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Abstract

This study deals with the non-linear finite element computation of thin flexible structures loaded by hydrostatic forces due to
the presence of an internal liquid at rest. In aerospace application, the dynamic behaviour of structures containing an inviscid
incompressible fluid (i.e. launcher with liquid propellant, tank of satellite, etc.) is generally computed considering an equilibrium
state resulting from a linear fluid-structure interaction problem. It is important to note that in this case, the gravity plays an
important role in vibrations and the so called elastogravity operator should be taken into account [1,2]. In the present work, we
consider the large deformation behavior of a structure loaded by hydrostatic follower forces in order to obtain an accurate static
equilibrium state. The solution is computed using a Newton-Raphson algorithm considering the geometrical and material tangent
stiffness matrices as well as the contribution of the follower forces [3]. Those linearized operators of the iterative algorithm are
used to compute the dependancy between the incremental horizontal level of the free surface, under the fluid volume conservation
constraint [4]. Special attention is paid to the finite element discretization of the wetted surface, considering a level-set method
[6,7]. Some numerical examples are analyzed to show the efficiency of the proposed approach.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

Computation of the dynamic behavior of a flexible tank containing a heavy fluid is often studied in aerospace
engineering (i.e. launcher with liquid propellant, tank of satellite, etc.). Before performing any dynamic analysis of
the coupled fluid-structure system, a quasi-static equilibrium state can be obtained using a linearization around the
reference configuration. This linearization leads to a non-conventional elastogravity operator [1,2]. In the present
paper we propose a finite-element approach able to compute the structural pre-stressed state considering material
and geometrical nonlinearities. The objective is to take into account the effect of the fluid (assumed at rest and
incompressible) on the structure, without volumetric mesh of the fluid domain. The idea is to compute hydrostatic
follower forces acting on the wetted surface of the structure. Expected results are the quasi-static equilibrium states
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from an empty to a fulfilled state of the tank. A technical difficulty of the numerical method is due to the inviscid
fluid hypothesis: the wetted surface does not remain coincident with the initial mesh at the fluid-structure interface.
One of the main contributions of this article lies on the use of a flexible level-set method which takes into account
the discontinuity of the wetted surface. The outline of the paper is the following. In section 2 we present the fluid-
structure hypotheses. Section 3 deals with the finite element formulation in the reference configuration. In section
4, we detail the linearization of the virtual external work used in the Newton-Raphson algorithm. This leads to the
construction of the follower forces tangent stiffness matrix defined in a curved elementary surface. In section 5, the
level-set method [6,7] is introduced to overcome the slip condition difficulty at the fluid-structure interface. Note that
we also satisfy the fluid volume conservation. In section 6, a numerical example from [4] is studied to evaluate the
convergence rate of our method and compare our results with the literature.

2. Reference problem

zf free-surface height

Reference configuration Ω0
s Current configuration Ωs

g

ex

ez

ey

t = p(z, t)n p(z, t)

g

t0

∂tΩ
0
s ∂tΩs

Fig. 1. Structure in its reference configuration and its current configuration loaded by a hydrostatic following forces (only the internal face of the
tank with the follower forces are represented)

Let’s assume a hyperelastic model for the structure and an invicid incompressible model for the heavy fluid. The
fluid loading corresponds to a hydrostatic pressure p(z, t) supported by the normal n at the current fluid-structure
interface, also called the wetted surface. The hydrostatic pressure field is define in ∂tΩs as

p(x, t) = 0 if z � zf(t)

p(x, t) = −ρfg(z − zf ) if z < zf(t)
(1)

where ρf is the fluid density and zf the free-surface height. An additional constrain has to be taken into account :
the internal fluid volume contained below the free-surface eight is contant.

3. Finite element formulation of the non-linear problem

The variational formulation of the NL structural problem in its current configuration is classicaly [5] written as

−
∫
Ωs
σ : δd dv +

∫
∂tΩs

t · δu̇ ds = 0, ∀ δu̇ ∈ Cu (2)

where σ is the Cauchy strain tensor, δd is the rate of deformation tensor and Cu the admissible space of displace-
ment functions assumed smooth enought. This formualtion is written in the reference configuration as

−
∫
Ω0

s

S : δĖ dV +
∫
∂tΩ

0
s

t0 · δu̇ dS = 0, ∀ δu̇ ∈ Cu (3)

where S and E are respectively the second Piola-Kirchhoff stress tensor and the Green-lagrange strain tensor.
Under the assumption of large displacements and small strains, we consider a Saint-Venant Kirchhoff constitutive law
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aLMSSC, Conservatoire National des Arts et Métiers, 292 Rue Saint-Martin, Paris 75003, France

Abstract

This study deals with the non-linear finite element computation of thin flexible structures loaded by hydrostatic forces due to
the presence of an internal liquid at rest. In aerospace application, the dynamic behaviour of structures containing an inviscid
incompressible fluid (i.e. launcher with liquid propellant, tank of satellite, etc.) is generally computed considering an equilibrium
state resulting from a linear fluid-structure interaction problem. It is important to note that in this case, the gravity plays an
important role in vibrations and the so called elastogravity operator should be taken into account [1,2]. In the present work, we
consider the large deformation behavior of a structure loaded by hydrostatic follower forces in order to obtain an accurate static
equilibrium state. The solution is computed using a Newton-Raphson algorithm considering the geometrical and material tangent
stiffness matrices as well as the contribution of the follower forces [3]. Those linearized operators of the iterative algorithm are
used to compute the dependancy between the incremental horizontal level of the free surface, under the fluid volume conservation
constraint [4]. Special attention is paid to the finite element discretization of the wetted surface, considering a level-set method
[6,7]. Some numerical examples are analyzed to show the efficiency of the proposed approach.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.

Keywords: Large deformation; Hydrostatic fluid loading; Finite element method ;

1. Introduction

Computation of the dynamic behavior of a flexible tank containing a heavy fluid is often studied in aerospace
engineering (i.e. launcher with liquid propellant, tank of satellite, etc.). Before performing any dynamic analysis of
the coupled fluid-structure system, a quasi-static equilibrium state can be obtained using a linearization around the
reference configuration. This linearization leads to a non-conventional elastogravity operator [1,2]. In the present
paper we propose a finite-element approach able to compute the structural pre-stressed state considering material
and geometrical nonlinearities. The objective is to take into account the effect of the fluid (assumed at rest and
incompressible) on the structure, without volumetric mesh of the fluid domain. The idea is to compute hydrostatic
follower forces acting on the wetted surface of the structure. Expected results are the quasi-static equilibrium states

∗ Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000.
E-mail address: christophe.hoareau@lecnam.net

1877-7058 c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.

Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

X International Conference on Structural Dynamics, EURODYN 2017

Non-linear finite element analysis of an elastic structure loaded by
hydrostatic follower forces

C. Hoareaua, J.-F. Deüa
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the discontinuity of the wetted surface. The outline of the paper is the following. In section 2 we present the fluid-
structure hypotheses. Section 3 deals with the finite element formulation in the reference configuration. In section
4, we detail the linearization of the virtual external work used in the Newton-Raphson algorithm. This leads to the
construction of the follower forces tangent stiffness matrix defined in a curved elementary surface. In section 5, the
level-set method [6,7] is introduced to overcome the slip condition difficulty at the fluid-structure interface. Note that
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2. Reference problem
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Fig. 1. Structure in its reference configuration and its current configuration loaded by a hydrostatic following forces (only the internal face of the
tank with the follower forces are represented)

Let’s assume a hyperelastic model for the structure and an invicid incompressible model for the heavy fluid. The
fluid loading corresponds to a hydrostatic pressure p(z, t) supported by the normal n at the current fluid-structure
interface, also called the wetted surface. The hydrostatic pressure field is define in ∂tΩs as

p(x, t) = 0 if z � zf(t)

p(x, t) = −ρfg(z − zf ) if z < zf(t)
(1)

where ρf is the fluid density and zf the free-surface height. An additional constrain has to be taken into account :
the internal fluid volume contained below the free-surface eight is contant.

3. Finite element formulation of the non-linear problem

The variational formulation of the NL structural problem in its current configuration is classicaly [5] written as

−
∫
Ωs
σ : δd dv +

∫
∂tΩs

t · δu̇ ds = 0, ∀ δu̇ ∈ Cu (2)

where σ is the Cauchy strain tensor, δd is the rate of deformation tensor and Cu the admissible space of displace-
ment functions assumed smooth enought. This formualtion is written in the reference configuration as

−
∫
Ω0

s

S : δĖ dV +
∫
∂tΩ

0
s

t0 · δu̇ dS = 0, ∀ δu̇ ∈ Cu (3)

where S and E are respectively the second Piola-Kirchhoff stress tensor and the Green-lagrange strain tensor.
Under the assumption of large displacements and small strains, we consider a Saint-Venant Kirchhoff constitutive law
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S = 2µE + λtr (E) I. The finite element discretization of the variational formulation leads to the non-linear equation
written as

Fint(q) − Fext(q) = 0 (4)

where Fint and Fext are respectively the internal and external force vectors and q the unknown nodal displacement
vector. An iterative algorithm based on a Newton-Raphson method leads to the resolution of linearized equations
defined by

Ktan∆q = R (5)

where R is the residual vector and Ktan the tangent stiffness matrix. This operator is the summation of the material
tangent matrix Kmat , the geometric tangent matrix Kgeo and the follower forces contribution Kpres. This last tangent
stiffness matrix is detailled in the following section.

4. Follower forces contribution

The external virtual work which depends on the free-surface height zf and the current position of the wetted-surface,
is written as

δWpres = −
∫
∂tΩs

δu · p(z, t)nds with p(z, t) = −ρf g (z − zf ) (6)

The discretized virtual external work leads to the construction of the external nodal force vector Fext such that

δWh
pres = δq

T Fext(q) (7)

and its linearization gives the expression of the tangent stiffness Kpres such that

∆δWh
pres = δq

TKpres ∆q (8)

in which δq is the virtual nodal displacement.

4.1. Linearized virtual external work

In order to evaluate Kpres, we use a truncated Taylor expansion of the virtual external work given by

∆δWpres = −
∫
∂tΩs

δu ·
(
∆p(z, t)n + p(z, t)∆n

)
ds = ∆δW p

pres + ∆δW
n
pres (9)

where ∆δW p
pres and ∆Wn

press are respectively the contribution of the pressure field variation and the external normal
variation. We can develop ∆δW p

pres as a function of the structural displacement and the vertical free-surface displace-
ment as

∆δW p
pres = −

∫
∂tΩs

δu · (−ρf g
(
∆uz − ∆uzf

))
nds because ∆z − ∆zf = ∆uz − ∆uzf (10)

and ∆uzf is related to ∆u by the following relation

∆uzf =
∆V
Af
=

∫
∂tΩs

∆u · nds
∫
∂tΩs

n · ezds
(11)

where Af is the free-surface area and ∆V is the volume change due to the wetted surface normal displacement as
illustrated in Fig. 2.
Thus, ∆δW p

pres is given by

∆δW p
pres = ρf g

∫
∂tΩs

δu ·
(
∆u · ez −

1
Af

∫
∂tΩs

∆u · nds
)

nds (12)
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∆V

∆u
∆zf

Af

Fig. 2. Geometric relation between the volume variation and the free-surface height

4.2. Discretized tangent stiffness matrix

In practice, it is usefull to express the discretized elementary matrices defined in an elementary surface. Using
the nodal current position xe and the shape function matrix Φe, the evaluation of the tangent stiffness matrices of the
follower forces (Eq. 9) leads to a variable change detailled below

∫
∂tΩ

e
s

nds =
∫ 1

−1

∫ 1

−1

(
∂xe

∂ξ
∧
∂xe

∂η

)
dξdη =

∫ 1

−1

∫ 1

−1
nedξdη (13)

where ne is the non-unitary external normal of a surfacic element. The external unit normal variation is given by
∫
∂tΩ

e
s

∆nds =
∫ 1

−1

∫ 1

−1

(
∂xe

∂ξ
∧
∂∆xe

∂η
−
∂xe

∂η
∧
∂∆xe

∂ξ

)
dξdη =

∫ 1

−1

∫ 1

−1


∂xe

∂ξ
∧
∂Φe

∂η
−
∂xe

∂η
∧
∂Φe

∂ξ

 dξdη∆qe (14)

The previous equations give us an expression between the external unit normal of the wetted surface and the
position vector in the current configuration. The development of ∆δW pe

pres and ∆δWne
pres in an elementary surface are

given by

∆δW pe
pres = δq

eT
{
ρfg
∫ 1

−1

∫ 1

−1
ΦeT neeT

z Φ
edξdη − ρfg

Afs

(∫ 1

−1

∫ 1

−1
ΦeT nedξdη

) (∫ 1

−1

∫ 1

−1
neTΦedξdη

)}
∆qe (15)

and

∆δWne
pres = δq

eT

−
∫ 1

−1

∫ 1

−1
ΦeT p(z, t)


∂xe

∂ξ
∧
∂Φe

∂η
−
∂xe

∂η
∧
∂Φe

∂ξ

 dξdη

∆qe (16)

From those two equations, we obtain Kpe
press (see Eq. 15) and Kne

press (see Eq. 16) which depend on the wetted-surface
and the unknown nodal displacement vector. An assembly operation in all finite elements leads to the global tangent
stiffness matrix.

5. Wetted surface discretization

5.1. Slip condition at the fluid-structure interface

ex

ez

ey
coincident mesh with the contact line

non-coincident mesh

iteration k iteration k + 1

Fig. 3. Change of the wetted surface at each Newton-Raphson iterations

The fluid is supposed inviscid, thus a slip condition at the wetted surface leads to a transformation of surface
boundary (the contact line). Consequently, the initial discretization of the wetted surface is no more appropriate at
each iteration step. This problem has to be taken into account in the simulation as shown in Fig. 3 and numerous
solutions as level-set method (illustrated in Fig. 4) or remeshing can be done to overcome the difficulty.
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where ne is the non-unitary external normal of a surfacic element. The external unit normal variation is given by
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The previous equations give us an expression between the external unit normal of the wetted surface and the
position vector in the current configuration. The development of ∆δW pe

pres and ∆δWne
pres in an elementary surface are

given by
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and

∆δWne
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From those two equations, we obtain Kpe
press (see Eq. 15) and Kne

press (see Eq. 16) which depend on the wetted-surface
and the unknown nodal displacement vector. An assembly operation in all finite elements leads to the global tangent
stiffness matrix.

5. Wetted surface discretization

5.1. Slip condition at the fluid-structure interface

ex

ez

ey
coincident mesh with the contact line

non-coincident mesh

iteration k iteration k + 1

Fig. 3. Change of the wetted surface at each Newton-Raphson iterations

The fluid is supposed inviscid, thus a slip condition at the wetted surface leads to a transformation of surface
boundary (the contact line). Consequently, the initial discretization of the wetted surface is no more appropriate at
each iteration step. This problem has to be taken into account in the simulation as shown in Fig. 3 and numerous
solutions as level-set method (illustrated in Fig. 4) or remeshing can be done to overcome the difficulty.
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5.2. Level set method

The pressure field can be taken into account with a level-set method [6,7]. Numerical intregration based on a
Gaussian quadrature can be done with no dependance with the initial mesh. An important step of element spliting is
performed to find the position of Gauss points, as shown in Fig. 5.(a). Significant efforts have been made to make
the splitting-step algorithm as flexible as possible according to the 3D meshing. Thus, any surface discretized with
quadrilaterals elements with height nodes can be easily used in our code without extra manipulations for the user.

Level-set / internal face intersection
φ(x) = 0

Level-set / element intersectionex

ez

ey

Fig. 4. Level-set intersections with the internal face and Level-set intersetcion with a surfacic element

Gauss points
φ(x) = 0(a) (b)

Fig. 5. (a) Cutted element by the level-set in the real configuration ; (b) Splitting of the element with Gauss points in the reference configuration

5.3. Fluid volume conservation

In this section, we detail a method based on Gauss’s theorem wich allow the calculation of the fluid volume without
any volumetric mesh. Let’s consider Ωf a domain bounded by the wetted surface S w and the free surface S f . For a
piecewise vector field (z − zf )ez, such that div

(
(z − zf )ez

)
= 1, the internal volume calculation is written as

Vf =

∫
Ωf

dV =
∫
Ωf

div
(
(z − zf )ez

)
dV =

∫
S w

(z − zf )ez · nds (17)

where the term on the free-surface vanish because the surface is assumed to be horizontal. The fluid volume
calculation can be used in our algorithm to satisfy the incompressibility constrain, without volumetric mesh of the
fluid domain.

6. Numerical examples: elastic hollow hook

A 3D finite-element code with a level-set method has been developed to solve non-linear hydrostatic problem. To
validate our approach, an example illustred in Fig. 6 from the literature [4] is analyzed. This example concerns the
computation of the finite deformation of an elastic hollow hook filled with liquid. The geometry is described in Fig. 6
(a) and the simplest hyperelastic material model (i.e. the Saint-Venant Kirchhoffmodel) is used as constitutive relation
for the structure. The Young modulus and the Poisson ratio are respectively E = 1 GPa and ν = 0.3. Two types of
simulations have been set up. The first one is a filling simulation step by step that allow us to obtain each quasi-static
equilibrium position from the empty state to a filled state. As an example of results, a deformed geometry at a chosen
step of the simulation is plotted in Fig. 6 (b). Fig. 7 (a) shows the evolution of the displacement of the point A and the
free-surface area in terms of the free-surface height. The second simulation is a one-step simulation, from the empty
state to a filled state. In Fig. 8 (b) we plot the L2 norm of the out-of-balance residual vector. It can be observed that
the slope of the convergence rate of our algorithm is almost linear validating the robustness of our Newton-Raphson
algorithm.
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Fig. 6. (a) Elastic hollow hook from [4] with d = 10 cm, a = 20 cm, r = 10 cm, R = 25 cm, t = 0.2 cm, ρf = 1000 kg.m−3 and g = 9.81 m.s−2 ;
(b) Cutted elements by the level-set and visualization of the follower forces on the FE mesh.

-80 -60 -40 -20

Free-surface height [cm]

0

1

2

3

4

F
re

e
-s

u
rf

a
c
e
 a

re
a
 [

0
.1

c
m

2
]

0 5 10 15

Newton-Raphson iteration

10
-10

10
-5

10
0

10
5

||
 R

 |
|

Fig. 7. (a) Displacement of point A | dA | and free-surface area Afs vs free-surface height from a simulation step by step; (b) Convergence rate of
the L2 norm of the out-of-balance residual vector of a one-step simulation from Vf = 0 m3 to Vf = 9.8.10−3 m3

Comparisons between our results and those from [3] show a slight difference in the converged maximum displace-
ment of point A. Even with a fine mesh (around 780 000 dofs) we obtain a solution of 4.02 cm instead of 4.36 cm
according to [3]. This may be due to our 3D hexahedric finite element model instead of their shell model, which may
lead to different boundary conditions.

7. Conclusion and outlooks

Two specifics points are highlighted in this paper. At first, a non-linear finite-element formulation taking into
account the hydrostatic follower forces and the fluid volume conservation constrain, is detailed. The associated reso-
lution method necessitates the derivation of non-standard tangent stiffness operators. Secondly, an accurate resolution
method, based on a level-set approach, is developed to solve the problem. Finally, an application to an elastic hol-
low hook filled with liquid is proposed. Despite some differences between our model and results from the literature,
the computation of the quasi-static geometrical non-linear solution shows a satisfactory rate of convergence of our
iterative resolution method. Furthermore, the obtained results can directly be used for a dynamic analysis around the
pre-stressed equilibrium state.
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ment of point A. Even with a fine mesh (around 780 000 dofs) we obtain a solution of 4.02 cm instead of 4.36 cm
according to [3]. This may be due to our 3D hexahedric finite element model instead of their shell model, which may
lead to different boundary conditions.
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Two specifics points are highlighted in this paper. At first, a non-linear finite-element formulation taking into
account the hydrostatic follower forces and the fluid volume conservation constrain, is detailed. The associated reso-
lution method necessitates the derivation of non-standard tangent stiffness operators. Secondly, an accurate resolution
method, based on a level-set approach, is developed to solve the problem. Finally, an application to an elastic hol-
low hook filled with liquid is proposed. Despite some differences between our model and results from the literature,
the computation of the quasi-static geometrical non-linear solution shows a satisfactory rate of convergence of our
iterative resolution method. Furthermore, the obtained results can directly be used for a dynamic analysis around the
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