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This paper explores the post-critical behaviour of two-degree-of-freedom flat plate and 
NACA0018 section model undergoing coupled-mode flutter in a wind tunnel. Tests are 
performed at moderate Reynolds number 𝑅𝑒~1 − 8×10! using an aeroelastic set-up that 
enables high amplitude pitch-plunge motion without nonlinear structural limitations. For both 
models, two aeroelastic configurations have been studied: for a centre of rotation at the first 
quarter chord and for a centre of rotation at the mid-chord. Each configuration exhibits 
self-limited oscillations du to nonlinear aerodynamics saturation beyond the critical velocity. 
However, limit cycle oscillations (LCOs) evolution versus the reduced velocity highlight 
strong different behaviours between the flat plate and the NACA0018 model, along with a 
significant impact of the position of the elastic center. For the flat plate model two LCOs 
branches have been found in the post-critical regime. The first one is reached increasing the 
velocity beyond the coupled-mode flutter critical velocity and the second one occurs when the 
LCOs amplitude in pitch enter the stall region. This second LCO branch is then associated to a 
symmetric stall flutter regime. For the flat plate model the switch to symmetric stall flutter has 
only been observed for the configuration with the elastic axis at the mid-chord. For the 
NACA0018 model two LCOs branches have also been observed but the dynamical responses 
are also significantly impacted by a pure pitch instability that can be attributed to the 
motion-induced dynamics of a laminar separation bubble at moderate Reynolds number.  

 
Keyword: low speed flutter, limit cycle oscillation, nonlinear aeroelasticity, stall flutter, wind 
tunnel  

 
1. INTRODUCTION 

Observed since the early days of flight the coupled-mode flutter of airplane wing is a dynamic 
instability for which self-sustained oscillations of great violence occurs above a critical speed. Often called 
“classical” flutter this instability involves at least two modes of the system and, unlike the stall flutter, its 
onset does not rely on any flow separation. It can hence be observed on wing with no angle of attack if not 
properly designed. Theory of flutter based upon linear unsteady aerodynamic formulations has been 
successfully developed to predict the critical conditions for the generic case of a two degrees of freedom 
“pitch-plunge” oscillating wing (Theodorsen1); Sears2)). Since those early works the physical explanation of 
bending-torsion flutter has also been highlighted (see for example Fung3), Bisplinghoff and Ashley4) or 
Dowell5)). It is now well understood that the classical flutter relies on fluid-elastic coupling between the 
structural modes. Indeed combined plunging and pitching motions can produce, above a critical flow velocity, 
interactions and phase shifts in a way that energy is transferred from the flow to the structure.  

Unlike classical flutter, stall flutter is a dynamic instability that does not depend on coupling 
(Naudascher and Rockwell6)). This phenomenon is of particular importance for wing or blade operating at 
high angle of attack as for helicopter aerodynamics7) and wind turbine blades8). In such cases torsion is the 
mode of vibration most commonly involved. The mechanism for energy transfer then relies on a dynamic stall 
process for which the flow separates partially or completely during each cycle of oscillation6). Due to the 
nonlinear nature of the aerodynamic load involved, stall flutter is limited in amplitude (McCroskey9), Li and 
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Dimitriadis10)). Many studies have been devoted to the dynamic stall process experienced by a wing 
oscillating around the static stall angle of attack (McCroskey and Philippe11); Carr et al12)). 

Regarding coupled-mode or stall flutter of airfoils numerous investigations on the post-critical 
behaviour can be found. Most of this studies focus on the impact of nonlinearities encountered in aeronautics 
(see Dowell et al13) and Lee et al14) for a review), such as the impact of concentrated structural nonlinearities15), 
control surface freeplay16), shock wave motion in transonic flow17) or stall flutter of airfoil18,19,20). Recent 
experimental studies performed by Dimitriadis & Li21) and Razak et al22) using a pitch-plunge section model 
setup are also to be mentioned. In the former study experiments conducted on a NACA0012 section model 
focussed on the bifurcation behaviour to stall flutter after large perturbation are imposed to the system. In the 
later study the authors mainly focused on the effect of the mean static angle of a NACA0018 section model to 
the dynamical response of the system. Price and Fragiskatos23) also performed a numerical aeroealastic study 
on a two-degree-of-freedom pitch-plunge airfoil using a dynamic stall model for the prediction of the high 
amplitude nonlinear unsteady aerodynamics. They identified limit cycle oscillations (LCO) beyond the critical 
velocity and a gradual increase of LCO amplitude with the velocity, which was recently confirmed 
experimentally by Amandolese et al24).  

In the new and challenging field of energy harvesting through fluid-structure instabilities, the 
coupled-mode flutter mechanism has been recently scrutinized25,26). A greater focus on post-critical behaviour 
is however necessary in order to improve the characterization, physical understanding and modeling of the 
large amplitude self-sustained vibrations resulting from these instabilities. The aim of this paper is to provide 
experimental results in that context.  

The paper is organized as follows: the experimental set-up along with the relevant non-dimensional 
parameters of the four tested configurations are presented in section 2. Post-critical flutter results are then 
reported and discussed in Section 3, highlighting LCOs amplitudes and frequencies evolutions with the 
reduced velocity. 
 
2. EXPERIMENTAL SET-UP 

The experiments were performed on two section models: a rigid flat rectangular steel plate of span 
E=0.225m, chord length c =0.035m and thickness tc=0.0015m, corresponding to a thickness-to-chord ratio of 
4.3% and a NACA0018 section model of span E=0.225m and chord length c =0.04m, made of aluminum. For 
the NACA0018 model, sand grains were glued near the leading edge in order to trigger the boundary layer 
laminar-turbulent transition.  

Each model was flexibly mounted in plunge and pitch in a small Eiffel wind tunnel (Fig. 1), with a 
closed rectangular test-section of 0.26 m width and 0.24 m height. A particular attention was paid to the 
design of a set-up that can allow high amplitude linear response in pitch and plunge. Small chord dimension 
have been chosen for both models in order to limit blockage effects for high amplitude oscillations. End plates 
were also mounted at each extremity in order to limit end effects. The set-up is shown in Fig. 1.  

The vertical stiffness of the system was set by two long steel laminated springs and two sets of 
additional linear springs. The axis of rotation was linked to the laminated springs by two bearings mounted at 
both end and the rotational stiffness was set by two spiral torsion springs. For each section model two position 
of the centre of rotation have been tested: at the first quarter chord and at the mid-chord. Results will then be 
presented for four aeroelastic configurations named: “FP14”, “FP12” for the flat-plate with axis of rotation at 
the first quarter chord and mid-chord respectively and “N14”, “N12” for the NACA18 model with axis of 
rotation at the first quarter and mid chord respectively.  

Tests were performed for a mean velocity in the test-section varying from 4 to 30m/s, with a 
turbulence level less than 0.4% over this velocity range. In the present study the mean angle of attack of the 
model is set to zero.  

The two degrees of freedom ℎ 𝑡  and 𝛼 𝑡  (see Fig. 1) were measured using two laser displacement 
sensors connected to a 24 bits resolution acquisition system. The first one directly measured the vertical 
plunging motion at the elastic axis, while the second one measured the combined movement in plunge and 
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pitch. Recovery of the physical quantities ℎ 𝑡  and 𝛼 𝑡  was performed by numerical post-processing with 
an accuracy less than 2%. The sampling frequency was chosen as 1024Hz and spectral analysis was 
performed on time block over 8 seconds which gives a frequency resolution lower than 0.125 Hz. 

 

  
Figure 1: Side view of the setup with the NACA0018 section model (left); definitions and notations of 

the aeroelastic setup (right). 
 

(2.1) Stuctural parameters 
Under zero wind condition, the linearized equations of motion can be expressed as in Eq. 1 : 

 
𝑚ℎ + 𝐷!ℎ + 𝐾!ℎ + 𝑆!𝛼 = 0,
𝐼!𝛼 + 𝐷!𝛼 + 𝐾!𝛼 + 𝑆!ℎ = 0,

 (1) 

where the parameters 𝑚, 𝐼! ,𝐷! ,𝐷! ,𝐾! ,𝐾! ,  are the system’s mass, moment of inertia about the elastic axis, 
structural damping and stiffness in plunge and pitch, respectively. 𝑆! = 𝑚𝑥!"  is the static moment about the 
elastic axis, positive if the distance 𝑥!"  from the elastic axis to the centre of gravity is positive. A static 
weight calibration technique was used to measure both the stiffness in plunge and pitch. Free decay tests were 
performed for each degree of freedom taken independently (the other one being locked) to identify the natural 
frequencies, 𝜔! = 𝐾! 𝑚   and 𝜔! = 𝐾! 𝐼! by spectral analysis, and the damping ratios, 𝜂! =
𝐷! 2 𝐾!𝑚   and 𝜂! = 𝐷! 2 𝐾!𝐼! using a standard decrement technique. The total mass m and inertia 𝐼! 
of the system were then calculated using the measured stiffness and natural frequencies.  
The static unbalance of the section model about the elastic axis 𝑆! was identified using the following 
expression (see Bisplinghoff and Ashley4)): 

 𝑆! = 𝑚𝐼! 1 − !!
!!!!!

!!!!!!!
, (2) 

where 𝜔!   and 𝜔! are the natural frequencies of the coupled system. 
A particular attention was devoted to design a setup that allows a structural linear behaviour in 

stiffness and damping. Static calibration that has been performed showed that the bending stiffness behaves 
linearly in the range -0.6 ≤ h/b ≤ 0.6 and that the stiffness in rotation is linear up to 90° of amplitude. 
Regarding the damping, results of free decay tests performed for various amplitude showed that the structural 
damping behaves linearly in plunge but significantly increases in pitch for low angle of attack ( 𝛼 < 2  deg), 
because of the solid friction induced by the bearings. As a consequence, the system can be affected by 
nonlinear behaviour of the setup at small amplitude in pitch. This will be discussed later. 

Four different configurations have been studied (two section model and two position of the centre of 
rotation). The non-dimensional parameters of each configuration are reported in Tab. 1 with 𝜔! 𝜔! the ratio 
of plunge to pitch natural frequencies, 𝑟! = 𝐼! 𝑚𝑏! the non-dimensional radius of gyration of the system 
about its elastic centre, 𝜇 = 𝑚 𝜋𝜌𝑏!𝐸  the solid/fluid mass ratio (introducing E, the span of the model) and 
𝑥! = 𝑥!" 𝑏 the non-dimensional distance from the elastic centre to the centre of gravity (counted positively 
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toward the trailing edge). Note that for each position of the centre of rotation mass and inertia have been 
adjusted to maintain the same value of 𝑥! for both the flat-plate and NACA0018 configurations. 

For each configuration the coupled-mode flutter critical reduced velocity 𝑈!∗ = 𝑈! 𝑏𝜔! has been 
calculated solving the eigenvalue problem of the aeroelastic system using the full linear Theodorsen’s 
formulations1) for the motion induced lift and moment (see Bisplinghoff and Ashley4) and Amandolese et al24) 
for more details on the procedure). Results are reported on Table 1 along with the critical reduced velocity 
𝑈!"∗  associated to torsional divergence static stability. According to those results each configuration should 
start to flutter for 𝑈!∗ < 16 and their post-critical behaviour can be studied up to 2.5 times the flutter critical 
velocity. 

 
Table 1: Non-dimensional parameters of the four aeroelastic configurations 

 𝜔! 𝜔! 𝑟!  𝜇 𝜂! 𝜂! 𝑥! 𝑈!∗ 𝑈!"∗  
FP1/4 0.805   0.695   2887   0.0008   0.01   0.12   15.2   /  
FP1/2 0.792   0.684   2896   0.0008   0.01   0.06   13.8   36.8  
N1/4 0.808   0.610   1996   0.0008   0.01   0.12   11.9   /  
N1/2 0.785   0.593   2247   0.0008   0.01   0.06   11   28.1  

 
 
3. LOW SPEED FLUTTER RESULTS 

Experiments were performed in the velocity range of the wind tunnel ranging from 4 up to 30m/s (i.e. 
𝑅𝑒~1 − 8×10!). For each configuration (a section model for a specific position of the axis of rotation), the 
bifurcation diagrams were identified as following: for a fixed wind tunnel speed the stability of the system is 
checked to small initial perturbations. If the system is stable the procedure is repeated for a higher velocity 
until the critical reduced velocity, 𝑈!∗, is found. The dynamical response is then measured increasing the 
velocity up to a limit value and decreasing the velocity down to a lower critical velocity, 𝑈!∗∗, for which the 
system is damped. 

For each velocity beyond 𝑈!∗∗ the system reaches LCO regime for which frequency and amplitude 
in pitch and plunge have been measured. In some case the amplitude of the LCO are modulated with time. An 
« error bar » is then associated to each point reported on Figs 2-8 in order to appreciate the maximum value 
(top of the bar) and minimum value (bottom of the bar) of the LCOs amplitude. 
 
(3.1) Flat-plate and NACA0018 section models for the elastic axis at the first quarter chord 

The bifurcation diagrams, i.e. LCO amplitude in pitch and plunge versus the reduced velocity, are 
reported in Figs. 2 for the “FP14” configuration and Fig 3 for the “N14” configuration. For both 
configurations the elastic axis is set to the first quarter chord and apart from the mass ratio the 
non-dimensional aeroelastic parameters are close. Nevertheless one can clearly notice that the post-critical 
behaviours are strongly different.  

For the flat-plate model with velocity increasing the system undergoes a first bifurcation for a 
critical velocity 𝑈!∗ ≈ 18 which is 20% higher than the value predicted by the linear stability analysis. 
Following an initial small perturbation the system reaches a stable limit cycle oscillation regime of small 
amplitude in pitch, 𝛼!"# ≈ 5° and moderate amplitude in plunge ℎ!"# 𝑏 ≈ 0.13 that increase almost 
linearly to reach values up to 𝛼!"# ≈ 10° in pitch and ℎ!"# 𝑏 ≈ 0.25 in plunge at 𝑈∗ ≈ 30. Decreasing 
the reduced velocity the system remains in the same LCO branch down to a smaller critical velocity 𝑈!∗∗ ≈ 13 
for which the system is damped. This hysteretic behavior, suggesting a subcritical instability is certainly due 
to the structural nonlinearity induced by the bearings at low amplitude of rotation. 
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Figure 2: LCO amplitude in pitch (left) and plunge (right) versus the reduced velocity for the « FP14 » 

configuration: flat-plate section model with the elastic axis at the first quarter chord;. 
 

For the NACA0018 model the dynamic of the system is strongly different. The system undergoes a 
first bifurcation for a critical velocity 𝑈!∗ ≈ 11 which is 7.5% lower than the one predicted by the linear 
stability analysis. The system then follow a first LCO branch characterized by small amplitude of oscillation 
in pitch 3° < 𝛼!"# < 8° and moderate amplitude in plunge 0.09 < ℎ!"# 𝑏 < 0.12. For a reduced velocity 
𝑈∗ ≈ 16 the system undergoes a second bifurcation and switches to a LCO branch characterized by higher 
amplitude in pitch 30° < 𝛼!"# < 35° and amplitude in plunge that gradually increases with the reduced 
velocity up to ℎ!"# 𝑏 ≈ 0.19 at 𝑈∗ ≈ 25. Decreasing the reduced velocity the system remains in the second 
LCO branch down to a critical velocity 𝑈!∗∗ ≈ 11.3 for which it goes back to the first LCO branch. 
 

  
Figure 3: LCO amplitude in pitch (left) and plunge (right) versus the reduced velocity for the « N14 » 

configuration: NACA0018 model with the elastic axis at the first quarter chord. 
 

LCOs frequencies evolution with the reduced velocity are reported in Fig. 4 for both the « FP14 » and 
« N14 » configurations. It is iterresting to notice that for the flat-plate model the couple mode flutter 
frequency start close to the plunge natural frequency and gradually increases with the reduced velocity. Those 
results are in accordance with the linear statbility ananlysis that predicts a destabilization of the plunging 
branch of the system. On the other hand if the frequency evolution behaves the same way in the first LCO 
branch for the NACA0018 model, the switch to the second LCO branch is associated to a sudden increase of 
the frequency of oscillations that is now sligly over the natural frequency in pitch. Those results suggest that 
the second LCO branch is dominated by a symmetric stall flutter regime.  

 
To further investigate the observed discrepancy between the flat plate and NACA0018 model the 

aeroelastic response of the NACA0018 profile have been tested in a one degree of freedom “pure pitch” 
configuration. The LCO amplitude evolution versus the reduced velocity is reported in Fig. 5. It clearly shows 
that the model experiences self-sustained oscillations of small amplitude in the reduced velocity range 
9.5 < 𝑈∗ < 16. That kind of velocity bounded instability in pure pitch was first reported by Poirel27,28) on a 
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NACA0012 section model at moderate Reynolds number 𝑅𝑒~4.5 − 13×10!. According to Poirel it can be 
attributed to the motion-induced dynamics of a laminar separation bubble. In the light of these results it is then 
possible that the “N14” pitch-plunge configuration was significantly affected by a laminar separation flutter28) 
process that can trig the first onset of flutter and plays a role in the quick entrance in the symmetric stall flutter 
regime. 
 

  
Figure 4: LCO frequency evolution versus the reduced velocity for the « F14 » configuration (left) 

and « N14 » configuration (right). 
 

  
Figure 5: LCO amplitude versus the reduced velocity for the NACA0018 section model in pure pitch 

with the elastic axis at the first quarter chord. 
 
(3.2) Flat-plate and NACA0018 section models for the elastic axis at the mid-chord 

The bifurcation diagrams in pitch and plunge are reported in Figs. 6 for the “FP12” configuration 
and Fig 7 for the “N12” configuration. The elastic axis is set here at the mid-chord and as for the previous 
configurations, mass and inertia have been adjusted in order to set the main non-dimensional aeroelastic 
parameters as close as possible. Here again the flat-plate and NACA0018 models exhibit strongly different 
behaviours.  

With the flat-plate model the system undergoes a first bifurcation for a critical velocity 𝑈!∗ ≈ 11.9 
which is 14% lower than the value predicted by the linear stability analysis. Increasing the wind velocity the 
system then follows a first stable LCO branch characterized by small and gradually increasing amplitude in 
pitch 2° < 𝛼!"# < 7° for 12 < 𝑈∗ < 16, and moderate amplitude in plunge that first increases to reach a 
top value ℎ!"# 𝑏 ≈ 0.22 at 𝑈∗ ≈ 14. Beyond that reduced velocity the amplitude of oscillation in plunge 
decreases and is strongly modulated. The amplitude of modulation growths until 𝑈∗ ≈ 16 where the system 
switch to a second LCO branch characterized by high oscillations in pitch with amplitude that increases 
linearly up to 𝛼!"# ≈ 60° at 𝑈∗ ≈ 20. In the same time the amplitude of oscillation in plunge also increases 
with the reduced velocity but remain significantly modulated. Decreasing the reduced velocity from 𝑈∗ ≈ 20 
the system remains in the second LCO branch down to almost the same critical velocity 𝑈!∗∗ ≈ 12 for which 
the system is damped. 
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Figure 6: LCO amplitude in pitch (left) and plunge (right) versus the reduced velocity for the 

« FP12 » configuration: flat-plate section model with the elastic axis at the mid-chord. 
 
For the NACA0018 model the dynamics of the system is strongly different. The system undergoes a 

first bifurcation for a critical velocity 𝑈!∗ ≈ 8 which is 25% lower than the value predicted by the linear 
stability analysis. Beyond that critical point the system gradually follow a stable LCO branch characterized by 
moderate amplitude of oscillation in plunge but large amplitude of oscillation in pitch. At 𝑈∗ ≈ 15 the 
system reaches 𝛼!"# ≈ 65°. The self-sustained response of the system in pure pitch configuration is also 
reported in Figure 7 (left). It clearly shows that the dynamic of the system is dominated by a pure pitch 
instability. The onset of this instability is certainly due to a laminar separation bubble fluttering process that 
trigs the system to a very energetic symmetric stall flutter regime.     

 

  
Figure 7: LCO amplitude in pitch (left) and plunge (right) versus the reduced velocity for the 

« N12 » configuration : NACA0018 section model with the elastic axis at the mid-chord. 
 

  
Figure 8: LCO frequency evolution versus the reduced velocity for the « F12 » configuration (left) 

and « N12 » configuration (right). 
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LCOs frequencies evolution with the reduced velocity are reported in Fig. 8 for both the « FP12 » 
and « N12 » configurations. For the flat-plate two frequency regimes are clearly highlighted: the first one is 
associated to the first coupled-mode flutter branch and the second one shows that the system is dominated by 
the natural ferquency in pitch and thus a stall flutter regime. For the NACA0018 configuration the system is 
fully dominated by a pure pitch istability and the LCO frequencies remains close to the natural frequency in 
picth. 
 
4. CONCLUSIONS 

The post-critical behaviour of two degree-of-freedom airfoils undergoing low speed flutter have 
been studied in wind tunnel for moderate Reynolds number 𝑅𝑒~1 − 8×10!. Tests have been performed on 
both flat-plate and NACA0018 section models, using an aeroelastic set-up that enables high amplitude 
pitch-plunge motion. For each section model two aeroelastic configurations have been studied : first for a 
centre of rotation at the first quarter chord and a non-dimensional distance from the elastic centre to the centre 
of gravity 𝑥! ≈ 0.12 and second, for a centre of rotation at the mid-chord and 𝑥! ≈ 0.06. Each 
configuration was designed to observe the onset of coupled-mode flutter at moderate reduced velocity 
𝑈!∗ < 16 away from an eventual static divergence instability so that their post-critical behaviour can studied 
over a large velocity range. Results have been reported in term of bifurcation diagrams, i.e. LCOs amplitude 
and frequency evolution in both pitch an plunge versus the reduced velocity, increasing the velocity up to a 
limit value and then decreasing the reduced velocity down to stable position. 

Results have highlighted strong discrepancies between the flat-plate and the NACA0018 section 
model. For both the elastic axis position, the flat-plate model first undergoes a coupled mode flutter in 
accordance with the prediction of linear stability analysis, i.e. a destabilisation of the heaving branch. For the 
elastic centre at the first quarter chord the system remains in a unique LCOs branch characterized by a low 
increasing amplitude in pitch and moderate amplitude in plunge up to a reduced velocity 2.5 time higher than 
the critical flutter velocity. For the elastic centre at the mid-chord the system switches to a symmetric stall 
flutter regime for 𝑈∗ ≈ 1.4×𝑈!∗ which is characterized by high amplitude in pitch and moderate amplitude in 
plunge that increase linearly with the reduced velocity. 

For the NACA0018 model two LCOs branches have also been observed but here only for the 
configuration with the elastic axis at the first quarter chord. Indeed the dynamics of the system seems to be 
significantly enhanced by a laminar separation bubble fluttering process. For the configuration with the elastic 
axis at the mid-chord the post-critical flutter behaviour is then fully dominated by a pure pitch instability. The 
onset of this instability is certainly due to a laminar separation flutter that trigs the system to a strong 
symmetric stall flutter regime characterized by very high and stable limit cycle oscillations in pitch and 
moderate amplitude of oscillations in plunge. 
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