I and337

j ∈ I one has338

γiJ = γIJ/p, γjI = γJI/q, Ti = γJI/p, Tj = γIJ/q. (4.12)

where γIJ and γJI are defined in Table 1.339

Proof. The result follows from
∑
i∈I γiJ = γIJ ,

∑
i∈J γjI = γJI ,

∑
i∈I Ti = γJI340

and
∑
i∈J Tj = γIJ . �341

In the next theorem, we will show that, at the equilibrium, and under certain342

conditions relating to the migration rates, we can consider the n-patch model as343

a 2-patch model coupled by migration terms, which are not symmetric in general.344

Mathematically, we can state our main result as follows:345

Theorem 4.8. Assume that the conditions (4.9) and (4.11) are satisfied. Then
the equilibrium of (2.1) is of the form

x1 = x∗1, . . . , xp = x∗1, xp+1 = x∗n, . . . , xn = x∗n

where (x∗1, x
∗
n) is the solution of the equations346  pr1x1

(
1− x1

K1

)
+ β (γIJxn − γJIx1) = 0,

qrnxn

(
1− xn

Kn

)
+ β (γJIx1 − γIJxn) = 0,

(4.13)
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that is to say, (x∗1, x
∗
n) is the equilibrium of a 2-patch model, with specific growth347

rates pr1 and qrn, carrying capacities K1 and Kn and migration rates γJI from348

patch 1 to patch 2 and γIJ from patch 2 to patch 1.349

Proof. Assume that the conditions (4.9) are satisfied. Then the equilibrium of (2.1)350

is the unique positive solution of the set of algebraic equations351 
r1xi

(
1− xi

K1

)
+ β

n∑
k=1,k 6=i

(γikxk − γkixi) = 0, i = 1, · · · , p,

rnxj

(
1− xj

Kn

)
+ β

n∑
k=1,k 6=j

(γjkxk − γkjxj) = 0, j = p+ 1, · · · , n.

(4.14)
We consider the following set of algebraic equations obtained from (4.14) by replac-352

ing xi = x1 for i = 1 · · · p and xi = xn for i = p+ 1 · · ·n:353  r1x1

(
1− x1

K1

)
+ β (γiJxn − Tix1) = 0, i = 1, · · · , p,

rnxn

(
1− xn

Kn

)
+ β (γjIx1 − Tjxn) = 0, j = p+ 1, · · · , n.

(4.15)

Now, using the assumptions (4.11), together with the relations (4.12), we see that354

the system (4.15) is equivalent to the set of two algebraic equations:355  r1x1

(
1− x1

K1

)
+ β

(
γIJ
p xn − γJI

p x1

)
= 0,

rnxn

(
1− xn

Kn

)
+ β

(
γJI

q x1 −
γIJ
q xn

)
= 0.

(4.16)

We first notice that if x1 = x∗1, xn = x∗n is a positive solution of (4.16) then xi = x∗1356

for i = 1, · · · , p and xj = x∗n for j = 1, · · · , n is a positive solution of (4.14). Let357

us prove that (4.16) has a unique solution (x∗1, x
∗
n). Indeed, multiplying the first358

equation by p and the second one by q, we deduce that (4.16) can be written in the359

form (4.13). �360

As a corollary of the previous theorem we obtain the following result which361

describes the total equilibrium population in the two blocks:362

Corollary 4.9. Assume that the conditions (4.9) and (4.11) are satisfied. Then363

the total equilibrium population X∗T (β) = px∗1(β) + qx∗n(β) of (2.1) behaves like the364

total equilibrium population of the 2-patch model365 
dy1
dt = r1y1

(
1− y1

pK1

)
+ β (γ2yn − γ21y1) ,

dyn
dt = rnyn

(
1− yn

qKn

)
+ β (γ21y1 − γ2yn) ,

(4.17)

with specific growth rates r1 and rn, carrying capacities pK1 and qKn, and migra-366

tion rates γ21 = γJI

p , γ2 = γIJ
q .367

Proof. From Theorem 4.8, we see that (x∗1, x
∗
n) is the positive solution of (4.13).368

Hence, (y∗1 = px∗1, y
∗
n = qx∗n) is the solution of the set of equations369  r1y1

(
1− y1

pK1

)
+ β

(
γIJ
q yn −

γJI

p y1

)
= 0,

rnyn

(
1− yn

qKn

)
+ β

(
γJI

p y1 − γIJ
q yn

)
= 0,

(4.18)
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obtained from (4.13) by changing variables to y1 = px1, yn = qxn. The system370

(4.18) has a unique positive solution which is the equilibrium point of the 2-patch371

model (4.17). �372

We can describe the conditions for which, under Hypothesis (4.9) and (4.11),373

patchiness is beneficial or detrimental in Model (2.1).374

Case rn > r1 (i.e. αn

α1
> K1

Kn
)

0

J1
J0

J2

γJI

γIJ
γIJ
γJI

= K1

Kn

γIJ
γJI

= αn

α1

Case rn < r1 (i.e. αn

α1
< K1

Kn
)

0

J2

J0

J1

γJI

γIJ
γIJ
γJI

= K1

Kn

γIJ
γJI

= αn

α1

Figure 1. Qualitative properties of Model (2.1) under the condi-
tions (4.9) and (4.11). In J0, patchiness has a beneficial effect on
the total equilibrium population. This effect is detrimental in J2.
In J1, the effect is beneficial for β < β0 and detrimental for β > β0.

We consider the regions in the set of parameters γIJ and γJI , denoted J0, J1375

and J2, depicted in Fig. 1 and defined by:376

If rn > r1 then


J1 =

{
(γJI , γIJ) : γIJγJI

> αn

α1

}
J0 =

{
(γJI , γIJ) : αn

α1
≥ γIJ

γJI
> K1

Kn

}
J2 =

{
(γJI , γIJ) : K1

Kn
> γIJ

γJI

}

If rn < r1 then


J1 =

{
(γJI , γIJ) : γIJγJI

< αn

α1

}
J0 =

{
(γJI , γIJ) : αn

α1
≤ γIJ

γJI
< K1

Kn

}
J2 =

{
(γJI , γIJ) : K1

Kn
< γIJ

γJI

}
(4.19)

where α1 = r1/K1 and αn = rn/Kn.377

Proposition 4.10. Assume that the conditions (4.9) and (4.11) are satisfied. Then378

the total equilibrium population X∗T (β) = px∗1(β) + qx∗n(β) of (2.1) satisfies the379

following properties380

(1) If r1 = rn then X∗T (β) < pK1 + qKn for all β > 0.381

(2) If rn 6= r1, let J0, J1 and J2, be defined by (4.19). Then we have:382

• if (γJI , γIJ) ∈ J0 then X∗T (β) > pK1 + qKn for any β > 0,383

• if (γJI , γIJ) ∈ J1 then X∗T (β) > pK1 + qKn for 0 < β < β0 and
X∗T (β) < pK1 + qKn for β > β0, where

β0 =
rn − r1
γIJ
αn
− γJI

α1

1
α1

p + αn

q

.
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• if (γJI , γIJ) ∈ J2 then X∗T (β) < pK1 + qKn for any β > 0.384

• If γIJ
γJI

= K1

Kn
, then X∗T (β) = pK1 + qKn for all β ≥ 0.385

Proof. This is a consequence of Proposition A.1 and Corollary 4.9. �386

Let us explain the result of Proposition 4.10 in the particular case where p = n−1.387

In this case, the condition (4.11) becomes388

γ1n = . . . = γn−1,n and T1 = . . . = Tn−1, (4.20)

where Ti = γni +
∑
k 6=i

(γki − γik).389

Therefore, if the matrix Γ is symmetric, the conditions (4.20) are equivalent to the390

conditions γn1 = . . . = γn,n−1, which mean that the fluxes of migration between391

the n-th patch and all n − 1 identical patches are equal. Hence, Proposition 4.10,392

showing that the n-patch model behaves like a 2-patch model, is the same as [12,393

Prop. 3.4], where the model (2.1) was considered with Γ symmetric, n− 1 patches394

are identical and the fluxes of migration between the n-th patch and all these n− 1395

identical patches are equal. Thus Proposition 4.10 generalizes Proposition 3.4 of396

[12], to asymmetric dispersal and for any two identical blocks, provided that the397

conditions (4.11) are satisfied.398

5. Links between SIS and logistic patch models399

5.1. The SIS patch model. In [15], Gao studied the following SIS patch model400

in an environment of n patches connected by human migration:401 {
dSi

dt = −βi SiIi
Ni

+ γiIi + ε
∑n
j=1 γijSj , i = 1, . . . , n,

dIi
dt = βi

SiIi
Ni
− γiIi + ε

∑n
j=1 γijIj , i = 1, . . . , n,

(5.1)

where Si and Ii are the number of susceptible and infected, in patch i, respectively;402

Ni = Si + Ii denotes the total population in patch i. The parameters βi and γi are403

positive transmission and recovery rates, respectively. The matrix Γ = (γij) satisfies404

(1.3) and describes the movement between patches. The coefficient ε quantifies the405

diffusion, as our β in (2.1).406

Using the variables Ni, Ii, i = 1, . . . , n, the system (5.1) has a cascade structure

dNi
dt

= ε

n∑
j=1

γijNi, i = 1, . . . , n, (5.2)

dIi
dt

= βi
(Ni − Ii)Ii

Ni
− γiIi + ε

n∑
j=1

γijIj , i = 1, . . . , n, (5.3)

Therefore the infected populations Ii are the solutions of the non-autonomous sys-407

tem of differential equations408

dIi
dt

= βiIi

(
1− Ii

Ni(t)

)
− γiIi + ε

n∑
j=1

γijIj , i = 1, . . . , n, (5.4)

where the total populations Ni(t) are the solutions of the system (5.2). Hence,409

the autonomous 2n-dimensional system (5.1), is equivalent to the family of n-410

dimensional non-autonomous systems (5.4), indexed by the solutions Ni(t) of (5.2).411

Note that since the γij verify the property (1.3), the total population is constant:412
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i=1Ni(t) = N , where N :=

∑n
i=1 (Si(0) + Ii(0)). If the matrix Γ = (γij) is413

irreducible, then Ni(t), the total population in patch i, converges towards the limit414

lim
t→+∞

Ni(t) = N∗i where N∗i :=
N∑
i δi

δi, i = 1, . . . , n, (5.5)

where δ = (δ1, . . . , δn)T is a positive vector which generates the vector space ker Γ.415

Therefore (5.4) is an asymptotically autonomous system, whose limit system is416

obtained by replacing Ni(t) in (5.4), by their limits N∗i , given by (5.5):417

dIi
dt

= βiIi

(
1− Ii

N∗i

)
− γiIi + ε

n∑
j=1

γijIj , i = 1, . . . , n. (5.6)

The main problem for (5.1) is to determine the condition under which the disease
free equilibrium, corresponding to the equilibrium I = 0 of (5.6), is GAS, or the
endemic equilibrium, corresponding to the positive equilibrium of (5.6), is GAS. It
is known, see [15, Theorem 2.1], that the disease free equilibrium is GAS if R0 ≤ 1,
and there exists a unique endemic equilibrium, which is GAS, if R0 > 1. Here R0

is the basic reproduction number of the model (5.1), defined as:

R0 = ρ
(
FV −1

)
where F = diag(β1, · · · , βn) and V = diag(γ1, · · · , γn)− εΓ.

A reference work on the basic reproduction number for metapopulations is Arino418

[4], whereas Castillo-Garsow and Castillo-Chavez [6] give a more general account419

of the subject.420

5.2. Comparisons between the results on (2.1) and the results on (5.6).421

Gao [15] gave many interesting results on the effect of population dispersal on total422

infection size. Our aim is to discuss some of the links between his results and the423

results of the present paper. We focus on two results on the total infection size424

Tn(ε) =
∑n
i=1 I

∗
i (ε), where (I∗1 (ε), . . . , I∗n(ε)) is the positive equilibrium of (5.6).425

We consider the results of Gao [15] on Tn(+∞) and T ′n(0).426

Proposition 5.1. [15, Theorem 3.3], [15, Theorem 3.5]. If R0(+∞) > 1, then427

Tn(+∞) =

(
1− 1

R0(+∞)

)
N, with R0(+∞) =

∑
i βiδi∑
i γiδi

. (5.7)

If βi 6= γi for all i, then428

T ′n(0) =
∑
i

 1

|βi − γi|
∑
j

γijI
∗
j (0)

 , with I∗j (0) =
βj − γj
βj

N∗j . (5.8)

It is worth noting that the formulas (5.7) and (5.8) involve the system (5.6). An429

important property of this system is given in the following remark.430

Remark 5.2. Let N∗ = (N∗1 , . . . , N
∗
n)T be the vector of the carrying capacities in431

the system (5.6). One has N∗ ∈ ker Γ, as shown by (5.5).432

Our aim is to compare the results given by the formulas (5.7) and (5.8) when433

γi → 0, to our results, for the system434

dxi
dt

= βixi

(
1− xi

N∗i

)
+ ε

n∑
j=1

γijxj , i = 1, . . . , n. (5.9)
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Note that the system (5.6) reduces to (5.9) when γi = 0 for all i. More precisely435

we show that, as γi → 0, the formulas (5.7) and (5.8) are the same as the results436

predicted by Prop. 3.4 and Prop.4.5.437

Proposition 5.3. Let Tn(ε) be the total infection size of (5.6). Let X∗T (ε) be the438

total population size of (5.9). One has439

lim
maxi{γi}→0

Tn(+∞) = X∗T (+∞) = N, lim
maxi{γi}→0

T ′n(0) =
dX∗T
dε

(0) = 0.

(5.10)

Proof. When γi → 0 for all i, one has R0(+∞)→ +∞ and I∗i (0)→ N∗i . Therefore,440

from (5.7) and (5.8) it is deduced that441

Tn(+∞)→ N, T ′n(0)→
∑
i

1

βi

∑
j

γijN
∗
j = 0. (5.11)

Using the property N∗ ∈ ker Γ, from Prop. 3.4 and Prop.4.5, it is deduced that:442

X∗T (+∞) = N,
dX∗T
dε

(0) = 0. (5.12)

From (5.11) and (5.12) we deduce (5.10). �443

Actually as shown in Prop.4.6, we have the stronger result X∗T (β) = N for all444

β ≥ 0. But our aim here was only the comparison between (5.11) and (5.12).445

As shown in Prop.5.2, the results of Gao [15] on the logistic patch model (5.6)446

yield results on the logistic patch model (5.9) by taking the limit γi → 0. However,447

the scope of this approach is weakened by the fact that it only applies to the448

logistic model (5.9), for which the vector of carrying capacities satisfies N∗ ∈ ker Γ,449

see Remark 5.2. But this property is not true in general for our system (2.1), where450

the condition K ∈ ker Γ does not hold in general.451

Our aim in this section is to show that any logistic patch model (2.1), without452

the condition K ∈ ker Γ, can be written in the form (5.6), with the condition453

N∗ ∈ ker Γ. Indeed we have the following result:454

Lemma 5.4. Consider ri > 0, Ki > 0 and Γ as in the system (2.1). Let δi > 0455

be such that (δ1, ..., δn)T ∈ ker Γ. Let N be such that N >
∑

i δi
δi

Ki for i = 1, . . . , n.456

Let N∗i defined by (5.5). Let βi = ri
Ki
N∗i and γi = βi − ri. Then one has457

rixi (1− xi/Ki) = βixi (1− xi/N∗i )− γixi, for i = 1, . . . n (5.13)

Proof. The conditions (5.13) are satisfied if and only if ri = βi − γi and ri/Ki =458

βi/N
∗
i . Therefore459 {

βi = N∗i
ri
Ki

= N∗i αi,

γi = βi − ri = (N∗i −Ki)αi.
(5.14)

To ensure that γi > 0 for all i, just choose N in (5.5) such that N∗i > Ki for460

i = 1, . . . , n, that is to say, N >
∑

i δi
δi

Ki. �461

Remark 5.5. According to the change of parameters (5.14), the logistic patch model
(2.1) can be written in the form of Gao (5.6), i.e. with the property that N∗ ∈ ker Γ.
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For the perfect mixing case, the formula (5.7) and our formula (3.2) are the same.
Indeed replacing βi and γi by (5.14) in (5.7), and using (5.5), we get:(

1− 1

R0(+∞)

)
N =

(
1−

∑
i(N

∗
i −Ki)αi∑
iN
∗
i αi

)
N =

∑
i

δi

∑
i riδi∑
i αiδ

2
i

.

For the derivative, the formula (5.8) and our formula (4.5) are the same. Indeed,
if we replace βi and γi by (5.14), in (5.8), we get:

I∗j (0) =
βj − γj
βj

N∗j =
rj

N∗j αj
N∗j = Kj .

Therefore ∑
i

 1

|βi − γi|
∑
j

γijI
∗
j (0)

 =
∑
i

 1

ri

∑
j

γijKj

 .

The theory of asymptotically autonomous systems answers the question “under462

which conditions do the solutions of the original 2n-dimensional system (5.1) have463

the same asymptotic behavior as those of the n-dimensional limit system (5.6) ?”.464

For details and further reading on the theory of asymptotically autonomous systems465

the reader is referred to Markus [23] and Thieme [25, 26]. For applications of this466

theory to epidemic models, see Castillo-Chavez and Thieme [5].467

Hence, it is important to know whether or not some of the results of Gao [15]468

on the SIS model (5.1) can be deduced from our results on the logistic model (2.1).469

It is worth noting that the discussion in this section shows that our results on the470

logistic patch model imply results on the model (5.6) and hence, results on the471

original model 2n-dimensional system (5.1). However, it is needed that βi > γi472

for i = 1, . . . , n. Indeed, according to (5.14), one has ri = βi − γi > 0. On the473

other hand, the condition βi > γi is not required in all patches of the system (5.1).474

Another challenging problem is the study of the model (5.6), in the general case475

where N∗ = (N∗1 , . . . , N
∗
n)T is not necessarily in the kernel of Γ.476

6. Three-patch model477

In this section, we consider the model of three patches coupled by asymmetrical478

terms of migrations. Under the irreducibility hypothesis on the matrix Γ, there are479

five possible cases, modulo permutation of the three patches, see Figures 2 and 3.480

1

2 3

1

2 3

G1 G2

Figure 2. The two graphs G1 and G2 for which the migration
matrix may be symmetric, if γij = γji.
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The connectivity matrices associated to the graphs G1 and G2 are given by481

Γ
(1)
0 =

 0 γ12 γ13
γ21 0 γ23
γ31 γ32 0

 , and Γ
(2)
0 =

 0 γ12 γ13
γ21 0 0
γ31 0 0

 .
For the remaining cases, the graphs G3,G4 and G5, cannot be symmetrical:

1

2 3

1

2 3

1

2 3

G3 G4 G5

Figure 3. The three graphs G3,G4 and G5 for which the migration
matrix cannot be symmetric.

482

The associated connectivity matrices are given by483

Γ
(3)
0 =

 0 γ12 γ13
γ21 0 0
γ31 γ32 0

 ,Γ(4)
0 =

 0 0 γ13
γ21 0 γ23
0 γ32 0

 ,Γ(5)
0 =

 0 0 γ13
γ21 0 0
0 γ32 0

 .
In Table 2, we give the formula of perfect mixing X∗T (+∞) for each of the five484

cases. In the numerical simulations, we show that we can have new behaviors

Table 2. The generator δ of ker Γ, for the five cases. The perfect
mixing abundance X∗T (+∞) is computed with Eq. (3.2).

Graphs The formula of perfect mixing X∗
T (+∞)

G1 The coefficients δi are given by the equation (3.1)

G2 δ1 = γ12γ13, δ2 = γ21γ13, δ3 = γ12γ31,

G3 δ1 = γ12γ13 + γ32γ13, δ2 = γ21γ13, δ3 = γ21γ32 + γ31γ12 + γ31γ32,

G4 δ1 = γ32γ13, δ2 = γ21γ13 + γ21γ23 + γ31γ23, δ3 = γ21γ32.

G5 δ1 = γ32γ13, δ2 = γ21γ13, δ3 = γ21γ32.

485

of X∗T (β). In the case n = 2, it was shown in [1, 2] that there exists at most one486

positive value of β such that X∗T (β) = K1 + K2. In [12], in the case n = 3 and Γ487

is symmetric, we gave numerical values for the parameters such that there exists488

two positive values of β such that X∗T (β) = K1 + K2 + K3, and we were not able489

to find more than two values. The novelty when Γ is not symmetric is that we490

can find examples with three positive values. Indeed, we may have the following491



22 B. ELBETCH, T. BENZEKRI, D. MASSART AND T. SARI

situation :
dX∗

T

dβ (0) > 0 and X∗T (+∞) < K1 +K2 +K3, and there exist three values492

0 < β1 < β2 < β3 for which we have493

X∗T (β)

{
> K1 +K2 +K3 for β ∈ ]0, β1[ ∪ ]β2, β3[ ,
< K1 +K2 +K3 for β ∈ ]β1, β2[ ∪ ]β3,+∞[ .

(6.1)

The same situation holds for each of the five graphs G1, G2,G3,G4 and G5, i.e, there494

exist three values 0 < β1 < β2 < β3 for which (6.1) hold. See Figures 4, (for the495

graph G1), 5, (for the graph G2), 6-a, (for the graph G3), 6-b, (for the graph G4),496

and 6-c, (for the graph G5).497

Table 3. The numerical values of the parameters for the logistic
growth function and migration coefficients of the model (2.1), with
n = 3, used in Fig. 4,5,6-a,6-b and Fig 6-c. For all figures we have
(r1, r2, r3,K1,K2,K3) = (4, 0.7, 0.6, 5, 1, 4). The perfect mixing
abundance X∗T (+∞) is computed with Eq. (3.2) and the derivative
of the total equilibrium population at β = 0 is computed with Eq.
(4.5).

Figure γ21 γ12 γ31 γ13 γ32 γ23
dX∗

T

dβ (0) X∗T (+∞)

4 0.15 3 0.2 0.04 11 0.1 1.06 9.21
5 14.9 10 0.2 0.04 0 0 77.20 9.86
6-a 1.44 0.01 0.2 0.04 1 0 3.11 8.93
6-b 1.52 0 0 1 1 0.002 3.52 8.72
6-c 1.51 0 0 1 1 0 3.46 8.75

ββ

K1 +K2 +K3

K1 +K2 +K3

X∗T X∗T

Figure 4. Total equilibrium population X∗T of the system (2.1)
(n = 3) as a function of the migration rate β. The figure on the
right is a zoom, near the origin, of the figure on the left. The
parameter values are given in Table 3.
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ββ

K1 +K2 +K3

X∗T X∗T

Figure 5. Total equilibrium population X∗T of the system (2.1)
(n = 3) as a function of the migration rate β. The figure on the
right is a zoom, near the origin, of the figure on the left. The
parameter values are given in Table 3.

7. Conclusion498

The aim of this paper is to generalize, to a multi-patch model with asymmet-499

ric dispersal, the results obtained in [12] for a multi-patch model with symmetric500

dispersal.501

In Section 3 we consider the particular case of perfect mixing, when the migra-502

tion rate goes to infinity, that is, individuals may travel freely between patches. As503

in [12], we compute the total equilibrium population in that case, and, by pertur-504

bation arguments, we prove that the dynamics in this ideal case provides a good505

approximation to the case when the migration rate is large. Our results general-506

ize those of [2] (asymmetric migration matrix, only two patches), [10] (arbitrarily507

many patches, but the migration matrix is symmetric and zero outside the corners508

and the three main diagonals), and [12] (arbitrarily many patches; arbitrary, but509

symmetric, migration).510

In Section 4 we consider the equation511

total equilibrium population = sum of the carrying capacities of the patches.
(7.1)

We give a complete solution in the case when the n patches are partitioned into two512

blocks of identical patches. Our results mirror those of [2], which deals with the513

two-patch case. Specifically, Equation (7.1) admits at most one non-trivial solution.514

In Section 5, we consider a SIS patch model and we give the links with the515

logistic model.516

In Section 6 we give numerical values for the dispersion parameters such that517

Equation (7.1) has at least three non-trivial solutions. In [12] we proved that for518

three patches and symmetric dispersal, there may be at least two solutions. A math-519

ematical proof that, when n=3, Equation (7.1) has at most three solutions, would520
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ββ

K1 +K2 +K3

K1 +K2 +K3

X∗T X∗T(a) (b)

β

K1 +K2 +K3

X∗T
(c)

Figure 6. Total equilibrium population X∗T of the system (2.1)
(n = 3) as a function of the migration rate β. The parameter
values are given in Table 3.

certainly be desirable, and could spur further work. Upper bounds for arbitrarily521

many patches would also be interesting.522

Appendix523

Appendix A. The 2-patch asymmetric model524

We consider the 2-patch logistic equation with asymmetric migrations. We de-525

note by γ12 the migration rate from patch 2 to patch 1 and γ21 from patch 1 to526

patch 2. The model is written:527 
dx1
dt

= r1x1

(
1− x1

L1

)
+ β (γ12x2 − γ21x1) ,

dx2
dt

= r2x2

(
1− x2

L2

)
+ β (γ21x1 − γ12x2) .

(A.1)

Note that the system (A.1) is studied in [1, 8, 13, 14, 19] in the case where the528

migration rates satisfy γ21 = γ12, and in [2] for general migration rates. This system529

admits a unique equilibrium which is GAS. We denote by E∗(β) = (x∗1(β), x∗2(β))530
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this equilibrium and by X∗T (β) the sum of x∗i (β). We consider the regions in the

Case r2 > r1 (i.e. α2

α1
> L1

L2
)

0

J1
J0

J2

γ21

γ12
γ12
γ21

= L1

L2

γ12
γ21

= α2

α1

Case r2 < r1 (i.e. α2

α1
< L1

L2
)

0

J2

J0

J1

γ21

γ12
γ12
γ21

= L1

L2

γ12
γ21

= α2

α1

Figure 7. Qualitative properties of model (A.1). In J0, patchi-
ness has a beneficial effect on total equilibrium population. This
effect is detrimental in J2. In J1, the effect is beneficial for β < β0
and detrimental for β > β0. In the figure α1 = r1/L1 and α2 =
r2/L2.

531

set of the parameters γ21 and γ12, denoted J0, J1 and J2, depicted in Fig. 7 and532

defined by:533 

If r2 > r1 then


J1 =

{
(γ21, γ12) : γ12γ21

> α2

α1

}
J0 =

{
(γ21, γ12) : α2

α1
≥ γ12

γ21
> L1

L2

}
J2 =

{
(γ21, γ12) : L1

L2
> γ12

γ21

}

If r2 < r1 then


J1 =

{
(γ21, γ12) : γ12γ21

< α2

α1

}
J0 =

{
(γ21, γ12) : α2

α1
≤ γ12

γ21
< L1

L2

}
J2 =

{
(γ21, γ12) : L1

L2
< γ12

γ21

}
(A.2)

We have the following result which gives the conditions for which patchiness is534

beneficial or detrimental in model (A.1).535

Proposition A.1. The total equilibrium population of (A.1) satisfies the following536

properties537

(1) If r1 = r2 then X∗T (β) ≤ L1 + L2 for all β ≥ 0.538

(2) If r2 6= r1, let J0, J1 and J2, be defined by (A.2). Then we have:539

• if (γ21, γ12) ∈ J0 then X∗T (β) > L1 + L2 for any β > 0540

• if (γ21, γ12) ∈ J1 then X∗T (β) > L1 + L2 for 0 < β < β0 and X∗T (β) <
L1 + L2 for β > β0, where

β0 =
r2 − r1
γ12
α2
− γ21

α1

1

α1 + α2
.

• if (γ21, γ12) ∈ J2 then X∗T (β) < L1 + L2 for any β > 0541



26 B. ELBETCH, T. BENZEKRI, D. MASSART AND T. SARI

• If γ12
γ21

= L1

L2
, then x∗1(β) = L1 and x∗2(β) = L2 for all β ≥ 0.542

Therefore X∗T (β) = L1 + L2 for all β ≥ 0.543

Proof. This result was established by Arditi et al. [2]. Part (1) is Proposition 1 of544

[2]. The first three items of part (2) are Proposition 2 of [2]. For the last item of545

part (2), see the last paragraph in page 12 of [2]. The explicit expression of β0 was546

not given in [2], however, it is easy to deduce it from the formulas given in [2]. �547

Appendix B. Some useful results548

We begin with a549

Lemma B.1. The matrix L defined by (3.10) is stable, that is to say, all its eigen-550

values have negative real part.551

Proof. We consider the two matrices

G :=

[
L− U V

0 . . . 0 0

]
, P :=

[
I 0

1 . . . 1 1

]
,

where L, V , and U are defined right after (3.10). We prove that the two matrices
Γ and G are conjugate by the matrix P , that is to say P−1GP = Γ.
The inverse of matrix P is given by

P−1 =

[
I 0

−1 . . . −1 1

]
.

We have

P−1GP =

[
L V

γn1 . . . γnn−1 −
∑n
j=1,j 6=1 γjn

]
= Γ.

Two conjugate matrices have the same eigenvalues. As the matrix G is block-552

triangular, its eigenvalues are zero and the eigenvalues of the matrix L−U . There-553

fore, since 0 is an simple eigenvalue of the matrix Γ, the eigenvalues of the matrix554

L − U are the eigenvalues of the matrix Γ except 0. By Lemma 3.1 all non-zero555

eigenvalues of Γ have negative real part. �556

Lemma B.2. Let (un)n≥1, (vn)n≥1 and (wn)n≥1 be three real and non-negative557

sequences. Then,558

(1) if (un)n≥1 and (vn)n≥1 are both non-increasing, or both non-decreasing,559

then we have, for all N ≥ 1,560 (
N∑
n=1

wn

)(
N∑
n=1

wnunvn

)
≥

(
N∑
n=1

wnun

)(
N∑
n=1

wnvn

)
, (B.1)

(2) if (un)n≥1 is non-decreasing and (vn)n≥1 is non-increasing, or if (un)n≥1 is561

non-increasing and (vn)n≥1 is non-decreasing, then, we have, for all N ≥ 1,562 (
N∑
n=1

wn

)(
N∑
n=1

wnunvn

)
≤

(
N∑
n=1

wnun

)(
N∑
n=1

wnvn

)
. (B.2)

In both items, if (un)n≥1 is not constant, then the inequality in the conclusion is563

strict.564
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Proof. We prove Item 1 by induction on N , in the case when (un)n≥1 and (vn)n≥1
are both non-decreasing, the other case being identical. Obviously, Equation (B.1)
holds for N = 1. Now, assume that (B.1) holds for N , then we proceed to show
that (B.1) holds for N + 1. Since

un+1 [w1(vn+1 − v1) + . . .+ wn(vn+1 − vn)] ≥ u1w1(vn+1−v1)+. . .+unwn(vn+1−vn),

the inequality being strict if (un)n≥1 is not constant, we observe that565

N∑
n=1

wnunvn +

(
N∑
n=1

wn

)
uN+1vN+1 ≥

(
N∑
n=1

wnvn

)
uN+1 +

(
N∑
n=1

wnun

)
vN+1.

(B.3)
From the induction hypothesis and the equation (B.3), it follows that(
N+1∑
n=1

wn

)(
N+1∑
n=1

wnunvn

)
=

(
N∑
n=1

wn

)(
N∑
n=1

wnunvn

)
+ wN+1

(
N∑
n=1

wnunvn

)

+ w2
N+1uN+1vN+1 +

(
N∑
n=1

wn

)
wN+1uN+1vN+1

≥

(
N∑
n=1

wn

)(
N∑
n=1

wnunvn

)
+ w2

N+1uN+1vN+1

+

(
N∑
n=1

wnvn

)
uN+1wN+1 +

(
N∑
n=1

wnun

)
vN+1wN+1

≥

(
N∑
n=1

wnun

)(
N∑
n=1

wnvn

)
+ w2

N+1uN+1vN+1

+

(
N∑
n=1

wnvn

)
uN+1wN+1 +

(
N∑
n=1

wnun

)
vN+1wN+1

=

(
N+1∑
n=1

wnun

)(
N+1∑
n=1

wnvn

)
.

This completes the proof of item 1.566

Equation (B.2) can then be proved by reversing all the inequalities in the proof of567

(B.1) above. �568

This result is proved by DeAngelis et al. [9, Lemma 2.6] for Part (2) and in [10,569

Proposition A.3] for part (1), where wn = 1 for all n ≥ 1. Here we generalize this570

result to any positive sequence.571
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