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Abstract: Aero-structural optimization is a keystone to concurrently improve aerodynamic

performance and reduce the structural mass of an aircraft. Gradient-based multi-disciplinary

design optimization is actually efficient if gradients computations are fast and accurate enough.

This paper presents two high-fidelity aero-structure gradient computation techniques for design

variables impacting the stiffness of the structure. A first part details the new module developed

and implemented in the Onera elsA software capable of computing aero-structure gradients us-

ing intrusive direct and adjoint methods. In a second part an alternative improved uncoupled

non-intrusive approach is proposed. Both approaches are evaluated and compared on the Com-

mon Research Model (CRM) test-case considering criteria such as accuracy, efficiency, and

applicability on practical industrial problem. Finally, preliminary results are presented on an

inverse design problem. The final objective will be to match a target twist distribution on the

Common Research Model wing using this new coupled gradient capability.

1 INTRODUCTION

The raise of composite materials in modern aircraft structures increases the structural flexibility

of wings [1]. Consequently, fluid-structure interaction has to be considered when designing such

flexible wings. With increasing computational resources, static aeroelastic simulations based on

high-fidelity models are now commonly accessible and capable of tackling complex aeroelastic

couplings. To improve the design of flexible wings, gradient based multi-disciplinary design

optimization techniques are now effective and widely used [2–4]. However, gradients calcu-

lation is not trivial and can be costly when high-fidelity models are considered. Indeed, in an

integrated optimization process, this difficulty increases for required cross-sensitivity deriva-

tives such as the derivatives of aerodynamic performance with respect to structural sizes and

derivatives of structural response with respect to changes in aerodynamic shape [5].
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Several developments have been made over the last decade to compute aero-structure gradi-

ents using adjoint method [6–8]. At ONERA, active research work dedicated to aero-structure

optimization was achieved during the past decade. In 2008, Marcelet [9] developed a mod-

ule capable of computing static aeroelastic equilibrium and sensitivity analysis using adjoint

method. However, the structural model behavior was limited to an equivalent beam model kine-

matics, and the aeroelastic gradients were only computed with respect to aerodynamic shape

parameters. In a follow-on work, Ghazlane extended this work to take into account struc-

tural parameters (typically stiffener cross-section, plate thickness...) for aero-structure gradients

computation [6]. Lastly, Viti [10] demonstrated a bi-step aero-structure preliminary design of

a forward-swept wing applying these gradient computation tools. Nonetheless, the structural

model was still limited to a beam model in all these works. Although useful for preliminary

design studies and design space exploration, this structural modeling is not able to tackle com-

plex aeroelastic couplings, nor deal with composite structures for efficient aeroelastic tailoring

design, and is obviously limited to large aspect ratio wings.

The objective of a previous work [11] by the authors was to relieve all these limitations by

re-developing an aero-structure gradient capability from scratch, by systematic hand differenti-

ation of discretized aero-elastic equations, and all associated operators, in the elsA aeroelasticity

module (elsA/Ael) [12]. This way, the new capability inherits the structural paradigm embed-

ded into the elsA/Ael module (structural flexibility matrix), the whole catalog of fluid-structure

transfer methods, as well as the underlying parallel architecture. The equations and the solv-

ing procedure for the aeroelastic and the aero-structure gradients have been discussed in [11],

where only aeroelastic gradients computation capability (i.e. gradients of aeroelastic functions

of interest with respect to aerodynamic shape parameters) was available. This module, named

elsA/Aoc, has been recently extended in order to take into account structural design parameters

in the direct and the adjoint mode.

The efficiency of the adjoint approach holds when a reduced number of responses is considered

compared to a large set of design parameters. However, an industrial wing box sizing for pre-

liminary design considers up to several hundreds of design parameters and up to several tens of

thousands of structural constraints. In order to still benefit from the elegant adjoint formulation,

some authors have proposed a constraint aggregation approach [13, 14] as an attempt to reduce

the size of the set of admissible constraints, thus the number of gradients to compute. How-

ever, this technique has several drawbacks and may lead to sub-optimal designs. Considering

these difficulties, the authors have proposed in a previous paper [15] a new strategy to compute

high-fidelity aero-structure gradients (i.e. gradients of any function of interest with respect to

structural design parameters). This strategy is based on an uncoupled non-intrusive approach

benefiting from the linearized aerodynamic formulation. The main advantage of the method is

the independency of the computational cost with respect to the number of constraints and po-

tentially with respect to the number of structural design parameters. In addition this approach

only requires rigid CFD computations.

The final objective of this work is to compare the efficiency of the uncoupled approach for aero-

structure gradients computation, with the classical intrusive tangent or adjoint method, through

the Common Research Model (CRM) wing design. The comparison aim at addressing the

applicability of the optimization strategy on realistic industrial applications. Both approaches

are investigated on the CRM test-case and criteria such as accuracy, efficiency and applicability

on practical industrial problem are discussed.
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The remainder of this paper is organized as follows: we first detail the intrusive direct and

adjoint approaches. Then, an improved version of the non-intrusive method originally proposed

in [15] is presented. Next, aero-structure gradients are computed on the CRM using these

approaches. Finally, a strategy is proposed for an efficient structural sizing using high-fidelity

aerostructure gradients, and preliminary results on the CRM wing are discussed.

The first theoretical parts presenting the two gradient computation methods have already been

detailed in [16]. They are presented again to preserve the global consistency of this paper.

2 INTRUSIVE APPROACH

Let’s assume that a steady aeroelastic equilibrium is available. In the following, we will denote

the corresponding mesh as ”flight shape”, as opposed to the unloaded reference mesh called

”jig shape”. This is illustrated in Figure 1, where Xa is the equilibrium aerodynamic mesh,

Xs the structural mesh, and Xa0 the aerodynamic reference mesh. Our objective is to compute

the sensitivity of a function of interest J with respect to a set of structural design variables p

affecting the stiffness matrix only. To this end, direct and adjoint approaches derived from the

linearization of the aeroelastic equations around the equilibrium position will be used.

Figure 1: Definition of the different meshes

Let’s denote the state variables of the coupled system W and U, representing the fluid con-

servative variables and the structural displacements. At the aeroelastic equilibrium, the state

variables and the meshes satisfy the discretized equations of fluid and structural mechanics

simultaneously:

{

Ra(Xa,W,U) = 0

Rs(Xs,W,U) = 0
(1)

with Ra and Rs a nonlinear and a linear system of discrete equations. These two blocks of

equations are coupled through aerodynamic forces Qa loading the structure skin and the struc-

tural displacements U deforming the fluid mesh. The structural loads Qs are obtained with a

suitable load transfer technique applied to Qa:

Qs(Qa(W,Xa),Xa0,Xs) = T
Q
surf (Xa0,Xs)Qa(W,Xa) (2)

where T
Q
surf (Xa0,Xs) represents the linear load transfer operator. The structural displacements

alter the fluid grid positions through the relation:

Xa = Xa0 + δXa(δXa,surf ,Xa0) = Xa0 +Tvol(Xa0)δXa,surf (3)

with Tvol(Xa0) the volume operator performing the deformation of the fluid interior domain.

The vector δXa,surf corresponds to the displacements of the fluid nodes at the aeroelastic inter-

face:
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δXa,surf = δXa,surf (Xa0,Xs,U) = TU
surf (Xa0,Xs)U (4)

where TU
surf (Xa0,Xs) represents the linear displacement transfer operator.

2.1 Direct approach

Let’s consider the scalar aeroelastic objective function J(W,Xa,Xs) and a structural parameter

p. We assume that the implicit function theorem is applicable to our problem. In this case,

the state variables W and U can be expressed as implicit functions W(p) and U(p) of the

optimization parameters and have the same properties of regularity than Ra and Rs. Direct

differentiation of system 1 with respect to p yields the tangent problem for the aero-structure

gradient:






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∂Ra

∂W

∂Ra

∂U

∂Rs
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∂Rs
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
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


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



dW

dp

dU

dp











=











−
∂Ra

∂Xa

dXa

dp

−
∂Rs

∂Xs

dXs

dp











(5)

The resolution of this system makes the computation of the gradient of the objective function J
possible:

dJ

dp
=

∂J

∂W

dW

dp
+

∂J

∂Xa

dXa

dp
+

∂J

∂Xs

dXs

dp
(6)

Our objective is now to expand equations 5 and 6 only with respect to the unknown vectors

dW/dp et dU/dp. First, we remind that p affects only the stiffness of the structure, so that the

following relations hold:

∂Xa0

∂p
=

∂Xs

∂p
= 0 (7)

We then differentiate equation 3 with respect to p, and using equation 4, we get:

dXa

dp
=

dδXa

dp
= TvolT

U
surf

dU

dp
(8)

Substituting these two equations into 6 yields the expression of the total gradient of the objective

function:

dJ

dp
=

∂J

∂W

dW

dp
+

∂J

∂Xa

TvolT
U
surf

dU

dp
(9)

Terms ∂J/∂Xa and ∂J/∂W only depend on the equilibrium steady state and are calculated

analytically in a pre-processing step.

4



The structural residual can be written K(p)U(p) − Qs(p) = 0, where K is the stiffness ma-

trix, and Qs the structural loads. Using the functional dependency of the structural loads (see

equation 2), the structural block reads:

K
dU

dp
= T

Q
surf

[

∂Qa

∂W

dW

dp
+

∂Qa

∂Xa

dXa

dp

]

−
∂K

∂p
U (10)

The resolution of the coupled system 5 is done in an iterative way, alternatively on each block

of equations. Using this last relation, system 5 can be cast into the compact form:



























∂Ra

∂W

dW

dp

(k+1)

= −
∂Ra

∂Xa

[A]
dU

dp

(k)

K
dU

dp

(k+1)

= [B]
dW

dp

(k)

+ [C]
dU

dp

(k)

− [D]U

(11)

Constant matrices [A],[B],[C] and [D] are defined analytically with the following formulas

[A] = TvolT
U
surf

[B] = T
Q
surf

∂Qa

∂W
[C] = [M][A]

[D] =
∂K

∂p

(12)

where the utility matrix [M] = T
Q
surf

∂Qa

∂Xa

has been introduced.

The system in equation 11 is presented in a form suitable for an iterative block scheme res-

olution similar to the lagged-block strategy formely proposed in [17], superscript k being the

current iteration number. Following the same notations, equation 9 becomes:

dJ

dp
=

∂J

∂W

dW

dp
+

∂J

∂Xa

[A]
dU

dp
(13)

2.2 Adjoint approach

In order to obtain the adjoint equations of the aero-structure gradient, the objective function is

formulated by adding the total variation of the residuals Ra and Rs to dJ/dp. These variations

with respect to the design variables being null, we then write for any vector Λa and Λs:

dJ

dp
=

∂J

∂W

dW

dp
+

∂J

∂Xa

[A]
dU

dp
+ΛT

a

dRa

dp
+ΛT

s

dRs

dp
(14)

Expanding dRa/dp and dRs/dp and factorizing out the difficult terms dW/dp and dU/dp
yields:
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dJ

dp
=

(

∂J

∂W
+ΛT

a

∂Ra

∂W
−ΛT

s [B]

)

dW

dp

+

(

∂J

∂Xa

[A] +ΛT
a

∂Ra

∂Xa

[A] +ΛT
s (K− [C])

)

dU

dp
+ΛT

s [D]U

(15)

where adjoint vectors Λa and Λs are chosen such that the following system is satisfied:













[

∂Ra

∂W

]T

−[B]T

[A]T
[

∂Ra

∂Xa

]T
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− [C]T

















Λa

Λs



 =













−

[

∂J

∂W

]T

−[A]T
[

∂J

∂Xa

]T













(16)

Finally, once adjoint unknowns are determined, the total gradient is obtained with:

dJ

dp
= ΛT

s [D]U = ΛT
s

∂K

∂p
U (17)

Direct and adjoint equations have been written here for the particular case of a scalar aeroelastic

function of interest (lift or drag coefficient), with optimization parameters controlling only the

stiffness of the structure (e.g. stiffener cross-section, plate thickness). In a previous work by

the authors [11], these equations have been detailed for the more general case of parameters

affecting both the aerodynamic and the structure meshes. It is very interesting to note that the

adjoint system 16 is exactly the same as the one presented in [11]. This means that this adjoint

system is independent of the nature of the design parameter. Consequently, one resolution of

this system gives access to the gradient of the aeroelastic function of interest with respect to all

the parameters, regardless if they control aerodynamic shape, structural properties or even affect

simultaneously stiffness and shape. Indeed, once the system is solved, the computational cost

to obtain the gradient of the objective function with respect to these parameters is negligible.

This constitutes a major advantage in the simultaneous optimization of both aerodynamic and

structure.

3 NON-INTRUSIVE APPROACH

The non-intrusive technique allows a complete decoupling of the structure and the aerodynamic

analysis. The idea consists in building a projection of the static displacement field on the struc-

tural modeshapes in order to re-use the rigid linearized kernel of the module elsA/Opt. This

approach has been discussed in [15]. With this strategy, aero-structure gradients have been

computed on the ONERA M6 wing and then on the CRM configuration with satisfactory re-

sults. Both configurations used a RANS aerodynamic fluid model and a tridimensional FEM.

In this section, after a brief reminder of the theory, some improvements are proposed to reach a

better accuracy for the gradients.

3.1 Working process with the linearized solver

The linearized solver determines the perturbed field of conservative variables δW with respect

to the steady state flow, when the fluid domain boundary is perturbed by a prescribed dis-

placement induced by a perturbation of a structural design parameter δp. The corresponding

perturbed structural loads δQs are then deduced directly from the solution δW.
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Figure 2: Illustration of the linearized method for computing δW.

This process is illustrated in Figure 2. Flexibility is taken into account into the steady solu-

tion and the computation of δW is performed by a linearization around the equilibrium mesh

position denoted Flight shape.

Let’s consider the tangent system 11. Solving for the first block of equations and substituting

dW/dp in the structure block yields:























(

K− [Z]
)dU

dp
= −

∂K

∂p
U

[Z] = −[B]

[

∂Ra

∂W

]

−1
∂Ra

∂Xa

[A] + [D]

(18)

(

K− [Z]
)

appearing in the first block of system 18 is the Schur complement of the matrix block

∂Ra/∂W. We remind that direct differentiation of the static equation KU = Qs with respect

to p gives:

∂K

∂p
U+K

dU

dp
=

dQs

dp
(19)

Comparing this expression with the first block of equation in system 18 yields the relation:

dQs

dp
= [Z]

dU

dp
(20)

where [Z] is the kernel matrix of the linearized flow solver.

3.2 Modal reconstruction of aero-structure gradients from an aeroelastic configuration

Let’s consider the steady equilibrium corresponding to a fluid state W, a mesh position Xa and

a structural displacement field U:

KU = Qs = [TQ
surf ]Qa(W,Xa) (21)
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K is the stiffness matrix of the finite element model, Qs the nodal structural loads, Qa the aero-

dynamic loads computed on the aerodynamic skin. If the full set Φ of structural eigenvectors

was available, the modal projection U = Φq would hold exactly. Then substituting in equation

21 gives the corresponding generalized coordinates as:

q = γ
−1ΦTQs (22)

where γ = ΦTKΦ denotes the diagonal generalized stiffness matrix. In practice only a re-

stricted set of first nΦ eigensolutions is computed and the modal approximation to U becomes:

U ≈ UΦ =

nΦ
∑

i=1

Φiqi (23)

However, remind that U is computed exactly from equation 21 such that the residual term in

equation 23 is known from the simple difference Ures = U − UΦ. Equation 21 can now be

reformulated as

K(UΦ +Ures) = Qs (24)

Inserting the modal decomposition of U in the expression of the gradient of structural loads

(equation 20) leads to

dQs

dp
= Z(Φ

dq

dp
+

∂Φ

∂p
q) + Z

∂Ures

∂p
(25)

The use of partial derivatives in the equation above means that Φ and Ures only depend on p.

This latter assumption is valid if Ures is considered as a static residual mode (i.e. a structural

displacement under an assumed prescribed load case). In order to exploit this relation, the

gradient of the generalized coordinates has to be determined. With some algebra manipulation,

it is possible to demonstrate that:

dq

dp
= [γ −GAF]−1

(

−
∂γ

∂p
q+ΦTZ

(∂Φ

∂p
q+

∂Ures

∂p

)

)

(26)

where the generalized aerodynamic forces matrix is defined as GAF = ΦTZΦ.

The computational cost of this method can be easily determined with a reformulation of equa-

tion 25:

dQs

dp
= ZΦ

dq

dp
+ Z(

∂Φ

∂p
q+

∂Ures

∂p
) (27)

The first part (ZΦ) of equation 27 costs one linearized computation per mode. The second part

(Z(∂Φ
∂p
q+ ∂Ures

∂p
)) requires one linearized computation per parameter. Once these two parts are

determined, the gradient of the generalized coordinates is readily available.

Usually, few mode shapes are necessary to correctly approximate the structural displacements

(equation 24), however many design variables can be defined in the optimization problem. In
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this case, the method loses interest since it is independent of the number of objective functions,

but dependent on the number of design variables. In an attempt to reduce the computational

cost, gradients can be approximated by dropping the terms which depend on design variable

number. In this case equations 26 and 27 become:

dq

dp
= [γ −GAF]−1

(

−
∂γ

∂p
q

)

(28)

dQs

dp
= ZΦ

dq

dp
(29)

4 CRM TEST-CASE

In this section, we apply the intrusive and non-intrusive approaches to the CRM. Our objective

is to compute lift and pressure drag coefficient sensitivities with respect to structural parameters,

as well as gradients of structural loads. The aerodynamic skin of the selected wing/body/HTP

(WBH) configuration is depicted in Figure 3. For all subsequent results, a RANS fluid model

is used with an upwind Roe scheme and a MUSCL interpolation associated to a Van Albada

limiting function. The Spalart-Allmaras one-equation turbulence model is selected. In the

attempt to find a lift coefficient of 0.5 for a Mach number of 0.85 at 35000 ft, an angle of attack

of 2.127 is applied.

Several finite element models of the CRM wing are available on the NASA CRM website. All

these models correspond to the flight shape of the CRM. The model V14 exhibits an expected

static behavior, with a realistic vertical displacement of 2.15 m observed at the wing tip in nom-

inal cruise conditions. It is a simple finite element model of the wing box and centre box with

spars, skins, ribs, implicit stiffeners and a constant wing skin thickness of 8.89 mm. This model

can be considered as a good starting point for a structural sizing process. The provided CRM

configuration corresponds to the 1 g cruise shape. In order to find the corresponding jig shape,

an inverse procedure has been set up and presented in [15]. To correctly predict the structural

displacement due to gravity, a realistic distribution of concentrated masses representing the fuel

in the wing is added, along with concentrated masses for the engine, pylon and landing gear.

Figure 3 presents the finite element model colored by the structural optimization groups, along

with the aerodynamic skin of the CRM. Ten structural parameters are defined, split into two

groups of five parameters driving the thickness of the lower skin and the upper skin respec-

tively. In the following, the results will be presented only for the lower skin (see Figure 4),

since for this exercise upper and lower skin have the same thickness distribution.

The first nine eigenmodes computed on the initial FEM of the CRM wingbox and smoothed on

the aerodynamic skin are presented in Figure 5. As detailed in [15], twenty modes will be used

to compute the gradients with the non-intrusive approach.

For the intrusive approach, the convergence of the discrete residual norm of the fluid block is

reported in Figure 6. In direct mode, five right hand sides are considered, i.e. one for each

design parameter. In adjoint mode, two right hand sides are considered, that is one for each

objective function.

Tables 1 and 2 summarize the total lift and drag coefficient derivatives respectively, and al-

lows a comparison between intrusive and non-intrusive approach. Gradients obtained with the
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tangent approach, taken as reference here, have been validated with finite difference results

on an other test-case in [16]. The very low discrepancies observed between tangent and ad-

joint approach demonstrate that the duality between the two methods is numerically satisfied.

These results validate for this test-case the implementation of the direct and adjoint method into

elsA for gradients of aeroelastic function of interest with respect to structural design variables.

The non-intrusive approach with and without the eigenvector derivatives contribution (∂Φ/∂p)

gives satisfactory results, since the sign and the order of magnitude are always well predicted

compared to the intrusive approach. We remind that without this contribution, the method is

independent of the number of design variables, reducing dramatically the computational cost of

the gradients.

For the particular case of aeroelastic coefficient derivatives with respect to structural parameters,

there are usually few objective functions but many design variables. Therefore, the adjoint

method is the preferable approach, since it requires to solve the adjoint system 16 only once per

objective function.

Now considering the total derivatives of the structural loads, the computational cost of the ad-

joint approach is indexed to the number of individual force components. Usually, a realistic

structural loading consists in up to several hundreds of individual force components. This is

Figure 3: FEM colored by structural optimization group, along with the CRM aerodynamic skin.

Figure 4: First five structural design parameters.

10



comparable to the typical number of design parameters for a realistic optimization process.

In this context, none of the tangent or adjoint method really stands out. However, computing

the gradients of structural loads using the non-intrusive approach but without the eigenvector

derivatives contribution requires significant lower computational cost, compared to the intru-

sive approaches. Again, in this case, aero-structure gradients only cost one rigid linearized

computation per mode shape.

In order to assess the accuracy of the non-intrusive approach, total derivatives of the structural

loads are computed with the tangent approach and compared to the non-intrusive approach (with

and without eigenvector derivatives). To have a representative example, gradients of horizontal

and transverse forces with respect to p1 and p4 are considered. For sake of clarity, normalized

Figure 5: First nine structural mode shapes splined on the wetted surface.

Figure 6: Convergence of linear gradient density residual for five parameters (left) and adjoint residual for two

objective functions (right).
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Intrusive Non-Intrusive

Direct Adjoint Φ , ∂Φ/∂p Φ

dCl/dp

p1 +3.993× 10−3 +4.028× 10−3 +3.186× 10−3 +4.624× 10−3

p2 +1.200× 10−2 +1.209× 10−2 +1.112× 10−2 +9.274× 10−3

p3 +7.682× 10−3 +7.728× 10−3 +8.467× 10−3 +8.290× 10−3

p4 +2.019× 10−3 +2.018× 10−3 +2.580× 10−3 +2.449× 10−3

p5 +1.202× 10−4 +1.193× 10−4 +1.545× 10−4 +2.748× 10−4

Table 1: Gradients for lift coefficients with respect to wing skin thicknesses.

Intrusive Non-Intrusive

Direct Adjoint Φ , ∂Φ/∂p Φ

dCd/dp

p1 +2.262× 10−4 +2.287× 10−4 +1.844× 10−4 +2.420× 10−4

p2 +6.578× 10−4 +6.640× 10−4 +6.105× 10−4 +4.763× 10−4

p3 +3.592× 10−4 +3.620× 10−4 +3.944× 10−4 +4.221× 10−4

p4 +8.034× 10−5 +8.000× 10−5 +1.061× 10−4 +1.260× 10−4

p5 +4.960× 10−6 +4.983× 10−6 +8.612× 10−6 +1.404× 10−5

Table 2: Gradients for drag coefficients with respect to wing skin thicknesses.

gradients are plotted on nodes belonging to the front spar only (see Figures 7-10). First of all,

results for intrusive and non-intrusive approach qualitatively match pretty well. Taking the in-

trusive approach as reference, it is observed that the non-intrusive approach is always predictive

when eigenvector derivatives contribution is added. Gradients computed with respect to p1 with-

out eigenvector derivatives are still close to the reference values. However, those computed with

respect to p4 are either inaccurate or wrong. This points out the relevancy of considering the

eigenvector derivatives for some design variables. In [15], the authors propose a criterion that

measures the amount of relevant information contained in the eigenvector derivatives compared

to the information contained in the modal basis. It reveals whether a specific parameter requires

the addition of eigenvector derivatives in the load sensitivity reconstruction. Nevertheless, it

can be observed that these discrepancies occur mainly for low-valued gradients, which do not

significantly affects gradient-based optimization since the optimizer’s path is mostly driven by

high-valued sensitivities.

5 STRUCTURAL SIZING OF THE CRM WING USING HIGH-FIDELITY AERO-STRUCTURE

GRADIENTS

5.1 Force approximation method

High-fidelity structural sizing requires derivatives of structural responses (typically constraints)

with respect to structural parameters. These derivatives are costly, even when computed with

the adjoint method since it requires as many resolution of the adjoint system as the total number

of constraints in the whole structure. In an attempt to reduce the size of the set of admissible
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Figure 7: Gradients of horizontal force with respect to p1, computed with the non-intrusive approach (green and

grey bars). Reference tangent approach values (red markers) are provided.

Figure 8: Gradients of horizontal force with respect to p4, computed with the non-intrusive approach (green and

grey bars). Reference tangent approach values (red markers) are provided.

Figure 9: Gradients of transverse force with respect to p1, computed with the non-intrusive approach (green and

grey bars). Reference tangent approach values (red markers) are provided.

constraints, thus the number of gradients to compute, some authors have proposed to use a

constraint aggregation approach in conjunction with the adjoint method. As already mentioned,

this approach has several drawbacks and needs to be tuned appropriately.

Approximating constraint responses is not easy, since they may exhibit irregular distribution in

the structure. In contrast, the structural loads are easier to approximate due to their smoother dis-

tribution. It is therefore proposed to use the force approximation method [18] as an alternative to

a constraint aggregation approach. Assuming a general linear elastic behavior, the relationship
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Figure 10: Gradients of transverse force with respect to p4, computed with the non-intrusive approach (green and

grey bars). Reference tangent approach values (red markers) are provided.

between stresses and strains would be linear of the form σ = H(ǫ− ǫ0) + σ0, where H denotes

the elasticity matrix and ǫ0 and σ0 the initial strain and stress fields. The deformation field is

obtained from the nodal displacements through the usual relation ǫ = SNU(p) = BU(p), S
being a linear differential operator and N the matrix of shape functions. Direct differentiation

of σ with respect to a scalar structural parameter p yields:

dσ

dp
=

∂σ

∂U

dU

dp
= HB

dU

dp
(30)

Deriving the static equation KU = Qs with respect to p gives the expression of the structural

displacement derivatives:

dU

dp
= −K−1∂K

∂p
U+K−1dQs

dp
(31)

Equation 30 becomes:

dσ

dp
= HBK−1

(

−
∂K

∂p
U+

dQs

dp

)

=
dσU

dp
+

dσQ

dp
(32)

where dσU/dp is a constraint response under a standard static pseudo-load FU = −(∂K/∂p)U,

and dσQ/dp is a constraint response under the pseudo-load FQ = dQs/dp. Therefore, for each

static load Qs, a companion load dQs/dp must be defined. With this strategy, the total gradient

of a constraint response can be recombined from two separate standard static sensitivity analy-

ses. However, we adopt an even simpler approach by directly providing a linear approximation

of the aeroelastic loads to the structure optimizer. Given a structural parameter p varying around

its current value p0, and knowing the load vector total derivative, we simply formulate the linear

approximation:

Qs(p) ≈ Qs(p0) +
dQs

dp
δp (33)

Then by linearity assumption the total gradient of the constraints is directly obtained, leaving

the computational burden to the structure solver.
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5.2 Proposed strategy for an efficient structural sizing

Given a Finite Element Model (FEM) of the CRM wing and the associated fluid mesh, our

objective is to match a target twist distribution extracted from the original geometry of the

CRM wing (see [19]). This inverse design problem can be formulated as:

Minimize J(p) such that:











































J(p) =
N
∑

i=1

(

UT
i − Ui(p)

UT
i

)2

ǫ(p) ≤ ǫmax

pmin ≤ p ≤ pmax

(34)

where UT is a set of target displacements leading the initial structural mesh to the desired

shape. The structure is assumed to be manufactured from Aluminum 2024. The corresponding

limit allowable stress is σmax = 324MPa, from which the corresponding maximum allowable

strain ǫmax is derived. The set of structural parameters p is defined as the thickness of 27

structural groups depicted in Figure 11. Eleven parameters control the lower and upper skins,

ten parameters the front and rear spars, and five parameters the stringers.

Figure 11: Structural design parameters used to size the structure.

The optimization process depicted in Figure 12 relies on the aerodynamic software elsA for the

computation of aeroelastic loads and associated gradients, and on the MSC NASTRAN software

for the structural analysis and optimization part. The process has two levels of convergence:

one at the upper level on the load cases and one at the optimizer level on physical properties

and design objective function. The structural optimization process is converged for a given

set of external non-linear aeroelastic loads. In this optimization cycle the complete FEM is

used and the optimization parameters are the physical properties of various structural members.

Then, an equivalent reduced order model (flexibility matrix) of the sized structural model is

automatically derived in order to perform the adequate flexible static aeroelastic computations

at the current iteration. Once the new flexible non-linear loads are obtained, they are transferred

to the structural grid and a new optimization process is performed. This organization is very

flexible as it does not require any modification to the NASTRAN core solver.
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Figure 12 presents different optimization processes to solve problem 34, according to the strat-

egy chosen to compute the loads. If they come from Doublet Lattice Method (DLM) only (first

case), then the optimization strategy merely relies on standard NASTRAN capabilities. The

second case named ”DLM+Correction” corresponds to the DLM prediction corrected by data

from rigid CFD, thus requiring off-line elsA aerodynamic computations. The third case is based

on an external CFD based Aeroelastic Analysis (A.A.) to estimate the loads. Thus, at each ex-

ternal iteration, the flexibility matrix S (which ensures the fluid/structure coupling such that

U = SQs) and the displacements due to gravity have to be updated. These aerodynamic loads

are kept constant during the internal optimization loop. Finally, the last case extends the previ-

ous one with the contribution of load sensitivities computed with elsA (Aeroelastic + Sensitivity

Analysis). The optimizer benefits from the additional contribution of the linearized loads using

the force approximation method.

In the first two cases, a strong coupling exists between the aerodynamic and the structural

discipline, but the fidelity of the fluid model is low. For the last two cases, of higher-fidelity,

there is a weak coupling between these two disciplines, since the loads and their sensitivities

are not updated at each re-analysis of the FEM.

A strategy based on a strong coupling and high-fidelity models would involve the merge be-

tween the re-analysis loop and the external loads loop. Consequently, for each re-analysis asked

by the structural optimizer, elsA would be invoked to compute the loads and their sensitivities

for the current set of structural parameters and to provide them to the NASTRAN optimizer. In

scheme 12, this means to replace the 20 re-analysis per external iteration by only one re-analysis

per external iteration. However, this strategy is expected to be of higher computational cost.

Figure 12: Structural optimization strategy.

As explained in section 4, the non-intrusive approach provides an efficient way to access gra-

dients of loads. However, for cross-gradients like aerodynamic coefficient derivatives with

respect to structural parameters, the adjoint method is preferable. With both capabilities readily

available, an aerodynamic performance monitoring can be achieved during the sizing process,
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particularly by taking into account dCd/dp or dCl/dp into the optimization.

Last but not least, a strong advantage of treating the sizing process with separate aerodynamic

and structural parts lies in the possibility to use an adapted fluid mesh according to the purpose

of the simulation. When gradients of loads are needed, then a Euler mesh might be accurate

enough. In contrast, to estimate drag coefficient derivatives, a RANS mesh is more appropriate

(see Figure 12). This flexibility for the computation of the different terms is beneficial to save

CPU time.

5.3 Preliminary results

In this section, first results on the optimization problem exposed above are presented and dis-

cussed. The strategy chosen is based on a weak coupling, and the loads are updated with

high-fidelity aeroelastic analysis at each external iteration. For these preliminary results, load

sensitivities are not taken into account, which corresponds to the third case in Figure 12. This

strategy is similar to that presented in [20]. Only one load case is considered for this applica-

tion, referring to the 1 g cruise flight. The optimization method used in the NASTRAN SOL

200 is the Modified Method of Feasible Directions (MMFD, [21]).

Figure 13 plots the objective function value with respect to the re-analysis number. For each

external iteration, twenty FE re-analysis are performed, and there are ten external iterations.

Every FE re-analysis loop begins with an evaluation of the objective function. In order to do

this, the updated loads are applied on the previous optimal configuration. These evaluations

generate the ”peaks” noticeable every 21 iterations, resulting from the loads dependency to the

structural design variables. The value of those peaks decrease in such a way that after the eighth

external iteration, no peak is observable. Thus, the loads are no longer varying significantly

between two external iterations. This situation indicates that the optimization process was able

to size the structure using realistic loads. Indeed, the sizing loads are in accordance to those

computed with the final design.

Figure 13: Structural optimization convergence.

Figure 14 plots the twist laws obtained for the first, the second and the last external iteration

respectively. The black line corresponds to the initial twist law generated with the updated

loads applied on the former optimum point (before the twenty reanalysis). The blue twist law is

obtained with the same loads but this time applied on the optimized structure (end of the twenty

reanalysis). Finally, the red line is the target twist law. For each iteration, a good agreement

is found between the blue (optimized) twist law and the target twist law. Naturally, the black

(initial) twist law has the same behavior as the peaks from Figure 13: the discrepancies between
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this twist law and the target one decrease while the external iteration number increases, until a

perfect matching at the end of the external optimization loop.

Figure 14: Initial (black), optimized (blue) and target (red) twist laws for three external iterations.

This simple application proves the effectiveness of the strategy proposed to solve the inverse

design problem. A more complex optimization will be set up soon, taking into consideration

multiple load cases and, obviously, introducing the gradients into the process.

6 CONCLUSIONS

In this paper two approaches are presented to compute high-fidelity aero-structure gradients.

The first one is based on the classical intrusive direct and adjoint approaches, and the second one

is an uncoupled non-intrusive method benefiting from the linearized aerodynamic theory. Total

derivatives of structural loads, and lift and drag coefficients, with respect to structural design

parameters, are computed on the Common Research Model test-case, using both intrusive and

non-intrusive approaches.

Gradients obtained with the tangent approach are taken as reference since it has been validated

previously on an other test-case [16]. The very low discrepancies observed between direct and

adjoint approach demonstrate that the duality between the two methods is preserved. These

results validate the implementation of the direct and adjoint method into elsA for gradients of

aeroelastic function of interest with respect to structural design variables.

The non-intrusive reconstruction gives satisfactory results compared to the other approaches.

The strength of this approach relies on its potential low computational cost, but cannot overcome

the adjoint method for the particular case of aerodynamic coefficient derivatives. However, it

represents a very promising alternative to compute gradients of structural loads for structural

sizing. Usually, for this purpose, constraint aggregation technique is used in conjunction with

the adjoint method. However, limiting the number of stress responses in the sizing process

may oversimplify the problem formulation, leading to poor designs. In contrast, considering a

limited number of structural loads can still lead to a realistic load path and then to a predictive set

of stress responses. This is obviously in favor of the direct approach which in this case exhibits

a comparable cost to the adjoint approach. We remind that computing the gradients of structural

loads using the non-intrusive approach without the eigenvector derivatives contribution requires

only one linearized computation per mode shape. Satisfactory results have been obtained on the

CRM test-case by applying this approximation. In addition, this method provides aero-structure

gradients with only rigid linearized aerodynamic computations, which is interesting for those

who do not have access to strongly coupled aero-structure tangent or adjoint solver. Finally,
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uncoupled approaches are very interesting for MDO teams autonomy, which is a determining

advantage in an industrial optimization process.

Ultimately, an inverse design problem is presented, with the objective to match a target twist law

on the CRM wing. A strategy is proposed for an efficient structural sizing using high-fidelity

aero-structure gradients. This strategy is based on the force approximation method, considered

as an alternative to a constraint aggregation approach. Indeed, due to their smoother distribution,

the structural loads are easier to approximate than the stresses. Several optimization processes

are envisaged, according to the strategy selected to compute the loads. Preliminary results are

presented on a weak coupling strategy, where the loads are updated with high-fidelity aeroelastic

analysis at each external iteration. For these first results, load sensitivities are not taken into

account. Nevertheless, it is demonstrated that the target twist law is reached after few external

iterations, with the aeroelastic loads corresponding to the actual design. It is expected that this

number of iterations will decrease with the additional contribution of the load derivatives.

The final objective of this work is to compare the intrusive adjoint method and the non-intrusive

uncoupled approach through the inverse design problem described previously. The comparison

will address the applicability of the optimization strategy on realistic industrial applications, in

terms of efficiency and accuracy.
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