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Abstract. A Finite Element approach is presented for the computation of linearized
hydroelastic vibrations of partially filled tanks, around a prestressed state. The focus
is given on the competition between the prestressed and added-mass effects on the dy-
namic behavior of the fluid-structure system. First, by taking into account geometric
non-linearities, a quasi-static solution of a tank loaded by hydrostatic follower forces is
computed [1]. Then, the linearized hydrostatic vibrations around the prestressed configu-
ration are computed with a standard fluid-structure formulation [2, 3]. The methodology
is finally applied on a cylinder partially filled with liquid, showing very good agreements
between our numerical results and experiments from [4].

1 INTRODUCTION

This study deals with the Finite Element (FE) computation of hydroelastic vibrations
of prestressed elastic tanks with free-surface fluid. The prediction of fluid-structure dy-
namic behavior is a critical step in aerospace engineering for the design of launchers with
liquid propellant or tanks of satellites [2, 3]. The use of flexible structures, such as hyper-
elastic membranes or very thin walls, induces the need of numerical models taking into
account the prestressed state due to geometrical non-linearities. The main objective of
this work is to estimate the influence of the prestressed state on the dynamic behavior of
the fluid-structure system. The proposed approach consists (i) in solving the quasi-static
non-linear FE problem of the filled tank submitted to hydrostatic follower forces [1], and
then (ii) to evaluate the hydroelastic vibrations around the prestressed state. For the
dynamical problem, eigenmodes are evaluated around the prestressed state taking into
account the added mass effect of the incompressible fluid (Figure 1). Some numerical
examples are proposed (i) to validate the model by comparison with some experimental
results from the literature [4] and (ii) to show the efficiency of the approach. The compe-
tition between the added-mass and prestressed effects of a partially filled tank with elastic
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bottom, for various fluid heights, is highlighted through parametric studies.

Figure 1: (a) Reference configuration of the internal surface of a tank ; (b) Current configuration of
internal surface of a tank loaded by hydrostatic follower forces; (c) Linearized hydroelastic vibration
around a pre-stressed state without gravity effects

1.1 Hypotheses

Solid hypotheses The structure is supposed homogeneous isotropic elastic and pre-
stressed by hydrostatic follower forces. For the geometrical nonlinear model, we consider
the Saint-Venant Kirchhoff constitutive law which is valid for large displacement and small
strains. The total structural displacement ut is the sum of two terms: a quasi-static non
linear solution us and the displacement fluctuation around the prestressed state u, such
that

ut = us + u (1)

Note that the displacement fluctuation amplitude is supposed very small compared to a
characteristic length of the structure (e.g. the thickness of the tank).

Fluid hypotheses The fluid is supposed heavy, inviscid, irrotational and incompress-
ible. Moreover, fluid surface tension is neglected which implies that the free surface is
plane at the equilibrium. The sloshing vibrations due to gravity effects are not considered
in the study. Consequently, the pressure fluctuation p on the free surface Γ is given by

p = 0 on Γ (2)

With all the previous hypotheses, the pressure fluctuation around the prestressed state
can be either defined as the eulerian or by the lagrangian fluctuation (see [2] for details)

p = pL = pE (3)
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Fluid-structure interface hypotheses The no-penetration condition at the fluid-
structure interface implies that the fluid normal velocity v is equal to the structural
normal velocity u̇:

v · nf = −u̇ · ns on Σ (4)

where Σ is the fluid-structure interface (also called the wetted surface) and nf (resp. ns)
is the outer unitary normal to the fluid domain (resp. to the solid domain).

2 HYDROELASTICITY WITHOUT PRESTRESSING

2.1 Coupled formulation

A standard (u, p) formulation [2] is chosen where u is the displacement fluctuations
around a reference configuration and p the pressure fluctuations in the fluid domain (Fig-
ure 2).

Figure 2: Hydroleastic problem description without pre-stress effect under a small amplitude harmonic
load f, with no gravity effect such that the pressure fluctuation is fixed as p = 0 on the free surface Γ.

A volumetric discretization is generated for each domain (Figure 3) with a coincident
mesh at the fluid-structure interface Σh. Let’s define uh and ph as a linear combination
of shape functions on the discretized domains written as

uh = Nqq and ph = Npp (5)

where Nq and Np are respectively the shape function matrices of the displacement and
pressure fields, and q and p the displacement and pressure unknowns nodal vectors.

Figure 3: FE discretization with twenty nodes quadratic volumetric element (HEXA 20) for the solid
and fluid domains and height nodes quadratic surfacic elements (QUAD 20) for surfacic domains. The
fluid and the solid domains have coincident meshes.
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2.2 Harmonic problem

From the (u, p) formulation we obtain the following harmonic system of equations:

(

K− ω2M
)

q+Cp = F (6)

Hp+ ω2CTq = 0 (7)

where K the linear stiffness matrix, M the solid mass matrix, F the nodal external force
vector, H the matrix associated with the bilinear pressure gradient and C the coupling
matrix between the nodal displacements and nodal pressure vectors. In matrix form, the
previous system can be written









K C

O H



− ω2





M O

−ρfC
T O













q

p



 =





F

0



 (8)

The associated eigenvalue problem is not symmetric and could generate numerical
difficulties with classical algorithms. Note that the use of a (u, ϕ) formulation, based on a
fluid potential displacement ϕ, can be used to symetrized the problem (see [2] for details).
According to the pressure fluctuation condition on the free surface given by Equation (2),
the matrix H is invertible and the pressure unknowns can thus be condensed on the solid
displacements unknowns

[

K− ω2 (M+Ma)
]

q = F (9)

where Ma is the so called added mass matrix operator given by

Ma = ρfCH−1CT (10)

The added mass matrix is symmetric positive definite but full. Its evaluation can leads
to some numerical issues out of the scope of this paper.

2.3 Effect of the fluid height on the natural frequencies

The eigenvalue problem associated with Equation (9) is written as

[

K− ω2 (M+Ma)
]

X = 0 (11)

where (ω2
i
,Xi) for i = 1 . . . k are the first k eigenvalues and eigenvectors with ω1 < ωi < ωk.

Note that in linear dynamics, when the fluid height increase during a filling process, the
natural frequencies decrease due to the added mass effect [2].

3 HYDROELASTICITY AROUND A PRESTRESSED STATE

Let’s consider the hydroelastic problem around a prestressed state defined in Figure
4. The total nodal displacement is given by qt = qs + q where qs is the solution of a
non-linear quasi-static problem and q is a small amplitude displacement fluctuation. In
the following, we assume that qs is already known from a quasi-static nonlinear simulation
detailed in [1].
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Figure 4: (a) Reference configuration without fluid; (b) currrent configuration for a given fluid height;
(c) linearized vibration around a prestressed state under a small amplitude excitation f.

3.1 Discretized equations

Non-linear static equilibrium The discrete equilibrium equation of a partially filled
elastic tank, with geometrical non-linearities, is given by

G(qs) = Fint(qs)− Fext(qs) = 0 (12)

where Fint and Fext are respectively the internal and external nodal forces. The external
forces correspond to the hydrostatic follower forces. Note that no volumetric fluid mesh
is needed to solve the quasi-static non-linear equation [1].

Dynamic equilibrium For the discrete dynamic problem around the prestressed state,
we assume that the total external force Ft is the sum of the hydrostatic follower force
Fext(qs) and a small external harmonic load F. The discretized dynamic problem is thus
defined by

G(qs + q)− ω2M(qs)q+C(qs)p = F (13)

Hp+ ω2CT(qs)q = 0 (14)

M(qs) and C(qs), which are the mass and coupling matrices defined on the current
configuration of the solid, are noted M and C in the rest of the paper. Note that contrary
to the quasi-static problem, meshes are needed for both fluid and solid volumetric domains
in order to generate the discretized operators.

Linearization If the amplitude of the displacement fluctuation q is small compared to
the quasi-static displacement solution qs, we obtain, by linearization and using Eq. (12),
the following relation

G(qs + q) ≃
∂G (qs)

∂q
q = Ktanq (15)

whereKtan is the tangent stiffness matrix. This tangent stiffness matrix is given byKtan =
Kmat + Kgeo − Kfol where Kmat is the material tangent stiffness, Kgeo the geometrical
tangent stiffness and Kfol the follower tangent stiffness.
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Consequently, Eq. (13) and (14) gives the linearized hydroelastic problem

(

Ktan − ω2M
)

q+Cp = F (16)

Hp+ ω2CTq = 0 (17)

which can be written in matrix form








Ktan C

O H



− ω2





M O

ρfC
T O













q

p



 =





F

0



 (18)

3.2 Effect of fluid height on natural frequencies

Using the approach detailed in the previous section, we obtain the following eigenvalue
problem

[

Ktan − ω2 (M+Ma)
]

X = 0 (19)

Due to the fact that all the matrix operators depend on the non-linear quasi-static solu-
tion, we are not able to predict a priori the eigenvalue evolution, i.e. without solving the
problem for each fluid height.

4 NUMERICAL EXAMPLE

In this section, we perform a parametric study to estimate the influence of the non-
linearities on the dynamic response of an hydroelastic problem. The goal is to compare
the added-mass and prestress effects on the eigenvalue problem given by the equation
(19). Let’s consider a cylinder with rigid walls and an elastic bottom, partially filled with
liquid (Figure 5). The influence of the fluid height is studied and our numerical results
are compared to the experimental ones given in [4].

Figure 5: (a) Filling of a cylinder of diameter D = 357 mm with water ρf = 1000 kg.m−1, rigid walls
and an elastic bottom of thickness t = 0.357 mm made of plexiglas. The material parameters are the
Young Modulus E = 5.47e9 Pa and a Poisson Ration of 0.38 and the plexiglas density ρs = 1.38 kg.m−3.
The fluid height value is such that h ∈ [0, 250] mm; (b) Hydroelastic vibrations around the pre-stressed
state for a given fluid height h.
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To compute the natural frequencies of the coupled system, we proceed in two steps :

• Firstly, we compute the non-linear quasi-static equilibrium state of the rigid cylinder
with a flexible bottom loaded by the hydrostatic follower forces for various fluid
heights [1].

• Then, we remesh the fluid domain in order to obtain a coincident mesh between the
fluid and the solid. This allows us to solve the eigenvalue problems (19) for each
fluid height.

On Figure 6 we can see the evolution of first eigenfrequencies in terms of the fluid
height (between 0 and 250 mm). Except for the first eigenmode, we can observe first
a decrease then an increase of the natural frequencies during the filling process. The
decreasing is due to the influence of the added-mass effect and the increasing is due to
the prestress effect. Indeed, the added mass effect is related to the kinetic energy of the
displaced fluid by the elastic bottom leading to a decrease of the frequencies. On the
contrary, the prestress effect leads to a stiffening of the structure.
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Figure 6: Evolution of natural frequencies in function of the fluid height with Ktan = Kmat+Kgeo−Kfol

The order of magnitude of the computed natural frequencies is very close to the exper-
imental observations from [4]. This validate our numercial approach.
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5 CONCLUSION

In this paper, a Finite Element approach has been proposed to compute the dynamic
behaviour of an elastic tank partially filled with fluid. Both the added-mass and the
prestress effects on the linearized hydroelastic vibrations are included in the model. Nu-
merical results are obtained for a cylinder with rigid walls and an elastic bottom, partially
filled with liquid. These results are in very good agreements with the experimental obser-
vations from [4]. Indeed, the added mass effect decreases the natural frequencies contrary
to the pre-stress effect which increases them. The extension to more complex geometries
will be the object of further investigations.
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