The multi-patch logistic equation with asymmetric migration

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari

To cite this version:

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation with asymmetric migration. 2021. hal-03179136v1

HAL Id: hal-03179136 https://hal.science/hal-03179136v1

Preprint submitted on 24 Mar 2021 (v1), last revised 15 Jan 2022 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The multi-patch logistic equation with asymmetric migration

Bilel Elbetch Tounsia Benzekri Daniel Massart Tewfik Sari.

March 24, 2021

Abstract

This paper considers a multi-patch model, where each patch follows a logistic law, and patches are coupled by asymmetrical migration terms. First, in the case of perfect mixing, i.e when the migration rate tends to infinity, the total population follows a logistic equation with a carrying capacity which in general is different from the sum of the n carrying capacities, and depends on the migration terms. Second, we determine, in some particular cases, the conditions under which fragmentation and asymmetrical migration can lead to a total equilibrium population greater or smaller than the sum of the carrying capacities. Finally, for the three-patch model, we show numerically the existence of at least three critical values of the migration rate for which the total equilibrium population equals the sum of the carrying capacities.

Keywords : Dynamic of population, Asymmetrical migration, Logistic equation, Slow-fast systems, Perfect mixing.

1 Introduction

The study of the dynamics of a fragmented population is fundamental in theoretical ecology, with potentially very important applied aspects: what is the effect of migration on the general population dynamics ? What are the consequences of fragmentation on the persistence or extinction of the population? When is a single large refuge better or worse than several small ones (this is known as the SLOSS debate; see Hanski [14])?

The theoretical paradigm that has been used to treat these questions is that of a single population fragmented into patches coupled by migration, and the sub population in each patch follows a local logistic. This system is modeled by a non linear system of differential equation of the following form:

$$
\begin{equation*}
\frac{d x}{d t}=f(x)+\beta \Gamma x, \tag{1.1}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$, with n is the number of patches in the system, x_{i} represents the population density in the i-th patch, $f(x)=\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)^{T}$, and $f_{i}\left(x_{i}\right)=$
$r_{i} x_{i}\left(1-x_{i} / K_{i}\right)$. The parameters r_{i} and K_{i} are respectively the intrinsic growth rate and the carrying capacity of the i-th patch. The term $\beta \Gamma x$ on the right hand side of the system (1.1) describes the effect of the migration between the patches, where β is the migration rate and $\Gamma=\left(\gamma_{i j}\right)$ is the matrix representing the migrations between the patches. For $i \neq j, \gamma_{i j}>0$ denotes the incoming flux from patch j to patch i. If $\gamma_{i j}=0$, there is no migration. The diagonal entries of Γ satisfy the following equation

$$
\begin{equation*}
\gamma_{i i}=-\sum_{j=1, j \neq i}^{n} \gamma_{j i}, \quad i=1, \cdots, n, \tag{1.2}
\end{equation*}
$$

which means that what comes out of a patch is distributed between the other $n-1$ patches.

In the absence of migration, $(\beta=0)$, the system (1.1) admits $\left(K_{1}, \ldots, K_{n}\right)$ as a non trivial equilibrium point. This equilibrium is globally asymptotically stable (GAS) and the total population at equilibrium is equal to the sum of the carrying capacities. The problem is whether or not the equilibrium continues to be positive and GAS, for any $\beta>0$, and whether or not the total population at equilibrium can be greater than the sum of the carrying capacities. The case $n=2$ and Γ symmetric

$$
\Gamma=\left[\begin{array}{rr}
-1 & 1 \tag{1.3}\\
1 & -1
\end{array}\right]
$$

where $\gamma_{12}=\gamma_{21}$ is normalized to 1 has been considered by Freedman and Waltman [12] and Holt [15]. They analyzed the model in the case of perfect mixing $(\beta \rightarrow+\infty)$ and showed that the total equilibrium population can be greater than the sum of the carrying capacities $K_{1}+K_{2}$, so that patchiness has a beneficial effect on the total equilibrium population. More recently, Arditi et al. [1] analyzed the behaviour of the system for all values of β. They showed that only three situations occur: either for any $\beta>0$, patchiness has a beneficial effect, or this effect is always detrimental, or the effect is beneficial for lower values of the migration coefficient β and detrimental for higher values. Arditi et al. [2] extended these results to the case of two patches coupled by asymmetric migration, corresponding to the matrix

$$
\Gamma=\left[\begin{array}{rr}
-\gamma_{21} & \gamma_{12} \tag{1.4}\\
\gamma_{21} & -\gamma_{12}
\end{array}\right] .
$$

DeAngelis et al. [6,9] considered the case of $n>2$ patches in a circle, with symmetric migration between any patch and its two neighbours :

$$
\begin{equation*}
\frac{d x_{i}}{d t}=r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)+\beta\left(x_{i-1}-2 x_{i}+x_{i+1}\right), \quad i=1, \ldots, n, \tag{1.5}
\end{equation*}
$$

where we denote $x_{0}=x_{n}$ and $x_{n+1}=x_{1}$, so that the same relationships hold between x_{i}, x_{i-1} and x_{i+1} for all values of i. This model corresponds to the matrix Γ whose off-diagonal elements are given by

$$
\gamma_{1 n}=\gamma_{n 1}=\gamma_{i, i-1}=\gamma_{i-1, i}=1, \quad \text { for } \quad 2 \leq i \leq n \quad \text { and } \quad \gamma_{i j}=0, \quad \text { otherwise. }
$$

This system is a one-dimensional discrete-patch version of the standard reaction-diffusion model. In $[6,9]$ the perfect mixing case is described. The case of the general symmetric migration was considered by the authors in [10]. We studied the system:

$$
\begin{equation*}
\frac{d x_{i}}{d t}=r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)+\beta \sum_{j=1, j \neq i}^{n} \gamma_{i j}\left(x_{j}-x_{i}\right), \quad i=1, \ldots, n \tag{1.7}
\end{equation*}
$$

where $\beta \gamma_{i j}$ is the rate of migration between patches i and j. This system can be written in the form of System (1.1) with $\Gamma=\left(\gamma_{i j}\right)$, the symmetric matrix whose diagonal entries are defined by (1.2). We studied the total population at equilibrium, as a function of the migration rate β. We gave conditions on the system parameters that ensure that the migration is beneficial or detrimental, and extended several results of $[1,6,9]$.

The aim of this work is to consider the case of n patches connected by asymmetric migration. Thus, we extend [2] by considering the case $n \geq 2$, and we extend [10] by considering the case where Γ is non symmetric.

It is worth noting that an important extension of (1.1) is the so called source-sink model, where the patches are of two types: the source patches, with logistic dynamics $f_{i}\left(x_{i}\right)=r_{i} x_{i}\left(1-x_{i} / K_{i}\right)$, as in (1.1), and the sink patches, with exponential decay $f_{i}\left(x_{i}\right)=$ $-r_{i} x_{i}$. The main problem is the number of source patches required for population persistence. For a recent study and bibliographical references the reader can consult Arino et al [4]. For more details and information on the effects patchiness and migration in both continuous and discrete cases, and the results beyond the logistic model, the reader is referred to the work of Levin [17,18], DeAngelis et al [6-9], Freedman et al [11], Zaker et al [22].

The paper is organized as follows. In Section 2, the mathematical model of n patches, and some preliminaries results, are introduced. In Section 3, the behavior of the model is studied when the migration rate tends to infinity. In Section 4, we compare the total equilibrium population with the sum of the carrying capacities in some particular cases. In Section 5 the three-patch model is considered, and by numerical simulations we show the existence of a new behavior for the dynamics of the total equilibrium population as a function of the migration rate. In Appendix A, we recall some results for the two-patch model with asymmetrical migration. In Appendix B, we prove some useful auxiliary results.

2 The mathematical model and preliminaries results

We consider the model of multi-patch logistic growth, coupled by asymmetric migration terms

$$
\begin{equation*}
\frac{d x_{i}}{d t}=r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)+\beta \sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} x_{j}-\gamma_{j i} x_{i}\right), \quad i=1, \cdots, n \tag{2.1}
\end{equation*}
$$

where $\gamma_{i j} \geq 0$ denotes the incoming flux from patch j to patch i, for $i \neq j$. The system (2.1) can be written in the form (1.1), where f is given by:

$$
\begin{equation*}
f(x)=\left(r_{1} x_{1}\left(1-x_{1} / K_{1}\right), \cdots, r_{n} x_{n}\left(1-x_{n} / K_{n}\right)\right)^{T} \tag{2.2}
\end{equation*}
$$

and $\Gamma:=\left(\gamma_{i j}\right)_{n \times n}$ is the matrix whose diagonal entries are given by (1.2). The matrix

$$
\begin{equation*}
\Gamma_{0}:=\Gamma-\operatorname{diag}\left(\gamma_{11}, \cdots, \gamma_{n n}\right) \tag{2.3}
\end{equation*}
$$

which is the same as Γ, except that the diagonal elements are 0 , is called the connectivity matrix. It is the adjacency matrix of the weighted directed graph \mathcal{G}, which has exactly n vertices (the patches), and there is an arrow from patch j to patch i, with weight $\gamma_{i j}$, precisely when $\gamma_{i j}>0$.

As to the non-negativity of the solution, we have the following proposition:
Proposition 2.1. The domain $\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} / x_{i} \geq 0, i=1, \ldots, n\right\}$ is positively invariant for the system (2.1).

Proof. The proof is the same as in the symmetrical case [10, Prop 2.1].
The existence and uniqueness of the positive equilibrium $\left(x_{1}^{*}(\beta), \ldots, x_{n}^{*}(\beta)\right)$ of System (2.1), and its global asymptotic stability, are proved in [10, Theorem 6.1], when the connectivity matrix Γ_{0} is irreducible. In all of this work, we denote by $E^{*}(\beta)$ the positive equilibrium and by $X_{T}^{*}(\beta)$ the total population at equilibrium:

$$
\begin{equation*}
E^{*}(\beta)=\left(x_{1}^{*}(\beta), \ldots, x_{n}^{*}(\beta)\right), \quad X_{T}^{*}(\beta)=\sum_{i=1}^{n} x_{i}^{*}(\beta) . \tag{2.4}
\end{equation*}
$$

Remark 2.2. The matrix Γ_{0} being irreducible means that the weighted directed graph \mathcal{G} is strongly connected, which means that every patch is reachable from every other patch, either directly or through other patches. The matrix Γ is assumed to be irreducible throughout the rest of the paper.

3 Perfect mixing

In this section our aim is to study the behavior of $E^{*}(\beta)$ and $X_{T}^{*}(\beta)$, defined by (2.4), for large migration rate, i.e when $\beta \rightarrow \infty$.

3.1 The fast dispersal limit

The following lemma was proved in [4, Lemma 2], we include a proof for the ease of the reader.

Lemma 3.1. Let Γ be the migration matrix. Then, 0 is a single eigenvalue of Γ and all non-zero eigenvalues of Γ have negative real part. Moreover, the kernel of the matrix Γ has dimension one, and is generated by a positive vector. If the matrix Γ is symmetric, then $\operatorname{ker} \Gamma$ is generated by $u=(1, \ldots, 1)^{T}$.

Proof. Let $s=\max _{i=1, \ldots, n}\left(-\gamma_{i i}\right)$ and let B be the matrix defined by

$$
B=\Gamma+s I .
$$

First, we note that since the matrix Γ verifies the property (1.2), then Γ is a singular matrix and the vector $u=(1, \ldots, 1)^{T}$ is an eigenvector of Γ^{T} associated to the eigenvalue 0 . Thus u is an eigenvector of B^{T}, with eigenvalue s.
The matrix B^{T} is non negative and irreducible, so by the Perron-Frobenius theorem the spectral radius

$$
\rho\left(B^{T}\right)=\max \left\{|\lambda|: \lambda \text { is an eigenvalue of } B^{T}\right\},
$$

is a simple eigenvalue of the matrix B^{T} and it is the only eigenvalue of B^{T} which admits a positive eigenvector, so $s=\rho\left(B^{T}\right)=\rho(B)$. Therefore, $\Gamma=B-\rho(B) I$ and $\operatorname{dim}(\operatorname{ker} \Gamma)=\operatorname{dim}\left(\operatorname{ker} \Gamma^{T}\right)=1$.

All other eigenvalues of B have modulus $<\rho(B)$, so their real parts are $<\rho(B)$. Since each eigenvalue of Γ is $\lambda-\rho(B)$, for some eigenvalue λ of B, all eigenvalues of Γ have negative real part.

Furthermore, according to the Perron-Frobenius theorem, there exists a positive vector δ such that $B \delta=\rho(B) \delta$, that is, $\Gamma \delta=(B-\rho(B) I) \delta=0$.
In particular, if the matrix Γ is symmetric then $\delta=u$, that is, $\delta_{i}=1$, for all i.
In all of this paper, we denote by $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ a positive vector which generates the vector space $\operatorname{ker} \Gamma$.

Remark 3.2. The existence, uniqueness, and positivity of δ were also proved in Lemma 1 of Cosner et al. [5]. On the other hand, Lemma 2.1 of Guo et al [13] gives explicite formulae for the components of the vector δ, with respect to the coefficients of Γ. For two patches we have $\delta=\left(\gamma_{12}, \gamma_{21}\right)$, and for three patches we have $\delta=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$, where

$$
\left\{\begin{array}{l}
\delta_{1}=\gamma_{12} \gamma_{13}+\gamma_{12} \gamma_{23}+\gamma_{32} \gamma_{13}, \tag{3.1}\\
\delta_{2}=\gamma_{21} \gamma_{13}+\gamma_{21} \gamma_{23}+\gamma_{31} \gamma_{23}, \\
\delta_{3}=\gamma_{21} \gamma_{32}+\gamma_{31} \gamma_{12}+\gamma_{31} \gamma_{32} .
\end{array}\right.
$$

The following result asserts that $E^{*}(\infty) \in \operatorname{ker} \Gamma$.
Theorem 3.3. We consider the system (2.1), then we have

$$
\lim _{\beta \rightarrow+\infty} E^{*}(\beta)=\frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}}\left(\delta_{1}, \ldots, \delta_{n}\right),
$$

where $\alpha_{i}=r_{i} / K_{i}$.
Proof. Denote

$$
E^{*}(\infty)=\left(\delta_{1} \frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}}, \ldots, \delta_{n} \frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}}\right) .
$$

The equilibrium point $E^{*}(\beta)$ is the solution of the algebraic system:

$$
\begin{equation*}
r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)+\beta \sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} x_{j}-\gamma_{j i} x_{i}\right)=0, \quad i=1, \cdots, n . \tag{3.2}
\end{equation*}
$$

The sum of these equations shows that $E^{*}(\beta)$ satisfies the following equation

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)=0 . \tag{3.3}
\end{equation*}
$$

Therefore $E^{*}(\beta)$ belongs to the ellipsoid

$$
\mathbb{E}^{n-1}=\left\{x \in \mathbb{R}^{n}: \Theta(x):=\sum_{i=1}^{n} r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)=0\right\} .
$$

Note that this ellipsoid is independent of the migration terms β and $\gamma_{i j}$.
Therefore the equilibrium point $E^{*}(\beta)$ is the solution, in the positive cone \mathbb{R}_{+}^{n}, of the equation $\Upsilon_{\beta}=0$, where

$$
\Upsilon_{\beta}\left(x_{1}, \ldots, x_{n}\right)=\left(\Upsilon_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \Upsilon_{n-1}\left(x_{1}, \ldots, x_{n}\right), \sum_{i=1}^{n} r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)\right)
$$

with

$$
\Upsilon_{i}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\beta} r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)+\sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} x_{j}-\gamma_{j i} x_{i}\right), \quad i=1 \cdots n-1,
$$

obtained from (3.2) by dividing the first $n-1$ equations by β, and replacing the last one by Equation (3.3), which is the sum of the equations. Taking the limit, when $\beta \rightarrow \infty$, of Υ_{β}, gives

$$
\begin{equation*}
\Upsilon_{\infty}(x)=\left(\sum_{j=1, j \neq 1}^{n}\left(\gamma_{1 j} x_{j}-\gamma_{j 1} x_{1}\right), \ldots, \sum_{j=1, j \neq n-1}^{n}\left(\gamma_{n-1, j} x_{j}-\gamma_{j, n-1} x_{n-1}\right), \sum_{i=1}^{n} r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)\right) \tag{3.4}
\end{equation*}
$$

Now, we consider the linear system given by the first $n-1$ equations of (3.4)

$$
\sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} x_{j}-\gamma_{j i} x_{i}\right)=0, \quad i=1 \cdots n-1,
$$

which can be rewritten in matricial form:

$$
\begin{equation*}
L X=-x_{n} V, \tag{3.5}
\end{equation*}
$$

where $X=\left(x_{1}, \ldots, x_{n-1}\right)^{T}$ is the unknown of the system, $L:=\left(\gamma_{i j}\right)_{n-1 \times n-1}$ is the sub matrix of the matrix Γ, obtained by dropping the last row and the last column of Γ, V is the vector defined by $V:=\left(\gamma_{i n}\right)_{n-1 \times 1}$ and x_{n} is considered as a parameter.
In the next lemma, we show that the solution of the system (3.5) may be expressed as a function of the vector δ. This result can be stated as the following lemma:
Lemma 3.4. The system (3.5) admits a unique solution given by

$$
\left(\frac{\delta_{1}}{\delta_{n}} x_{n}, \ldots, \frac{\delta_{n-1}}{\delta_{n}} x_{n}\right)^{T}
$$

Proof. Since the matrix L is obtained from Γ by dropping the last row, and the rows of Γ sum to zero, the rank of L equals that of Γ, which is $n-1$, so the sub matrix L is invertible.
Recall that $\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a vector which generates $\operatorname{ker} \Gamma$, so

$$
\sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} \delta_{j}-\gamma_{j i} \delta_{i}\right)=0, \quad i=1, \ldots, n
$$

This implies

$$
\left\{\begin{align*}
-\left(\sum_{j=1, j \neq i}^{n} \gamma_{j i}\right) \frac{\delta_{i}}{\delta_{n}}+\sum_{j=1, j \neq i}^{n-1} \gamma_{i j} \frac{\delta_{j}}{\delta_{n}} & =-\gamma_{i n}, \quad i=1, \ldots, n-1, \tag{3.6}\\
\gamma_{n 1} \frac{\delta_{1}}{\delta_{n}}+\ldots+\gamma_{n n-1} \frac{\delta_{n-1}}{\delta_{n}} & =\sum_{j=1}^{n-1} \gamma_{j n} .
\end{align*}\right.
$$

The sum of the $n-1$ first equations of System (3.6) gives the n-th equation, so the system (3.6) is equivalent to

$$
-\left(\sum_{j=1, j \neq i}^{n} \gamma_{j i}\right) \frac{\delta_{i}}{\delta_{n}}+\sum_{j=1, j \neq i}^{n-1} \gamma_{i j} \frac{\delta_{j}}{\delta_{n}}=-\gamma_{i n}, \quad i=1, \ldots, n-1
$$

therefore

$$
L\left(\begin{array}{ccc}
\frac{\delta_{1}}{\delta_{n}} & \cdots & \frac{\delta_{n-1}}{\delta_{n}}
\end{array}\right)^{T}=-\left(\begin{array}{lll}
\gamma_{1 n} & \cdots & \gamma_{n-1 n}
\end{array}\right)^{T}
$$

which completes the proof of lemma.
Hence, the solution of the equation $\Upsilon_{\infty}=0$ is given by the solution of the following system:

$$
\left\{\begin{array}{l}
x_{i}=\frac{\delta_{i}}{\delta_{n}} x_{n}, \quad i=1, \cdots, n-1 \\
\sum_{i=1}^{n} r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)=0
\end{array}\right.
$$

Replacing x_{i} in the second equation by $\frac{\delta_{i}}{\delta_{n}} x_{n}$ gives:

$$
\frac{1}{\delta_{n}} x_{n}\left(\sum_{i=1}^{n} \delta_{i} r_{i}-\frac{1}{\delta_{n}} x_{n} \sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}\right)=0
$$

which admits $x_{n}=0$ and $x_{n}=\delta_{n} \frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}}$ as solutions. So, the equation $\Upsilon_{\infty}=0$ admits two solutions, 0 and $E^{*}(\infty)$.
The ellipsoid \mathbb{E}^{n-1} is compact, so the equilibrium $E^{*}(\beta)$ has at least one limit point in \mathbb{E}^{n-1}, when β goes to infinity. To prove the convergence of $E^{*}(\beta)$ to $E^{*}(\infty)$, it suffices to prove that the origin cannot be a limit point of $E^{*}(\beta)$. We claim that for any β, there exists i such that $x_{i}^{*}(\beta) \geq K_{i}$, which entails that $E^{*}(\beta)$ is bounded away from the
origin. The coordinates of the vector $\Gamma E^{*}(\beta)$ sum to zero, hence at least one of them, say, the i-th, is non negative. Then

$$
r_{i} x_{i}^{*}(\beta)\left(1-\frac{x_{i}^{*}(\beta)}{K_{i}}\right) \leq 0,
$$

and since $x_{i}^{*}(\beta)$ cannot be negative or 0 , we have $x_{i}^{*}(\beta) \geq K_{i}$.
As a corollary of the previous theorem, we obtain the following result, which describes the total equilibrium population for perfect mixing:
Corollary 3.5. We have

$$
\begin{equation*}
X_{T}^{*}(+\infty)=\lim _{\beta \rightarrow+\infty} \sum_{i=1}^{n} x_{i}^{*}(\beta)=\left(\sum_{i=1}^{n} \delta_{i}\right) \frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}} . \tag{3.7}
\end{equation*}
$$

Proof. Sum the n components of the point $E^{*}(\infty)$.
In the case $n=2$, one has $\delta_{1}=\gamma_{12}$ and $\delta_{2}=\gamma_{21}$, as shown in Remark 3.2. Therefore (3.7) becomes

$$
X_{T}^{*}(+\infty)=\left(\gamma_{12}+\gamma_{21}\right) \frac{\gamma_{12} r_{1}+\gamma_{21} r_{2}}{\gamma_{12}^{2} \alpha_{1}+\gamma_{21}^{2} \alpha_{2}},
$$

which is the formula [2, Equation 7] given by Arditi et al. If the matrix Γ is symmetric, one has $\delta_{i}=1$, for all i, as shown in Lemma 3.1. Therefore (3.7) specializes to the formula given in [10, Equation (24)]:

$$
X_{T}^{*}(+\infty)=n \frac{\sum_{i=1}^{n} r_{i}}{\sum_{i=1}^{n} r_{i} / K_{i}} .
$$

3.2 Two time scale dynamics

In [10] the authors also obtained the formula (3.7), in the symmetrical n-patch case (i.e the matrix Γ is symmetric), by using singular perturbation theory, see [10, Theorem 4.6]. They showed that, if $\left(x_{1}(t, \beta), \ldots, x_{n}(t, \beta)\right)$ is the solution of (1.7), with initial condition $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$, then, when $\beta \rightarrow \infty$, the total population $\sum x_{i}(t, \beta)$ is approximated by $X(t)$, the solution of the logistic equation

$$
\begin{equation*}
\frac{d X}{d t}=r X\left(1-\frac{X}{n K}\right), \text { where } r=\frac{\sum_{i=1}^{n} r_{i}}{n}, \quad K=\frac{\sum_{i=1}^{n} r_{i}}{\sum_{i=1}^{n} \alpha_{i}} \text { and } \alpha_{i}=\frac{r_{i}}{K_{i}} \tag{3.8}
\end{equation*}
$$

with initial condition $X_{0}=\sum x_{i}^{0}$. Therefore the total population behaves like the solution of the logistic equation given by (3.8). In addition, one obtains the following property: with the exception of a small initial interval, the population densities $x_{i}(t, \beta)$ are approximated by $X(t) / n$, see [10, Formula (37)]. Therefore, this approximation shows that, when t and β tend to ∞, the population density $x_{i}(t, \beta)$ tends toward $\frac{\sum r_{i}}{\sum \alpha_{i}}$, and in addition, $x_{i}(t, \beta)$ quickly jumps from its initial condition x_{i}^{0} to the average X_{0} / n and then is very close to $X(t) / n$. Our aim is to generalize this result for the asymmetrical n-patch model (2.1) (i.e the matrix Γ is non symmetric). We have the following result

Theorem 3.6. Let $\left(x_{1}(t, \beta), \ldots, x_{n}(t, \beta)\right)$ be the solution of the system (2.1) with initial condition $\left(x_{1}^{0}, \cdots, x_{n}^{0}\right)$ satisfying $x_{i}^{0} \geq 0$ for $i=1 \cdots n$. Let $Y(t)$ be the solution of the logistic equation

$$
\begin{equation*}
\frac{d X}{d t}=r X\left(1-\frac{X}{\left[\sum_{i=1}^{n} \delta_{i}\right] K}\right), \text { where } r=\frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}}, \quad K=\frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}} \text { and } \alpha_{i}=\frac{r_{i}}{K_{i}} \tag{3.9}
\end{equation*}
$$

with initial condition $X_{0}=\sum_{i=1}^{n} x_{i}^{0}$. Then, when $\beta \rightarrow \infty$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}(t, \beta)=Y(t)+o(1), \quad \text { uniformly for } t \in[0,+\infty) \tag{3.10}
\end{equation*}
$$

and, for any $t_{0}>0$, we have

$$
\begin{equation*}
x_{i}(t, \beta)=\frac{\delta_{i}}{\sum_{i=1}^{n} \delta_{i}} Y(t)+o(1), \quad i=1, \ldots, n, \text { uniformly for } \quad t \in\left[t_{0},+\infty\right) \tag{3.11}
\end{equation*}
$$

Proof. Let $X(t, \beta)=\sum_{i=1}^{n} x_{i}(t, \beta)$. We rewrite the system (2.1) using the variables ($\left.X, x_{1}, \cdots, x_{n-1}\right)$, and get:

$$
\left\{\begin{align*}
\frac{d X}{d t} & =\sum_{i=1}^{n} r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right) \tag{3.12}\\
\frac{d x_{i}}{d t} & =r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)+\beta \sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} x_{j}-\gamma_{j i} x_{i}\right), \quad i=1, \cdots, n-1
\end{align*}\right.
$$

This system is actually a system in the variables $\left(X, x_{1}, \cdots, x_{n-1}\right)$, since, whenever x_{n} appears in the right hand side of (3.12), it should be replaced by

$$
\begin{equation*}
x_{n}=X-\sum_{i=1}^{n-1} x_{i} \tag{3.13}
\end{equation*}
$$

When $\beta \rightarrow \infty$, (3.12) is a slow-fast system, with one slow variable, X, and $n-1$ fast variables, x_{i} for $i=1 \cdots n-1$. According to Tikhonov's theorem [16, 19, 20] we consider the dynamics of the fast variables in the time scale $\tau=\beta t$. We get

$$
\frac{d x_{i}}{d \tau}=\frac{1}{\beta} r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right)+\sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} x_{j}-\gamma_{j i} x_{i}\right), \quad i=1, \cdots, n-1
$$

where x_{n} is given by (3.13). In the limit $\beta \rightarrow \infty$, we find the fast dynamics

$$
\frac{d x_{i}}{d \tau}=\sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} x_{j}-\gamma_{j i} x_{i}\right), \quad i=1, \cdots, n-1
$$

This is an $(n-1)$-dimensional linear differential system in the variable $Z:=\left(x_{1}, \cdots, x_{n-1}\right)$, which can be rewritten in matricial form:

$$
\begin{equation*}
\dot{Z}=\mathcal{L} Z+X V, \quad \text { with } \quad \mathcal{L}:=L-U \tag{3.14}
\end{equation*}
$$

where L, V are given by (3.5) and $U=(V ; \ldots ; V)$.
By Lemma B.1, the matrix \mathcal{L} is stable. Therefore, it is invertible and the equilibrium of the system (3.14) is GAS. This equilibrium is given by

$$
\begin{equation*}
\left(\frac{\delta_{1}}{\sum_{i=1}^{n} \delta_{i}} X, \ldots, \frac{\delta_{n-1}}{\sum_{i=1}^{n} \delta_{i}} X\right)^{T} \tag{3.15}
\end{equation*}
$$

Indeed, we denote by $L^{(i)}, U^{(i)}$ and $V^{(i)}$ the i-th row of the matrix L, U and the vector V respectively. We have:

$$
\begin{aligned}
\left(L^{(i)}-U^{(i)}\right)\left(\frac{\delta_{1}}{\sum_{i=1}^{n} \delta_{i}} X \quad \ldots \frac{\delta_{n-1}}{\sum_{i=1}^{n} \delta_{i}} X\right)^{T} & =\frac{\delta_{n}}{\sum_{i=1}^{n} \delta_{i}}\left(L^{(i)}-U^{(i)}\right)\left(\frac{\delta_{1}}{\delta_{n}} X \ldots \frac{\delta_{n-1}}{\delta_{n}} X\right)^{T} \\
& =-\frac{\delta_{n}}{\sum_{i=1}^{n} \delta_{i}} X \gamma_{i n}-\frac{\sum_{i=1}^{n-1} \delta_{i}}{\sum_{i=1}^{n} \delta_{i}} X \gamma_{i n} \\
& =-X \gamma_{i n}=-X V^{(i)}
\end{aligned}
$$

Thus, the slow manifold of System (3.12) is given by

$$
\begin{equation*}
x_{i}=\frac{\delta_{i}}{\sum_{i=1}^{n} \delta_{i}} X, \quad i=1, \ldots, n-1 \tag{3.16}
\end{equation*}
$$

As this manifold is GAS,Tikhonov's theorem ensures that after a fast transition toward the slow manifold, the solutions of (3.12) are approximated by the solutions of the reduced model, which is obtained by replacing (3.16) into the dynamics of the slow variable, that is:

$$
\begin{equation*}
\frac{d X}{d t}=\sum_{i=1}^{n} r_{i} \frac{X}{\sum_{i=1}^{n} \delta_{i}} \delta_{i}\left(1-\frac{X}{\left(\sum_{i=1}^{n} \delta_{i}\right) K_{i}} \delta_{i}\right)=r X\left(1-\frac{X}{\left(\sum_{i=1}^{n} \delta_{i}\right) K}\right) \tag{3.17}
\end{equation*}
$$

where r and K are defined in (3.9). Since (3.17) admits

$$
X^{*}=\left(\sum_{i=1}^{n} \delta_{i}\right) K=\left(\sum_{i=1}^{n} \delta_{i}\right) \frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}}
$$

as a positive equilibrium point, which is GAS in the positive axis, the approximation given by Tikhonov's theorem holds for all $t \geq 0$ for the slow variable and for all $t \geq t_{0}>0$ for the fast variables, where t_{0} is as small as we want. Therefore, letting $Y(t)$ be the solution of the reduced model (3.17) with initial condition $Y(0)=X(0, \beta)=\sum_{i=1}^{n} x_{i}^{0}$, then, when $\beta \rightarrow \infty$, we have the approximations (3.10) and (3.11).

In the case of perfect mixing, the approximation (3.10) shows that the total population behaves like the solution of the single logistic equation (3.9) and then, when t and β tend to ∞, the total population $\sum x_{i}(t, \beta)$ tends toward $\left(\sum_{i=1}^{n} \delta_{i}\right) K=\left(\sum_{i=1}^{n} \delta_{i}\right) \frac{\sum \delta_{i} r_{i}}{\sum \delta_{i}^{2} \alpha_{i}}$ as stated in Corollary 3.5. The approximation (3.11) shows that, with the exception of a thin initial boundary layer, where the population density $x_{i}(t, \beta)$ quickly jumps from
its initial condition x_{i}^{0} to the average $\delta_{i} X_{0} / \sum_{i=1}^{n} \delta_{i}$, each patch of the n-patch model behaves like the single logistic equation

$$
\begin{equation*}
\frac{d u}{d t}=r u\left(1-\frac{u}{K}\right) \text { where } \quad r=\frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}}, \quad K=\frac{\sum_{i=1}^{n} \delta_{i} r_{i}}{\sum_{i=1}^{n} \delta_{i}^{2} \alpha_{i}} \text { and } \alpha_{i}=\frac{r_{i}}{K_{i}} \tag{3.18}
\end{equation*}
$$

Hence, when t and β tend to ∞, the population density $x_{i}(t, \beta)$ tends toward $K=$ $\delta_{i} \sum \sum_{i} \delta_{i}^{2} r_{i}$, as stated in Theorem 3.3.

Remark 3.7. The single logistic equation (3.18) gives an approximation of the population density in each patch in the case of perfect mixing. The intrinsic growth rate r in (3.18) is the arithmetic mean of the r_{1}, \ldots, r_{n}, weighted by $\delta_{1}, \ldots, \delta_{n}$, and the carrying capacity K is the harmonic mean of K_{1}, \ldots, K_{n}, weighted by $\frac{\delta_{i}^{2} r_{i}}{\sum_{j=1}^{n} \delta_{j} r_{j}}, i=1, \ldots, n$. We point out the similarity between our expression for the carrying capacity in the limit $\beta \rightarrow \infty$, and the expression obtained in spatial homogenization, see e.g [21, Formula 81] and also [22, Formula 28].

3.3 Comparison of $X_{T}^{*}(+\infty)$ with $\sum_{i} K_{i}$.

According to Formula (3.7), it is clear that the total equilibrium population at $\beta=0$ and at $\beta=+\infty$ are different in general.
In the remainder of this section, we give some conditions, in the space of parameters r_{i}, K_{i}, α_{i} and δ_{i}, for limit of the total equilibrium population when $\beta \rightarrow \infty$ to be greater or smaller than the sum of the carrying capacities. We show that all three cases are possible, i.e $X_{T}^{*}(+\infty)$ can be greater than, smaller than, or equal to $X_{T}^{*}(0)$.
First, we start by giving some particular values of the parameters for which $X_{T}^{*}(0)=$ $X_{T}^{*}(+\infty)$.

Proposition 3.8. Consider the system (2.1).
If the vector $\left(\frac{1}{\alpha_{1}}, \ldots, \frac{1}{\alpha_{n}}\right)$ lies in $\operatorname{ker} \Gamma$, then $X_{T}^{*}(0)=X_{T}^{*}(+\infty)$.
Proof. Direct consequence of the equation (3.7).
Note that, if the matrix Γ is symmetric, then by Lemma 3.1, $\delta_{i}=1$ for all i. Therefore, the hypothesis $\left(\frac{1}{\alpha_{1}}, \ldots, \frac{1}{\alpha_{n}}\right) \in \operatorname{ker} \Gamma$ becomes $\alpha_{1}=\ldots=\alpha_{n}$, which is the same as that of [10, Prop 4.4].
In the next proposition, we give two cases which ensure that $X_{T}^{*}(0)$ can be greater or smaller than $X_{T}^{*}(+\infty)$. This result can be stated as the following proposition:

Proposition 3.9. Consider the system (2.1).

1. If $\frac{K_{1}}{\delta_{1}} \leq \ldots \leq \frac{K_{n}}{\delta_{n}}$ and $\delta_{1} \alpha_{1} \leq \ldots \leq \delta_{n} \alpha_{n}$, or if $\frac{K_{1}}{\delta_{1}} \geq \ldots \geq \frac{K_{n}}{\delta_{n}}$ and $\delta_{1} \alpha_{1} \geq \ldots \geq$ $\delta_{n} \alpha_{n}$, then $X_{T}^{*}(+\infty) \geq X_{T}^{*}(0)$.
2. If $\frac{K_{1}}{\delta_{1}} \geq \ldots \geq \frac{K_{n}}{\delta_{n}}$ and $\delta_{1} \alpha_{1} \leq \ldots \leq \delta_{n} \alpha_{n}$, or if $\frac{K_{1}}{\delta_{1}} \leq \ldots \leq \frac{K_{n}}{\delta_{n}}$ and $\delta_{1} \alpha_{1} \geq \ldots \geq$ $\delta_{n} \alpha_{n}$, then $X_{T}^{*}(+\infty) \leq X_{T}^{*}(0)$.
In both items, if at least one of the inequalities in $\frac{K_{1}}{\delta_{1}} \leq \ldots \leq \frac{K_{n}}{\delta_{n}}$ or $\frac{K_{1}}{\delta_{1}} \geq \ldots \geq \frac{K_{n}}{\delta_{n}}$ is strict, then the inequality is strict in the conclusion.
Proof. Apply Lemma B. 2 with the following choice: $w_{i}=\delta_{i}, u_{i}=\frac{K_{i}}{\delta_{i}}$, and $v_{i}=\delta_{i} \alpha_{i}$, for all $i=1, \ldots, n$.

If the matrix Γ is symmetric, one has $\delta_{i}=1$, for all i, as shown in Lemma 3.1. Therefore Prop. 3.9 becomes
Corollary 3.10. Consider the system (2.1). Assume that Γ is symmetric.

1. If $K_{1} \leq \ldots \leq K_{n}$ and $\alpha_{1} \leq \ldots \leq \alpha_{n}$, or if $K_{1} \geq \ldots \geq K_{n}$ and $\alpha_{1} \geq \ldots \geq \alpha_{n}$, then $X_{T}^{*}(+\infty) \geq X_{T}^{*}(0)$.
2. If $K_{1} \geq \ldots \geq K_{n}$ and $\alpha_{1} \leq \ldots \leq \alpha_{n}$, or if $K_{1} \leq \ldots \leq K_{n}$ and $\alpha_{1} \geq \ldots \geq \alpha_{n}$, then $X_{T}^{*}(+\infty) \leq X_{T}^{*}(0)$.
This result implies Items 1 and 2 of [8, Theorem B.1], which were obtained for the model (1.5) in the particular case $r_{i}=K_{i}$.

4 Influence of asymmetric dispersal on total population size

In this section, we will compare, in some particular cases of the system (2.1), the total equilibrium population $X_{T}^{*}(\beta)=x_{1}^{*}(\beta)+\ldots+x_{n}^{*}(\beta)$, with the sum of carrying capacities denoted by $X_{T}^{*}(0)=K_{1}+\ldots+K_{n}$, when the rate of migration β varies from zero to infinity. We show that the total equilibrium population, $X_{T}^{*}(\beta)$, is generally different from the sum of the carrying capacities $X_{T}^{*}(0)$. Depending on the local parameters of the patches and the kernel of the matrix $\Gamma, X_{T}^{*}(\beta)$ can either be greater than, smaller than, or equal to the sum of the carrying capacities.

4.1 Asymmetric dispersal may be unfavorable to the total equilibrium population

When Γ is symmetric, we have already proved that if all the growth rates are equal then dispersal is always unfavorable to the total equilibrium population, see [10, Proposition 3.1]. We also noticed that the result still holds in the general case when Γ is not necessarily symmetric, see [10, Proposition 6.2]. Hence we have the following
Proposition 4.1. If $r_{1}=\ldots=r_{n}$ then

$$
X_{T}^{*}(\beta)=\sum_{i=1}^{n} x_{i}^{*}(\beta) \leq \sum_{i=1}^{n} K_{i}, \quad \text { for all } \beta \in[0, \infty[
$$

For a two-patch logistic model, this result has been proved by Arditi et al. [1, Proposition 2, item 3] for symmetric dispersal and for asymmetric dispersal [2, Proposition 1, item 3].

4.2 Asymmetric dispersal may be favorable to the total equilibrium population

In this section, we give a situation where the dispersal is favorable to the total equilibrium population. Mathematically speaking:

Proposition 4.2. If $\alpha_{i} / \alpha_{j}=\gamma_{j i} / \gamma_{i j}$ for all $j<i$, then

$$
X_{T}^{*}(\beta) \geq \sum_{i=1}^{n} K_{i} \quad \text { for all } \beta \geq 0
$$

Moreover, if there exist i_{0} and $j_{0} \neq i_{0}$ such that $r_{i_{0}} \neq r_{j_{0}}$, then $X_{T}^{*}(\beta)>\sum_{i=1}^{n} K_{i}$, for all $\beta>0$.

Proof. The equilibrium point $E^{*}(\beta)$ satisfies the system

$$
\begin{equation*}
0=\alpha_{i} x_{i}^{*}(\beta)\left(K_{i}-x_{i}^{*}(\beta)\right)+\beta \sum_{j=1, j \neq i}^{n}\left(\gamma_{i j} x_{j}^{*}(\beta)-\gamma_{j i} x_{i}^{*}(\beta)\right), \quad i=1 \cdots n \tag{4.1}
\end{equation*}
$$

Dividing (4.1) by $\alpha_{i} x_{i}^{*}$, one obtains

$$
x_{i}^{*}(\beta)=K_{i}+\beta \sum_{j=1, j \neq i}^{n} \frac{\left.\gamma_{i j} x_{j}^{*}(\beta)-\gamma_{j i} x_{i}^{*}(\beta)\right)}{\alpha_{i} x_{i}^{*}(\beta)}
$$

Taking the sum of these expressions shows that the total equilibrium population X_{T}^{*} satisfies the following relation:

$$
\begin{align*}
X_{T}^{*}(\beta) & =\sum_{i=1}^{n} K_{i}+\beta \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{\gamma_{i j} x_{j}^{*}(\beta)-\gamma_{j i} x_{i}^{*}(\beta)}{\alpha_{i} x_{i}^{*}(\beta)} \tag{4.2}\\
& =\sum_{i=1}^{n} K_{i}+\beta \sum_{j<i}\left(\frac{\gamma_{i j} x_{j}^{*}(\beta)-\gamma_{j i} x_{i}^{*}(\beta)}{\alpha_{i} x_{i}^{*}(\beta)}+\frac{\gamma_{j i} x_{i}^{*}(\beta)-\gamma_{i j} x_{j}^{*}(\beta)}{\alpha_{j} x_{j}^{*}(\beta)}\right) \\
& =\sum_{i=1}^{n} K_{i}+\beta \sum_{j<i} \frac{\left[\sqrt{\alpha_{j} \gamma_{i j}} x_{j}^{*}(\beta)-\sqrt{\alpha_{i} \gamma_{j i}} x_{i}^{*}(\beta)\right]^{2}-\left[\sqrt{\alpha_{i} \gamma_{i j}}-\sqrt{\alpha_{j} \gamma_{j i}}\right]^{2} x_{j}^{*}(\beta) x_{i}^{*}(\beta)}{\alpha_{j} \alpha_{i} x_{j}^{*}(\beta) x_{i}^{*}(\beta)}
\end{align*}
$$

We suppose that

$$
\begin{equation*}
\alpha_{i} / \alpha_{j}=\gamma_{j i} / \gamma_{i j} \text { for all } i, j \in\{1, \ldots, n\} \text { with } j<i \tag{4.3}
\end{equation*}
$$

then

$$
\begin{equation*}
X_{T}^{*}(\beta)=\sum_{i=1}^{n} K_{i}+\beta \sum_{j<i} \frac{\left[\sqrt{\alpha_{j} \gamma_{i j}} x_{j}^{*}(\beta)-\sqrt{\alpha_{i} \gamma_{j i}} x_{i}^{*}(\beta)\right]^{2}}{\alpha_{j} \alpha_{i} x_{j}^{*}(\beta) x_{i}^{*}(\beta)} \geq \sum_{i=1}^{n} K_{i} \tag{4.4}
\end{equation*}
$$

Equality holds if and only if $\beta=0$ or $\sqrt{\alpha_{j} \gamma_{i j}} x_{j}^{*}(\beta)-\sqrt{\alpha_{i} \gamma_{j i}} x_{i}^{*}(\beta)=0$ for all $j<i$. Let us prove that if at least two patches have not the same growth rate then equality cannot hold for $\beta>0$. Suppose that there exists $\beta^{*}>0$ such that the positive equilibrium satisfies $\sqrt{\alpha_{j} \gamma_{i j}} x_{j}^{*}\left(\beta^{*}\right)=\sqrt{\alpha_{i} \gamma_{j i}} x_{i}^{*}\left(\beta^{*}\right)$ for all $j<i$. Then using the equation (4.3), we obtain

$$
\begin{equation*}
\gamma_{i j} x_{j}^{*}\left(\beta^{*}\right)=\gamma_{j i} x_{i}^{*}\left(\beta^{*}\right) \tag{4.5}
\end{equation*}
$$

Replacing the equation (4.5) in the system (3.2), we get that $x_{i}^{*}\left(\beta^{*}\right)=K_{i}$ for all i, which implies that $K_{j} / K_{i}=\gamma_{j i} / \gamma_{i j}$. From this equation and the equation (4.3), we get $r_{i}=r_{j}$ for $i \neq j$, which gives a contradiction. Hence the equality in (4.4) holds if and only if $\beta=0$.

When the matrix Γ is symmetric, Proposition 4.2 says that if all α_{i} are equal, dispersal enhances population growth, which is [10, Proposition 3.3].

4.3 Independence of the total equilibrium population with respect to asymmetric dispersal

In the next proposition we give sufficient and necessary conditions for the total equilibrium population not to depend on the migration rate.

Proposition 4.3. The equilibrium $E^{*}(\beta)$ does not depend on β if and only if $\left(K_{1}, \ldots, K_{n}\right) \in$ $\operatorname{ker} \Gamma$. In this case we have $E^{*}(\beta)=\left(K_{1}, \ldots, K_{n}\right) \forall \beta>0$.

Proof. The equilibrium $E^{*}(\beta)$ is the unique positive solution of the equation

$$
\begin{equation*}
f(x)+\beta \Gamma x=0 \tag{4.6}
\end{equation*}
$$

where f is given by (2.2).
Suppose that the equilibrium $E^{*}(\beta)$ does not depend on β, then we replace in Equation (4.6):

$$
\begin{equation*}
f\left(E^{*}\right)+\beta \Gamma E^{*}=0 \tag{4.7}
\end{equation*}
$$

The derivative of (4.7) with respect to β gives

$$
\begin{equation*}
\Gamma E^{*}=0 \tag{4.8}
\end{equation*}
$$

Replacing the equation (4.8) in the equation (4.7), we get $f\left(E^{*}\right)=0$, so $E^{*}(\beta)=$ $\left(K_{1}, \ldots, K_{n}\right)$.
From the equation (4.8), we conclude that $\left(K_{1}, \ldots, K_{n}\right) \in \operatorname{ker} \Gamma$.
Now, suppose that $\left(K_{1}, \ldots, K_{n}\right) \in \operatorname{ker} \Gamma$, then $\left(K_{1}, \ldots, K_{n}\right)$ satisfies the equation (4.6). So, $E^{*}=\left(K_{1}, \ldots, K_{n}\right)$, which proves that the total equilibrium population is independent of the migration rate β.

Note that, if the matrix Γ is symmetric, the previous proposition becomes: $K_{1}=$ $\ldots=K_{n}:=K$ if and only if $E^{*}=(K, \ldots, K)$. In [2], Arditi et al. proved Proposition 4.3 for a two-patch logistic model with migration matrix Γ given by 1.4. Indeed, they proved that, if $\frac{K_{1}}{\gamma_{12}}=\frac{K_{2}}{\gamma_{21}}$ (i.e $\left(K_{1}, K_{2}\right) \in \operatorname{ker} \Gamma$ by Remark 3.2) then, the total equilibrium population satisfies $X_{T}^{*}(\beta)=K_{1}+K_{2}$ for all β.

4.4 Two blocks of identical patches

We consider the model (2.1) and we assume that there are two blocks, denoted I and J, of identical patches, such that $I \cup J=\{1, \cdots, n\}$. Let p be the number of patches in I and $q=n-p$ be the number of patches in J. Without loss of generality we can take $I=\{1, \cdots, p\}$ and $J=\{p+1, \cdots, n\}$. The patches being identical means that they have the same specific growth rate r_{i} and carrying capacity K_{i}. Therefore we have

$$
\begin{array}{ll}
r_{1}=\cdots=r_{p}, & K_{1}=\cdots=K_{p}, \\
r_{p+1}=\cdots=r_{n}, & K_{p+1}=\cdots=K_{n} . \tag{4.9}
\end{array}
$$

For each patch $i \in I$ we denote by $\gamma_{i J}$ the flux from block J to patch i, and for each patch $j \in J$ we denote by $\gamma_{j I}$ the flux from block I to patch j, as defined in Table 1. For each patch i we denote by T_{i} the sum of all migration rates $\gamma_{j i}$ from patch i to another patch $j \neq i$ (i.e. the outgoing flux of patch i) minus the sum of the migration rates $\gamma_{i k}$ from patch k to patch i, where k belongs to the same block as i. Hence, we have:

$$
\left\{\begin{array}{l}
\text { If } i \in I, \quad \text { then } \quad T_{i}=\sum_{j \in J} \gamma_{j i}+\sum_{k \in I \backslash\{i\}}\left(\gamma_{k i}-\gamma_{i k}\right) . \tag{4.10}\\
\text { If } j \in J, \\
\text { then } \quad T_{j}=\sum_{i \in I} \gamma_{i j}+\sum_{k \in J \backslash\{j\}}\left(\gamma_{k j}-\gamma_{j k}\right) .
\end{array}\right.
$$

We make the following assumption on the migration rates:

$$
\begin{array}{ll}
\gamma_{1 J}=\cdots=\gamma_{p J}, & \gamma_{(p+1) I}=\cdots=\gamma_{n I} \\
T_{1}=\cdots=T_{p}, & T_{p+1}=\cdots=T_{n} \tag{4.11}
\end{array}
$$

where $\gamma_{i J}$, for $i \in I$ and $\gamma_{j I}$, for $j \in J$ are defined in Table 1 and T_{i} are given by (4.10).

Table 1: Definitions and notations of fluxes

Flux	Definition
$\gamma_{i J}=\sum_{j \in J} \gamma_{i j}$	For $i \in I, \gamma_{i J}$ is the flux from block J to patch i, i.e. the sum of the migration rates $\gamma_{i j}$ from patch $j \in J$ to patch i. $\gamma_{j I}=\sum_{i \in I} \gamma_{i j}$For $j \in J, \gamma_{j I}$ is the flux from block I to patch j, i.e. the sum of the migration rates $\gamma_{j i}$ from patch $i \in I$ to patch j.
$\gamma_{I J}=\sum_{i \in I, j \in J} \gamma_{i j}$	$\gamma_{I J}$ is the flux from block J to block I, i.e. the sum of the migration rates $\gamma_{i j}$ from patch $j \in J$, to patch $i \in I$. $\gamma_{J I}=\sum_{i \in I, j \in J} \gamma_{j i}$$\gamma_{J I}$ is the flux from block I to block J, i.e. the sum of the mation rates $\gamma_{j i}$ from patch $i \in I$, to patch $j \in J$.

We have the following result
Lemma 4.4. Assume that the conditions (4.11) are satisfied, then for all $i \in I$ and $j \in I$ one has

$$
\begin{equation*}
\gamma_{i J}=\gamma_{I J} / p, \quad \gamma_{j I}=\gamma_{J I} / q, \quad T_{i}=\gamma_{J I} / p, \quad T_{j}=\gamma_{I J} / q . \tag{4.12}
\end{equation*}
$$

where $\gamma_{I J}$ and $\gamma_{J I}$ are defined in Table 1.
Proof. The result follows from $\sum_{i \in I} \gamma_{i J}=\gamma_{I J}, \sum_{i \in J} \gamma_{j I}=\gamma_{J I}, \sum_{i \in I} T_{i}=\gamma_{J I}$ and $\sum_{i \in J} T_{j}=\gamma_{I J}$.

In the next theorem, we will show that, at the equilibrium, and under certain conditions relating to the terms of migration, we can consider the n-patch model as a 2 -patch model coupled by migration terms, which are not symmetric in general. Mathematically, we can state our main result as follows:

Theorem 4.5. Assume that the conditions (4.9) and (4.11) are satisfied. Then the equilibrium of (2.1) is of the form

$$
x_{1}=x_{1}^{*}, \ldots, x_{p}=x_{1}^{*}, \quad x_{p+1}=x_{n}^{*}, \ldots, x_{n}=x_{n}^{*}
$$

where $\left(x_{1}^{*}, x_{n}^{*}\right)$ is the solution of the equations

$$
\left\{\begin{array}{l}
p r_{1} x_{1}\left(1-\frac{x_{1}}{K_{1}}\right)+\beta\left(\gamma_{I J} x_{n}-\gamma_{J I} x_{1}\right)=0, \tag{4.13}\\
q r_{n} x_{n}\left(1-\frac{x_{n}}{K_{n}}\right)+\beta\left(\gamma_{J I} x_{1}-\gamma_{I J} x_{n}\right)=0,
\end{array}\right.
$$

that is to say, $\left(x_{1}^{*}, x_{n}^{*}\right)$ is the equilibrium of a 2-patch model, with specific growth rates $p r_{1}$ and $q r_{n}$, carrying capacities K_{1} and K_{n} and migration rates $\gamma_{J I}$ from patch 1 to patch 2 and $\gamma_{I J}$ from patch 2 to patch 1 .
Proof. Assume that the conditions (4.9) are satisfied. Then the equilibrium of (2.1) is the unique positive solution of the set of algebraic equations

$$
\begin{cases}r_{1} x_{i}\left(1-\frac{x_{i}}{K_{1}}\right)+\beta \sum_{k=1, k \neq i}^{n}\left(\gamma_{i k} x_{k}-\gamma_{k i} x_{i}\right)=0, & i=1, \cdots, p, \tag{4.14}\\ r_{n} x_{j}\left(1-\frac{x_{j}}{K_{n}}\right)+\beta \sum_{k=1, k \neq j}^{n}\left(\gamma_{j k} x_{k}-\gamma_{k j} x_{j}\right)=0, & j=p+1, \cdots, n\end{cases}
$$

We consider the following set of algebraic equations obtained from (4.14) by replacing $x_{i}=x_{1}$ for $i=1 \cdots p$ and $x_{i}=x_{n}$ for $i=p+1 \cdots n$:

$$
\begin{cases}r_{1} x_{1}\left(1-\frac{x_{1}}{K_{1}}\right)+\beta\left(\gamma_{i J} x_{n}-T_{i} x_{1}\right)=0, & i=1, \cdots, p, \tag{4.15}\\ r_{n} x_{n}\left(1-\frac{x_{n}}{K_{n}}\right)+\beta\left(\gamma_{j I} x_{1}-T_{j} x_{n}\right)=0, & j=p+1, \cdots, n .\end{cases}
$$

Now, using the assumptions (4.11), together with the relations (4.12), we see that the system (4.15) is equivalent to the set of two algebraic equations:

$$
\left\{\begin{array}{l}
r_{1} x_{1}\left(1-\frac{x_{1}}{K_{1}}\right)+\beta\left(\frac{\gamma_{I J}}{p} x_{n}-\frac{\gamma_{J I}}{p} x_{1}\right)=0, \tag{4.16}\\
r_{n} x_{n}\left(1-\frac{x_{n}}{K_{n}}\right)+\beta\left(\frac{\gamma_{J I}}{q} x_{1}-\frac{\gamma_{I J}}{q} x_{n}\right)=0 .
\end{array}\right.
$$

We first notice that if $x_{1}=x_{1}^{*}, x_{n}=x_{n}^{*}$ is a positive solution of (4.16) then $x_{i}=x_{1}^{*}$ for $i=1, \cdots, p$ and $x_{j}=x_{n}^{*}$ for $j=1, \cdots, n$ is a positive solution of (4.14). Let us prove that (4.16) has a unique solution $\left(x_{1}^{*}, x_{n}^{*}\right)$. Indeed, multiplying the first equation by p and the second one by q, we deduce that (4.16) can be written in the form (4.13).

As a corollary of the previous theorem we obtain the following result which describes the total equilibrium population in the two blocks:

Corollary 4.6. Assume that the conditions (4.9) and (4.11) are satisfied. Then the total equilibrium population $X_{T}^{*}(\beta)=p x_{1}^{*}(\beta)+q x_{n}^{*}(\beta)$ of (2.1) behaves like the total equilibrium population of the 2-patch model

$$
\left\{\begin{array}{l}
\frac{d y_{1}}{d t}=r_{1} y_{1}\left(1-\frac{y_{1}}{p K_{1}}\right)+\beta\left(\gamma_{2} y_{n}-\gamma_{1} y_{1}\right), \tag{4.17}\\
\frac{d y_{n}}{d t}=r_{n} y_{n}\left(1-\frac{y_{n}}{q K_{n}}\right)+\beta\left(\gamma_{1} y_{1}-\gamma_{2} y_{n}\right),
\end{array}\right.
$$

with specific growth rates r_{1} and r_{n}, carrying capacities $p K_{1}$ and $q K_{n}$, and migration rates $\gamma_{1}=\frac{\gamma_{J I}}{p}, \gamma_{2}=\frac{\gamma_{I J}}{q}$.
Proof. From Theorem 4.5, we see that $\left(x_{1}^{*}, x_{n}^{*}\right)$ is the positive solution of (4.13). Hence, $\left(y_{1}^{*}=p x_{1}^{*}, y_{n}^{*}=q x_{n}^{*}\right)$ is the solution of the set of equations

$$
\left\{\begin{array}{l}
r_{1} y_{1}\left(1-\frac{y_{1}}{p K_{1}}\right)+\beta\left(\frac{\gamma_{I J}}{q} y_{n}-\frac{\gamma_{J I}}{p} y_{1}\right)=0, \tag{4.18}\\
r_{n} y_{n}\left(1-\frac{y_{n}}{q K_{n}}\right)+\beta\left(\frac{\gamma, J_{I I}}{p} y_{1}-\frac{\gamma_{I J}}{q} y_{n}\right)=0,
\end{array}\right.
$$

obtained from (4.13) by using the change of variables $y_{1}=p x_{1}, y_{n}=q x_{n}$. The system (4.18) has a unique positive solution which is the equilibrium point of the 2 -patch model (4.17).

We can describe the conditions for which, under the conditions (4.9) and (4.11), patchiness is beneficial or detrimental in model (2.1).

Figure 1: Qualitative properties of model (2.1) under the conditions (4.9) and (4.11). In \mathcal{J}_{0}, patchiness has a beneficial effect on the total equilibrium population. This effect is detrimental in \mathcal{J}_{2}. In \mathcal{J}_{1}, the effect is beneficial for $\beta<\beta_{0}$ and detrimental for $\beta>\beta_{0}$.

We consider the regions in the set of parameters $\gamma_{I J}$ and $\gamma_{J I}$, denoted $\mathcal{J}_{0}, \mathcal{J}_{1}$ and
\mathcal{J}_{2}, depicted in Fig. 1 and defined by:

$$
\text { If } r_{n}>r_{1} \text { then }\left\{\begin{array}{l}
\left\{\begin{array}{l}
\mathcal{J}_{1}=\left\{\left(\gamma_{J I}, \gamma_{I J}\right): \frac{\gamma_{I J}}{\gamma_{J I}}>\frac{\alpha_{n}}{\alpha_{1}}\right\} \\
\mathcal{J}_{0}=\left\{\left(\gamma_{J I}, \gamma_{I J}\right): \frac{\alpha_{n}}{\alpha_{1}} \geq \frac{\gamma_{I J}}{\gamma_{J I}}>\frac{K_{1}}{K_{n}}\right\} \\
\mathcal{J}_{2}=\left\{\left(\gamma_{J I}, \gamma_{I J}\right): \frac{K_{1}}{K_{n}}>\frac{\gamma_{I J}}{\gamma_{J I}}\right\}
\end{array}\right. \\
\text { If } r_{n}<r_{1} \text { then }\left\{\begin{array}{l}
\mathcal{J}_{1}=\left\{\left(\gamma_{J I}, \gamma_{I J}\right): \frac{\gamma_{I J}}{\gamma_{J I}}<\frac{\alpha_{n}}{\alpha_{1}}\right\} \\
\mathcal{J}_{0}=\left\{\left(\gamma_{J I}, \gamma_{I J}\right): \frac{\alpha_{n}}{\alpha_{1}} \leq \frac{\gamma_{I J}}{\gamma_{J I}}<\frac{K_{1}}{K_{n}}\right\} \\
\mathcal{J}_{2}=\left\{\left(\gamma_{J I}, \gamma_{I J}\right): \frac{K_{1}}{K_{n}}<\frac{\gamma_{I J}}{\gamma_{J I}}\right\}
\end{array}\right. \tag{4.19}
\end{array}\right.
$$

where $\alpha_{1}=r_{1} / K_{1}$ and $\alpha_{n}=r_{n} / K_{n}$.
Proposition 4.7. Assume that the conditions (4.9) and (4.11) are satisfied. Then the total equilibrium population $X_{T}^{*}(\beta)=p x_{1}^{*}(\beta)+q x_{n}^{*}(\beta)$ of (2.1) satisfies the following properties

1. If $r_{1}=r_{n}$ then $X_{T}^{*}(\beta)<p K_{1}+q K_{n}$ for all $\beta>0$.
2. If $r_{n} \neq r_{1}$, let $\mathcal{J}_{0}, \mathcal{J}_{1}$ and \mathcal{J}_{2}, be defined by (4.19). Then we have:

- if $\left(\gamma_{J I}, \gamma_{I J}\right) \in \mathcal{J}_{0}$ then $X_{T}^{*}(\beta)>p K_{1}+q K_{n}$ for any $\beta>0$,
- if $\left(\gamma_{J I}, \gamma_{I J}\right) \in \mathcal{J}_{1}$ then $X_{T}^{*}(\beta)>p K_{1}+q K_{n}$ for $0<\beta<\beta_{0}$ and $X_{T}^{*}(\beta)<$ $p K_{1}+q K_{n}$ for $\beta>\beta_{0}$, where

$$
\beta_{0}=\frac{r_{n}-r_{1}}{\frac{\gamma_{I J}}{\alpha_{n}}-\frac{\gamma_{J J}}{\alpha_{1}}} \frac{1}{\frac{\alpha_{1}}{p}+\frac{\alpha_{n}}{q}} .
$$

- if $\left(\gamma_{J I}, \gamma_{I J}\right) \in \mathcal{J}_{2}$ then $X_{T}^{*}(\beta)<p K_{1}+q K_{n}$ for any $\beta>0$.
- If $\frac{\gamma_{I J}}{\gamma_{J I}}=\frac{K_{1}}{K_{n}}$, then $X_{T}^{*}(\beta)=p K_{1}+q K_{n}$ for all $\beta \geq 0$.

Proof. This is a consequence of Proposition A. 1 and Corollary 4.6.
Let us explain the result of Proposition 4.7 in the particular case where $p=n-1$. In this case, the condition (4.11) becomes

$$
\begin{equation*}
\gamma_{1 n}=\ldots=\gamma_{n-1, n} \quad \text { and } \quad T_{1}=\ldots=T_{n-1} \tag{4.20}
\end{equation*}
$$

where $T_{i}=\gamma_{n i}+\sum_{k \neq i}\left(\gamma_{k i}-\gamma_{i k}\right)$.
Therefore, if the matrix Γ is symmetric, the conditions (4.20) are equivalent to the conditions $\gamma_{n 1}=\ldots=\gamma_{n, n-1}$, which mean that the fluxes of migration between the n-th patch and all $n-1$ identical patches are equal. Hence, Proposition 4.7, showing that the n-patch model behaves like a 2-patch model, is the same as [10, Prop. 3.4], where the model (2.1) was considered with Γ symmetric, $n-1$ patches are identical and the fluxes of migration between the n-th patch and all these $n-1$ identical patches are equal. Thus Proposition 4.7 generalizes Proposition 3.4 of [10], to asymmetric dispersal and for any two identical blocks, provided that the conditions (4.11) are satisfied.

5 Three-patch model

In this section, we consider the model of three patches coupled by asymmetrical terms of migrations. Under the irreducibility hypothesis on the matrix Γ, there are five possible cases, modulo permutation of the three patches, see Figures 2 and 3.

\mathcal{G}_{1}

\mathcal{G}_{2}

Figure 2: The two graphs \mathcal{G}_{1} and \mathcal{G}_{2} where we can have the symmetry of migration, if $\gamma_{i j}=\gamma_{j i}$.

The connectivity matrices associated to the graphs \mathcal{G}_{1} and \mathcal{G}_{2} are given by

$$
\Gamma_{0}^{(1)}=\left[\begin{array}{ccc}
0 & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & 0 & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & 0
\end{array}\right], \quad \text { and } \quad \Gamma_{0}^{(2)}=\left[\begin{array}{ccc}
0 & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & 0 & 0 \\
\gamma_{31} & 0 & 0
\end{array}\right]
$$

For the remaining cases, the graphs $\mathcal{G}_{3}, \mathcal{G}_{4}$ and \mathcal{G}_{5}, cannot be symmetrical:

\mathcal{G}_{3}

\mathcal{G}_{4}

\mathcal{G}_{5}

Figure 3: The three graphs $\mathcal{G}_{3}, \mathcal{G}_{4}$ and \mathcal{G}_{5} where we cannot have the symmetry of the migration terms.

The associated connectivity matrices are given by

$$
\Gamma_{0}^{(3)}=\left[\begin{array}{ccc}
0 & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & 0 & \gamma_{23} \\
\gamma_{31} & 0 & 0
\end{array}\right], \Gamma_{0}^{(4)}=\left[\begin{array}{ccc}
0 & \gamma_{12} & 0 \\
0 & 0 & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & 0
\end{array}\right] \text { and } \Gamma_{0}^{(5)}=\left[\begin{array}{ccc}
0 & \gamma_{12} & 0 \\
0 & 0 & \gamma_{23} \\
\gamma_{31} & 0 & 0
\end{array}\right]
$$

In Table 2, we give the formula of perfect mixing $X_{T}^{*}(+\infty)$ for each of the five cases. In the numerical simulations, we show that we can have new behaviors of $X_{T}^{*}(\beta)$. In

Table 2: The perfect mixing abundance $X_{T}^{*}(+\infty)$ is computed with Eq. (3.7) for the five cases. The coefficients δ_{i} are given by the equation (3.1).

Graphs	The formula of perfect mixing $X_{T}^{*}(+\infty)$
\mathcal{G}_{1}	$\left(\delta_{1}+\delta_{2}+\delta_{3}\right) \frac{\delta_{1} r_{1}+\delta_{2} r_{2}+\delta_{3} r_{3}}{\delta_{1}^{2} \alpha_{1}+\delta_{2}^{2} \alpha_{2}+\delta_{3}^{2} \alpha_{3}}$
\mathcal{G}_{2}	$\left(\gamma_{12} \gamma_{13}+\gamma_{21} \gamma_{13}+\gamma_{12} \gamma_{31}\right) \frac{\gamma_{12} \gamma_{13} r_{1}+\gamma_{21} \gamma_{13} r_{2}+\gamma_{12} \gamma_{31} r_{3}}{\left(\gamma_{12} \gamma_{13}\right)^{2} \alpha_{1}+\left(\gamma_{21} \gamma_{13}\right)^{2} \alpha_{2}+\left(\gamma_{12} \gamma_{31}\right)^{2} \alpha_{3}}$
\mathcal{G}_{3}	$\left(\gamma_{12} \gamma_{13}+\gamma_{12} \gamma_{23}+\gamma_{12} \gamma_{31}+\delta_{2}\right) \frac{\left(\gamma_{12} \gamma_{13}+\gamma_{12} \gamma_{23}\right) r_{1}+\delta_{2} r_{2}+\gamma_{12} \gamma_{31} r_{3}}{\left(\gamma_{12} \gamma_{13}+\gamma_{12} \gamma_{23}\right)^{2} \alpha_{1}+\delta^{2} \alpha_{2}+\left(\gamma_{12} \gamma_{31}\right)^{2} \alpha_{3}}$ \mathcal{G}_{4} $\left(\gamma_{12} \gamma_{23}+\gamma_{23} \gamma_{31}+\gamma_{12} \gamma_{31}+\gamma_{32} \gamma_{31}\right) \frac{\gamma_{12} \gamma_{23} r_{1}+\gamma_{23} \gamma_{31} r_{2}+\left(\gamma_{12} \gamma_{31}+\gamma_{32} \gamma_{31}\right) r_{3}}{\left(\gamma_{12} \gamma_{23}\right)^{2} \alpha_{1}+\left(\gamma_{23} \gamma_{31}\right)^{2} \alpha_{2}+\left(\gamma_{12} \gamma_{31}+\gamma_{32} \gamma_{31}\right)^{2} \alpha_{3}}$ \mathcal{G}_{5}
$\left(\gamma_{12} \gamma_{23}+\gamma_{23} \gamma_{31}+\gamma_{12} \gamma_{31}\right) \frac{\gamma_{12} \gamma_{23} r_{1}+\gamma_{23} \gamma_{31} r_{2}+\gamma_{12} \gamma_{31} r_{3}}{\left(\gamma_{12} \gamma_{23}\right)^{2} \alpha_{1}+\left(\gamma_{23} \gamma_{31}\right)^{2} \alpha_{2}+\left(\gamma_{12} \gamma_{31}\right)^{2} \alpha_{3}}$	

the case $n=2$, it was shown in $[1,2]$ that there exists at most one positive value of β such that $X_{T}^{*}(\beta)=K_{1}+K_{2}$. In [10], in the case $n=3$ and Γ is symmetric, we gave numerical values for the parameters such that there exists two positive value of β such that $X_{T}^{*}(\beta)=K_{1}+K_{2}+K_{3}$, and we were not able to find more than two values. The novelty when Γ is not symmetric is that we can find examples with three positive values. Indeed, we may have the following situation : $\frac{d X_{T}^{*}}{d \beta}(0)>0$ and $X_{T}^{*}(+\infty)<K_{1}+K_{2}+K_{3}$, and there exist three values $0<\beta_{1}<\beta_{2}<\beta_{3}$ for which we have

$$
X_{T}^{*}(\beta)\left\{\begin{array}{lll}
>K_{1}+K_{2}+K_{3} & \text { for } & \beta \in] 0, \beta_{1}[\cup] \beta_{2}, \beta_{3}[\tag{5.1}\\
<K_{1}+K_{2}+K_{3} & \text { for } & \beta \in] \beta_{1}, \beta_{2}[\cup] \beta_{3},+\infty[
\end{array}\right.
$$

Note that we obtain the derivative of the total equilibrium population at $\beta=0$ by differentiating the equation (4.2) at $\beta=0$, which gives

$$
\frac{d X_{T}^{*}}{d \beta}(0)=\sum_{i=1}^{n} \frac{1}{r_{i}} \sum_{j=1, j \neq i}^{n} \gamma_{i j} K_{j}-\gamma_{j i} K_{i}
$$

The same situation holds for each of the five graphs $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \mathcal{G}_{4}$ and \mathcal{G}_{5}, i.e, there exist three values $0<\beta_{1}<\beta_{2}<\beta_{3}$ for which (5.1) hold. See Figures 4, (for the graph \mathcal{G}_{1}), 5 , (for the graph \mathcal{G}_{2}), 6-a, (for the graph \mathcal{G}_{3}), 6-b, (for the graph \mathcal{G}_{4}), and 6-c, (for the graph \mathcal{G}_{5}).

Table 3: The numerical values of the parameters for the logistic growth function and migration coefficients of the model (2.1), with $n=3$, used in Fig. 4,5,6-a,6-b and Fig 6-c. For all figures we have $\left(r_{1}, r_{2}, r_{3}, K_{1}, K_{2}, K_{3}\right)=(4,0.7,0.6,5,1,4)$. The perfect mixing abundance $X_{T}^{*}(+\infty)$ is computed with Eq. (3.7).

Figure	γ_{21}	γ_{12}	γ_{31}	γ_{13}	γ_{32}	γ_{23}	$\frac{d X_{T}^{*}}{d \beta}(0)$	$X_{T}^{*}(+\infty)$
4	0.15	3	0.2	0.04	11	0.1	1.06	9.21
5	14.9	10	0.2	0.04	0	0	77.20	9.86
6-a	1.44	0.01	0.2	0.04	1	0	3.11	8.93
6-b	1.52	0	0	1	1	0.002	3.52	8.72
6-c	1.51	0	0	1	1	0	3.46	8.75

Figure 4: Total equilibrium population X_{T}^{*} of the system $(2.1)(n=3)$ as a function of the migration rate β. The figure on the right is a zoom, near the origin, of the figure on the left. The parameter values are given in Table 3.

6 Conclusion

The aim of this paper is to generalize, to a multi-patch model with asymmetric dispersal, the results obtained in [10] for a multi-patch model with symmetric dispersal.

In Section 3 we consider the particular case of perfect mixing, when the migration rate goes to infinity, that is, individuals may travel freely between patches. As in [10], we compute the total equilibrium population in that case, and, by perturbation arguments, we prove that the dynamics in this ideal case provides a good approximation to the case when the migration rate is large. Our results generalize those of [2] (asymmetric migration matrix, only two patches), [8] (arbitrarily many patches, but the migration matrix is symmetric and zero outside the corners and the three main diagonals), and [10] (arbitrarily many patches; arbitrary, but symmetric, migration).

Figure 5: Total equilibrium population X_{T}^{*} of the system $(2.1)(n=3)$ as a function of the migration rate β. The figure on the right is a zoom, near the origin, of the figure on the left. The parameter values are given in Table 3.

In Section 4 we consider the equation
total equilibrium population $=$ sum of the carrying capacities of the patches.
We give a complete solution in the case when the n patches are partitioned into two blocks of identical patches. Our results mirror those of [2], which deals with the twopatch case. Specifically, Equation (6.1) admits at most one non-trivial solution.

In Section 5 we give numerical values for the dispersion parameters such that Equation (6.1) has at least three non-trivial solutions. In [10] we proved that for three patches and symmetric dispersal, there may be at least two solutions. A mathematical proof that, when $\mathrm{n}=3$, Equation (6.1) has at most three solutions, would certainly be desirable, and could spur further work. Upper bounds for arbitrarily many patches would also be interesting.

Appendix

A The 2-patch asymmetric model

We consider the 2 -patch logistic equation with asymmetric migrations. For simplicity we denote $\gamma_{2}:=\gamma_{12}$ the migration rate from patch 2 to patch 1 and $\gamma_{1}:=\gamma_{21}$ from patch 1 to patch 2 . The model is written:

Figure 6: Total equilibrium population X_{T}^{*} of the system $(2.1)(n=3)$ as a function of migration rate β. The parameter values are given in Table 3.

$$
\left\{\begin{align*}
\frac{d x_{1}}{d t} & =r_{1} x_{1}\left(1-\frac{x_{1}}{L_{1}}\right)+\beta\left(\gamma_{2} x_{2}-\gamma_{1} x_{1}\right) \tag{A.1}\\
\frac{d x_{2}}{d t} & =r_{2} x_{2}\left(1-\frac{x_{2}}{L_{2}}\right)+\beta\left(\gamma_{1} x_{1}-\gamma_{2} x_{2}\right)
\end{align*}\right.
$$

Note that the system (A.1) is studied in $[1,6,11,12,15]$ in the case where the migration rates satisfy $\gamma_{1}=\gamma_{2}$, and in [2] for general migration rates. This system admits a unique equilibrium which is GAS. We denote by $E^{*}(\beta)=\left(x_{1}^{*}(\beta), x_{2}^{*}(\beta)\right)$ this equilibrium and by $X_{T}^{*}(\beta)$ the sum of $x_{i}^{*}(\beta)$. We consider the regions in the set of the parameters γ_{1} and

Figure 7: Qualitative properties of model (A.1). In \mathcal{J}_{0}, patchiness has a beneficial effect on total equilibrium population. This effect is detrimental in \mathcal{J}_{2}. In \mathcal{J}_{1}, the effect is beneficial for $\beta<\beta_{0}$ and detrimental for $\beta>\beta_{0}$. In the figure $\alpha_{1}=r_{1} / L_{1}$ and $\alpha_{2}=r_{2} / L_{2}$.
γ_{2}, denoted $\mathcal{J}_{0}, \mathcal{J}_{1}$ and \mathcal{J}_{2}, depicted in Fig. 7 and defined by:

$$
\left\{\begin{array}{l}
\text { If } r_{2}>r_{1} \text { then }\left\{\begin{array}{l}
\mathcal{J}_{1}=\left\{\left(\gamma_{1}, \gamma_{2}\right): \frac{\gamma_{2}}{\gamma_{1}}>\frac{\alpha_{2}}{\alpha_{1}}\right\} \\
\mathcal{J}_{0}=\left\{\left(\gamma_{1}, \gamma_{2}\right): \frac{\alpha_{2}}{\alpha_{1}} \geq \frac{\gamma_{2}}{\gamma_{1}}>\frac{L_{1}}{L_{2}}\right\} \\
\mathcal{J}_{2}=\left\{\left(\gamma_{1}, \gamma_{2}\right): \frac{L_{1}}{L_{2}}>\frac{\gamma_{2}}{\left.\gamma_{1}\right\}}\right.
\end{array}\right. \tag{A.2}\\
\text { If } r_{2}<r_{1} \text { then }\left\{\begin{array}{l}
\mathcal{J}_{1}=\left\{\left(\gamma_{1}, \gamma_{2}\right): \frac{\gamma_{2}}{\gamma_{1}}<\frac{\alpha_{2}}{\alpha_{1}}\right\} \\
\mathcal{J}_{0}=\left\{\left(\gamma_{1}, \gamma_{2}\right): \frac{\alpha_{2}}{\alpha_{1}} \leq \frac{\gamma_{2}}{\gamma_{1}}<\frac{L_{1}}{L_{2}}\right\} \\
\mathcal{J}_{2}=\left\{\left(\gamma_{1}, \gamma_{2}\right): \frac{L_{1}}{L_{2}}<\frac{\gamma_{2}}{\left.\gamma_{1}\right\}}\right\}
\end{array}\right.
\end{array}\right.
$$

We have the following result which gives the conditions for which patchiness is beneficial or detrimental in model (A.1).

Proposition A.1. The total equilibrium population of (A.1) satisfies the following properties

1. If $r_{1}=r_{2}$ then $X_{T}^{*}(\beta) \leq L_{1}+L_{2}$ for all $\beta \geq 0$.
2. If $r_{2} \neq r_{1}$, let $\mathcal{J}_{0}, \mathcal{J}_{1}$ and \mathcal{J}_{2}, be defined by (A.2). Then we have:

- if $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{J}_{0}$ then $X_{T}^{*}(\beta)>L_{1}+L_{2}$ for any $\beta>0$
- if $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{J}_{1}$ then $X_{T}^{*}(\beta)>L_{1}+L_{2}$ for $0<\beta<\beta_{0}$ and $X_{T}^{*}(\beta)<L_{1}+L_{2}$ for $\beta>\beta_{0}$, where

$$
\beta_{0}=\frac{r_{2}-r_{1}}{\frac{\gamma_{2}}{\alpha_{2}}-\frac{\gamma_{1}}{\alpha_{1}}} \frac{1}{\alpha_{1}+\alpha_{2}}
$$

- if $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{J}_{2}$ then $X_{T}^{*}(\beta)<L_{1}+L_{2}$ for any $\beta>0$
- If $\frac{\gamma_{2}}{\gamma_{1}}=\frac{L_{1}}{L_{2}}$, then $x_{1}^{*}(\beta)=L_{1}$ and $x_{2}^{*}(\beta)=L_{2}$ for all $\beta \geq 0$. Therefore $X_{T}^{*}(\beta)=L_{1}+L_{2}$ for all $\beta \geq 0$.
Proof. This result was established by Arditi et al. [2]. Part (1) is Proposition 1 of [2]. The first three items of part (2) are Proposition 2 of [2]. For the last item of part (2), see the last paragraph in page 12 of [2]. The explicit expression of β_{0} was not given in [2], however, it is easy to deduce it from the formulas given in [2]. The reader is cautioned that we denote by γ_{i} the terms γ_{i}^{-1} of [2].

B Some useful results

We begin with a
Lemma B.1. The matrix \mathcal{L} defined by (3.14) is stable, that is to say, all its eigenvalues have negative real part.
Proof. We consider the two matrices

$$
G:=\left[\begin{array}{cccc}
& L-U & & V \\
0 & \ldots & 0 & 0
\end{array}\right], \quad P:=\left[\begin{array}{cccc}
& I & & 0 \\
1 & \ldots & 1 & 1
\end{array}\right]
$$

where L and V are the sub-matrices of the matrix Γ given in (3.5) and $U=[V, \ldots V]$. We prove that the two matrices Γ and G are conjugate by the matrix P, that is to say $P^{-1} G P=\Gamma$.
The inverse of matrix P is given by

$$
P^{-1}=\left[\begin{array}{rccc}
& I & & 0 \\
-1 & \ldots & -1 & 1
\end{array}\right]
$$

We have

$$
P^{-1} G P=\left[\begin{array}{ccc}
& L & \\
\gamma_{n 1} & \ldots & \gamma_{n n-1}
\end{array}-\sum_{j=1, j \neq 1}^{n} \gamma_{j n}\right]=\Gamma .
$$

Two conjugate matrices have the same eigenvalues. As the matrix G is triangular by block, these eigenvalues are zero and the eigenvalues of the matrix $L-U$. Therefore, since 0 is an simple eigenvalue of the matrix Γ, the eigenvalues of the matrix $L-U$ are the eigenvalues of the matrix Γ except 0 . By Lemma 3.1 all non-zero eigenvalues of Γ have negative real part.

Lemma B.2. Let $\left(u_{n}\right)_{n \geq 1},\left(v_{n}\right)_{n \geq 1}$ and $\left(w_{n}\right)_{n \geq 1}$ be three real and non-negative sequences. Then,

1. if $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$ are both non-increasing, or both non-decreasing, then we have, for all $N \geq 1$,

$$
\begin{equation*}
\left(\sum_{n=1}^{N} w_{n}\right)\left(\sum_{n=1}^{N} w_{n} u_{n} v_{n}\right) \geq\left(\sum_{n=1}^{N} w_{n} u_{n}\right)\left(\sum_{n=1}^{N} w_{n} v_{n}\right) \tag{B.1}
\end{equation*}
$$

2. if $\left(u_{n}\right)_{n \geq 1}$ is non-decreasing and $\left(v_{n}\right)_{n \geq 1}$ is non-increasing, or if $\left(u_{n}\right)_{n \geq 1}$ is nonincreasing and $\left(v_{n}\right)_{n \geq 1}$ is non-decreasing, then, we have, for all $N \geq 1$,

$$
\begin{equation*}
\left(\sum_{n=1}^{N} w_{n}\right)\left(\sum_{n=1}^{N} w_{n} u_{n} v_{n}\right) \leq\left(\sum_{n=1}^{N} w_{n} u_{n}\right)\left(\sum_{n=1}^{N} w_{n} v_{n}\right) . \tag{B.2}
\end{equation*}
$$

In both items, if $\left(u_{n}\right)_{n \geq 1}$ is not constant, then the inequality in the conclusion is strict.
Proof. We prove Item 1 by induction on N, in the case when $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$ are both non-decreasing, the other case being identical. Obviously, Equation (B.1) holds for $N=1$. Now, assume that (B.1) holds for N, then we proceed to show that (B.1) holds for $N+1$. Since

$$
u_{n+1}\left[w_{1}\left(v_{n+1}-v_{1}\right)+\ldots+w_{n}\left(v_{n+1}-v_{n}\right)\right] \geq u_{1} w_{1}\left(v_{n+1}-v_{1}\right)+\ldots+u_{n} w_{n}\left(v_{n+1}-v_{n}\right)
$$

the inequality being strict if $\left(u_{n}\right)_{n \geq 1}$ is not constant, we observe that

$$
\begin{equation*}
\sum_{n=1}^{N} w_{n} u_{n} v_{n}+\left(\sum_{n=1}^{N} w_{n}\right) u_{N+1} v_{N+1} \geq\left(\sum_{n=1}^{N} w_{n} v_{n}\right) u_{N+1}+\left(\sum_{n=1}^{N} w_{n} u_{n}\right) v_{N+1} \tag{B.3}
\end{equation*}
$$

From the induction hypothesis and the equation (B.3), it follows that

$$
\begin{aligned}
\left(\sum_{n=1}^{N+1} w_{n}\right)\left(\sum_{n=1}^{N+1} w_{n} u_{n} v_{n}\right) & =\left(\sum_{n=1}^{N} w_{n}\right)\left(\sum_{n=1}^{N} w_{n} u_{n} v_{n}\right)+w_{N+1}\left(\sum_{n=1}^{N} w_{n} u_{n} v_{n}\right) \\
& +w_{N+1}^{2} u_{N+1} v_{N+1}+\left(\sum_{n=1}^{N} w_{n}\right) w_{N+1} u_{N+1} v_{N+1} \\
& \geq\left(\sum_{n=1}^{N} w_{n}\right)\left(\sum_{n=1}^{N} w_{n} u_{n} v_{n}\right)+w_{N+1}^{2} u_{N+1} v_{N+1} \\
& +\left(\sum_{n=1}^{N} w_{n} v_{n}\right) u_{N+1} w_{N+1}+\left(\sum_{n=1}^{N} w_{n} u_{n}\right) v_{N+1} w_{N+1} \\
& \geq\left(\sum_{n=1}^{N} w_{n} u_{n}\right)\left(\sum_{n=1}^{N} w_{n} v_{n}\right)+w_{N+1}^{2} u_{N+1} v_{N+1} \\
& +\left(\sum_{n=1}^{N} w_{n} v_{n}\right) u_{N+1} w_{N+1}+\left(\sum_{n=1}^{N} w_{n} u_{n}\right) v_{N+1} w_{N+1} \\
& =\left(\sum_{n=1}^{N+1} w_{n} u_{n}\right)\left(\sum_{n=1}^{N+1} w_{n} v_{n}\right) .
\end{aligned}
$$

This completes the proof of item 1 .
Equation (B.2) can then be proved by reversing all the inequalities in the proof of (B.1) above.

This result is proved by DeAngelis et al. [7, Lemma 2.6] for Part (2) and in [8, Proposition A.3] for part (1), where $w_{n}=1$ for all $n \geq 1$. Here we generalize this result for any positive sequence.

References

[1] Arditi R, Lobry C, Sari T (2015) In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation. Theoretical population biology 106: 45-59. http://doi:10.1016/j.tpb.2015.10.001
[2] Arditi R, Lobry C, Sari T (2018) Asymmetric dispersal in the multipatch logistic equation. Theoretical population biology 120: 11-15. http://doi: 10.1016/j.tpb.2015.10.001
[3] Arditi R, Bersier L.-F, Rohr R. P (2017) The perfect mixing paradox and the logistic equation: Verhulst vs. Lotka: Reply. Ecosphere 8 (7) . http:// e01894. 10.1002/ecs2. 1894
[4] Arino J, Bajeux N, Kirkland S (2019) Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement. Bulletin of Mathematical Biology 81:19161942. https://doi.org/10.1007/s11538-019-00593-1
[5] Cosner C, Beier J. C, Cantrell R S, Impoinvil D, Kapitanski L, . Potts M D, Troyo A, Ruan S (2009) The effects of human movement on the persistence of vector-borne diseases. J. Theoret. Biol. 258: 550-560.
[6] DeAngelis D L, Travis C C, Post W M (1979) Persistence and stability of seeddispersel species in a patchy environment. Theoretical population biology 16:107125. http://dx.doi.org/10.1016/0040-5809(79)90008-X
[7] DeAngelis D L, Ni W, Zhang B (2015) Dispersal and heterogeneity: single species. J Math Biol 72:239-254. http:// doi:10.1007/s00285-015-0879-y
[8] DeAngelis D L, Ni W, Zhang B (2016) Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems. Theor Ecol 9. http:// doi 10.1007/s12080-016-0302-3
[9] DeAngelis D L, Zhang B (2014) Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach. Discrete Contin. Dyn.Syst. Ser. B 19: 3087-3104. http://dx.doi.org/10.3934/dcdsb.2014.19.3087
[10] Elbetch B, Benzekri T, Massart D, Sari T (2020) The multi-patch logistic equation. Discrete Contin. Dyn.Syst. Ser. B http://dx.doi.org/10.3934/dcdsb. 2021025
[11] Freedman H I , Rai B, Waltman P (1986) Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat. Journal of mathematical analysis and applications 115:140-154.https://doi.org/10.1016/0022-247X(86)90029-6
[12] Freedman H I, Waltman P (1977) Mathematical Models of Population Interactions with Dispersal I: Stability of two habitats with and without a predator. SIAM JAppl Math 32: 631-648. http://dx.doi.org/10.1137/0132052
[13] Guo H, Li M Y, Shuai Z (2006) Global stability of the endemic equilibrium of multigroup SIR epidemic models. Canad. Appl Math Quart 14: 259-284.
[14] Hanski I (1999) Metapopulation Ecology. Oxford University Press.
[15] Holt R D (1985) Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution. Thero popul biol 28: 181-201. http://dx.doi.org/10.1016/0040-5809(85)90027-9
[16] Lobry C, Sari T, Touhami S (1998) On Tykhonov's theorem for convergence of solutions of slow and fast systems. Electron. J. Differential Equations 19: 1-22. http://refhub.elsevier.com/S0040-5809(15)00102-1/sbref11
[17] Levin S A (1974) Dispersion and population interactions. Amer. Natur 108: 207228. https://doi.org/10.1086/282900
[18] Levin S A (1976) Spatial patterning and the structure of ecological communities in Some Mathematical Questions in Biology VII. Amer Math Sot Vol. 8, Providence, RI.
[19] Tikhonov A N (1952) Systems of differential equations containing small parameters in the derivatives. Mat. Sb. (N.S.) 31: 575-586. http://refhub.elsevier.com/S0040-5809(15)00102-1/sbref18
[20] Wasow W R (1976) Asymptotic Expansions for Ordinary Differential Equations. Robert E. Krieger Publishing Company, Huntington, NY.
[21] Yurk B P, Cobbold C A (2018) Homogenization techniques for population dynamics in strongly heterogeneous landscapes. Journal of Biological Dynamics 12(1):171-193. https://425 doi.org/10.1080/17513758.2017.1410238
[22] Zaker N, Ketchemen L, Lutscher F (2020) The Effect of Movement Behavior on Population Density in Patchy Landscapes. Bulletin of Mathematical Biology 82(1):1-24. https://doi.473 org/10.1007/s11538-019-00680-3

Adresses :

Bilel Elbetch : Department of Mathematics, University Dr. Moulay Tahar, Saida, Algeria.
email : bilel.elbetch@univ-saida.dz
Tounsia Benzekri : Department of Mathematics, USTHB, Bab Ezzouar, Algiers, Algeria. email : tbenzekri@usthb.dz
Daniel Massart: IMAG, CNRS, Univ Montpellier, France, email : daniel.massart@umontpellier.fr
Tewfik Sari : ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France. email : tewfik.sari@irstea.fr

