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Abstract. Piezoelectric energy harvesting from ambient energy sources, par-

ticularly vibrations, has attracted considerable interest throughout the last dec-

ade. Sensitivity analysis is a promising method used for many engineering

problems to assess input-output systems based on vibration. In this paper, the

formulation of first order sensitivity (FOS) of complex Frequency Response

Functions (FRFs) is developed to evaluate the output responses of piezoelectric

energy harvesters. The adapted approach for the FOS is the finite difference

method, which consists in computing an approximation of the first derivation.

Furthermore, the main goal is to study the influence of the variation of the load

resistance from the short circuit (load resistance tends to zero) to open circuit

(load resistance tends to the infinity) conditions on the tip displacement and the

voltage FRFs of a Bimorph Piezoelectric Energy Harvester (BPEH). The

determination of FRFs of the harvester are derived using Finite Element Mod-

elling for a bimorph piezoelectric cantilever beam based on Euler-Bernoulli

theory, which is composed of an aluminum substrate covered by two PZT-5A

layers. The results show a high sensitivity of the FRFs of the BPEH to the load

resistance at the natural frequencies. For each excitation frequency, the sensi-

tivity near the resonance frequencies decreases from the short circuit conditions

to the open circuit conditions.

Keywords: Sensitivity analysis � Vibration � Energy harvesting

Piezoelectric materials � Finite element method

1 Introduction

Sensitivity analysis of dynamic structures and mechatronic systems is very helpful in

solving many engineering problems, such as: parametric identification problems,

structural optimization, model updating problems and others (Lasecka-Plura and

Lewandowski 2014), especially, for vibration energy harvesting devices using piezo-

electric materials, which has been extensively studied over the past decade (Li et al.
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2014). Several studies focused on modeling a multilayer cantilever beam with one, two

or multi-piezoelectric layers used for vibration energy harvesting (Erturk and Inman

2011; Paknejad et al. 2016).

Two main approaches have been used by researchers for modeling piezoelectric

energy harvesters are: (i) The analytical distributed parameter model (Erturk and Inman

2008, 2011) in which, the beam is modeled by a second-order partial differential

equation in terms of beam tip displacement. (ii) The finite element model derived by De

Marqui Junior et al. (2009) for an unimorph energy harvester plates, and a bimorph

energy harvester cantilever beam (Amini et al. 2015). This formulation uses a standard

discretization of beam layers, providing models with less restrictive assumptions, and

takes into account the global electrical variables.

Since the first approach is limited to basic models, the finite element modeling is

applied in this paper to determine the sensitivity of the frequency response functions

(de Lima et al. 2010; Lasecka-Plura and Lewandowski 2014) of the bimorph piezo-

electric energy harvester for the load resistance. The finite element equations of elec-

tromechanical problems are first presented. Then, the variational formulation of a

laminated piezoelectric beam is developed for a Bimorph Piezoelectric Energy Har-

vester (BPEH) to determine the mechanical and electrical output FRFs. For the first

order sensitivity analysis, the finite difference approach is applied to study the influence

of the load resistance on the voltage and tip displacement FRFs.

2 Finite Element Modeling of the Energy Harvester

The finite element formulation of elastic structure with bonded piezoelectric patches

proposed in (Thomas et al. 2009; Larbi et al. 2014) is used. The governing finite

element equations of the dumped electromechanical problem can be expressed as:

Mm
€UðtÞþCm

_UðtÞþKmUðtÞþKcVðtÞ ¼ FðtÞ ð1Þ

KeVðtÞ � KT
cUðtÞ ¼ QðtÞ ð2Þ

where Mm is the global N � Nð Þ mass matrix, Km is the global N � Nð Þ stiffness

matrix, Cm is the global N � Nð Þ damping matrix and Kc is the global electrome-

chanical coupling matrix N � Pð Þ, Ke is the diagonal global P� Pð Þ capacitance

matrix, F tð Þ ¼ Fejxt is the global N � 1ð Þ vector of mechanical forces, Q tð Þ ¼ Qejxt is

the global P� 1ð Þ vector of electric charge outputs,U tð Þ ¼ Uejxt is the global N � 1ð Þ

vector of mechanical coordinates and V tð Þ ¼ Vejxt is the global P� 1ð Þ vector of

voltage outputs. Here, N and P respectively, are the number of mechanical degrees of

freedom and the number of piezoelectric elements. The global mechanical damping

matrix Cm is assumed a linear combination of the mass and stiffness matrices:

Cm ¼ aMm þ bKm ð3Þ

where a and b are the proportionality constants which are typically determined experi-

mentally using at least twomodal damping associated to two different natural frequencies.
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Equation (1) corresponds to the mechanical equation of motion with electrical

coupling, and a forcing vector F tð Þ. Whereas Eq. (2) corresponds to the electrical

circuit equation with a mechanical coupling term. In this paper, the harvested energy is

dissipated through a resistive load R. Using Ohm’s law, the following additional

equation relates the voltage vector V and the charge vector Q:

VðtÞ ¼ �R _QðtÞ ð4Þ

Considering in particular the finite element formulation of a laminated beam with a

total of K layers including P piezoelectric layers, which is excited under sinusoidal

base motion. Three mechanical degrees of freedom per node are used

u;w; h � � @wrel

@x

� �

. The piezoelectric layers of the cantilever beam are poled in the

thickness direction with an electrical field applied parallel to this polarization. Such a

configuration is characterized in particular by the electromechanical coupling between

the axial strain e1 and the transverse electrical field E3(Thomas et al. 2009). Further-

more, the reduced law behavior of a thin piezoelectric layer is written as follows:

r1 ¼ �c11e1 � �e31E3 ð5Þ

D3 ¼ �e31e1 þ �33E3 ð6Þ

where r1; e1;E3 and D3 are respective the normal stress, normal strain, electric field and

electric displacement, �c11 is the elastic modulus, �e31 is the piezoelectric coupling

coefficient and ��33 is the permittivity at constant strain. The variational formulation, in

this case, is defined as follows:

X

K

k¼1

Z

Xk

qk €uxdux þ €uzduzð ÞdXþ
X

K

k¼1

Z

Xk

ck11e1de1dXþ
X

P

p¼1

V ðpÞ

hðpÞ

Z

XðpÞ
e
ðpÞ
31 de1dX ¼ 0

ð7Þ

�
X

P

p¼1

dV ðpÞ

hðpÞ

Z

XðpÞ
e
ðpÞ
31 e1dXþ

X

P

p¼1

dV ðpÞCðpÞV ðpÞ ¼
X

P

p¼1

dV ðpÞQðpÞ ð8Þ

where qk and Xk are the mass density and the domain occupied by the kth layer,

C pð Þ ¼ S pð Þ

h pð Þ ��
pð Þ
33 is the capacity of the pth piezoceramic layer, where S pð Þ and h pð Þ are

respectively the active surface and the thickness of the pth piezoceramic layer. The

mechanical displacements ux and uz are defined as follow:

uxðx; z; tÞ ¼ uðx; tÞ � zhðx; tÞ ð9Þ

uzðx; z; tÞ ¼ wðx; tÞ ¼ wbðtÞþwrelðx; tÞ ð10Þ

where wb tð Þ ¼ Wbe
jxt is the base displacement and wrel x; tð Þ is the relative displace-

ment (for clamped-free beam).
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The various terms appearing in the variational formulation in Eqs. (7) and (8) are

now successively discussed.

• The kinetic energy variation is:

X

K

k¼1

Z

Xk

qk €uxdux þ €uzduzð ÞdX ) dUTMm
€U � dUTF ð11Þ

where F is the inertial forcing vector due to base excitation which can be expressed

as an effective mass vector m� multiplied by the base acceleration (De Marqui et al.

2009) as follows:

X

K

k¼1

Z

Xk

qkdwrel€wbdX ) �dUTm�€wb ¼ �dUTF ð12Þ

• The mechanical contribution to the internal energy variation is:

X

K

k¼1

Z

Xk

ck11e1de1dX ) dUTKmU ð13Þ

• The piezoelectric contributions to the internal energy variation, related to the direct

and inverse effect, are given in the following equations.

X

P

p¼1

V ðpÞ

hðpÞ

Z

XðpÞ
e
ðpÞ
31 de1dX ) dUTKcV ð14Þ

X

P

k¼1

dV ðpÞ

hðpÞ

Z

XðpÞ
e
ðpÞ
31 e1dX ) dVTKcU ð15Þ

• The electrical contribution to the internal energy variation is:

X

P

p¼1

dV ðpÞCðpÞV ðpÞ ) dVTKeV: ð16Þ

3 Finite Element Modeling of a BPEH

In this section, the system matrices used in Eqs. (1) and (2) are derived using the finite

element formulation of a bimorph piezoelectric vibration energy harvester excited by

base motion. The harvester consists in an Euler Bernoulli beam composed of two layers

of PZT-5A (piezoelectric material) bonded to an aluminum substrate (elastic material)

as shown in Fig. 1. Thus, the total number of layers is equal to 3 (K = 3) the number of

piezoelectric elements is equal to 2 (P = 2).
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The electrical degrees of freedom associated to the two piezoelectric layers are the

voltage vector V and charge vector Q defined as follows:

V ¼
V ð1Þ

V ð2Þ

� �

; Q ¼
Qð1Þ

Qð2Þ

� �

ð17Þ

Each piezoelectric layer is characterized by its capacity C pð Þ and the electrome-

chanical coupling vector K pð Þ
c , p ¼ 1; 2.

Ke ¼ diag Cð1Þ;Cð2Þ
� �

; Kc ¼ Kð1Þ
c Kð2Þ

c

� �

ð18Þ

3.1 Equivalent Representation of the Series and the Parallel Connection

Cases of a BPEH

The equivalent representation of the finite element electromechanical equations of a

BPEH for the series and the parallel connections is very useful to predict the electrical

output responses across the resistor (in the circuit). For this purpose, the equivalent

terms of the equivalent representation are obtained first.

The two-piezoceramic layers are assumed to be identical (same material, same

dimensions). It is therefore reasonable to assume that both of them have the same

capacity C 1ð Þ ¼ C 2ð Þ ¼ C
� �

and generate the same output voltage so that

V 1ð Þ ¼ V 2ð Þ ¼ V
� �

and Q 1ð Þ ¼ Q 2ð Þ ¼ Q
� �

(De Marqui et al. Junior 2009). Therefore,

the nodal forces related to the converse piezoelectric effect (KcV) when a voltage V is

applied to the electrodes are given by the following term:

KcV ¼ Kc
1

1

� �

V ¼ ~KcV ð19Þ

Fig. 1. Cantilever piezoelectric energy harvester configurations under base excitation: (a) bi-

morph (series connection) and (b) bimorph (parallel connection)
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Where ~Kc ¼ K 1ð Þ
c þK 2ð Þ

c is the apparent electromechanical coupling vector

N � 1ð Þ. Furthermore, the resulting charge and voltage in the circuit of the BPEH are

given in Table 1 for the series and parallel connections (Erturk and Inman 2011).

After modifying Eqs. (1) and (2) and transforming then to the frequency domain

using Laplace transform, the equivalent electromechanical equations of a BPEH

become:

�x2Mm þ jxCm þKm

� 	

UþKeq
c V ¼ F ð20Þ

jxCeq þ
1

R

� �

V � jxKeqT
c U ¼ 0 ð21Þ

where Keq
c and Ceq are respectively the equivalent electromechanical coupling vector

and the equivalent capacity of a BPEH, which are given in Table 2, V is the voltage

across the load resistance (in the circuit).

3.2 Frequency Response Functions

The FRFs are defined here as the response outputs of the BPEH (displacement, voltage,

current, power) per base acceleration (in terms of the gravitational accelera-

tion,g ¼ 9:81m/s2). The equivalent expression for nodal displacements FRFs relative

to the base excitation problem of the BPEH is:

U

�x2Wb

¼ �x2Mm þ jxCm þKm þ
jxKeq

c K
eqT
c

1
R
þ jxCeq

� �

!�1

m� ð22Þ

For the mechanical response (vibration), only the transverse tip displacement FRF

wn=� x2Wbð Þ is considered in this study (n is the total node number of standard

discretization with linear elements).

Table 1. The charge and voltage in the electrical circuit for series and parallel connection of the

two piezoelectric layers with a resistance load

Series connection Parallel connection

Charge in the circuit Q 2Q

Voltage in the circuit 2 V V

Table 2. Equivalent electromechanical coupling and capacitance of a bimorph energy harvester

for the series and the parallel connections of the piezoceramic layers

Terms Series connection Parallel connection

Keq
c

~Kc=2 ~Kc

Ceq C=2 2C
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The voltage FRF is obtained as a function of the nodal displacements FRFs.

V

�x2Wb

¼
jxKeqT

c
1
R
þ jxC

eq
p

� � �x2Mm þ jxCm þKm þ
jxKeq

c KeqT
c

1
R
þ jxCeq

� �

!�1

m� ð23Þ

The current FRF and the power FRF are obtained from the voltage FRF as follows:

I

�x2Wb

¼
1

R

V

�x2Wb

� �

;
P

�x2Wb

¼
1

R

V

�x2Wb

� �2

ð24Þ

The four frequency response functions may be collected into a single vector defined

as follows.

H ¼
1

�x2Wb

wn V I P½ � ð25Þ

The global finite element matrices appearing in the FRFs establish the dependence

of the response of the system on a set of parameters, and can be expressed in the

following form.

H ¼ H x; pð Þ ð26Þ

Where H is the frequency response functions vector, p is a vector of parameters of

the BPEH.

4 Finite Difference Approach to Sensitivity Analysis of FRFs

The finite difference method originates from a Taylor series expansion to approximate

the first order sensitivity (FOS) and is undoubtedly the simplest method to implement.

The FOS of the responses with respect to a given design parameter pi, evaluated for a

given set of values of the design parameters p0 is defined as the following partial

forward derivative:

@H

@pi













p0
i

¼ lim
Dpi!0

H x; p0i þDpi
� �

�H x; p0i
� �

Dpi
ð27Þ

where Dpi is the parameter increment in the finite difference scheme, applied to the

current value of the parameter p0i , while all other parameters are kept unchanged. The

sensitivity of the response with respect to pi can be numerically estimated by finite

differences by successively computing the responses corresponding to pi ¼ p0i and

pi ¼ p0i þDpi, and then calculating:
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@H

@pi













p0
i

�
H x; p0i þDpi
� �

�H x; p0i
� �

Dpi
ð28Þ

The accuracy of the sensitivity estimates depends on the choice of the value of the

parameter increment Dpi, which has to be small compared to the corresponding

parameters p0i but there are limitations due to numerical truncation. The choice of Dpi is

critical in the precision of the calculated derivatives. Therefore, Dpi are chosen fol-

lowing rule proposed by Arruda and Santos (1993).

Dpi ¼ min HðpiÞk k; dif g ð29Þ

where jj:jj is the Euclidian norm of the output FRFs vector and di is defined as:

di ¼
10�1 if p0i













\10�6

10�3 p0i











 if p0i











� 10�6

�

ð30Þ

In order to check the accuracy of the calculated first order sensitivity, an approx-

imation of the FRF for the parameter pi þDpið Þ is computed using the following

formula:

Ĥðx; p0i þDpiÞ � Hðx; p0i Þþ
@H

@pi
Dpi ð31Þ

where Ĥ is the first order approximation of the output FRFs of the harvester.

5 Case Study

This section presents an example of a BPEH computed using the previous finite ele-

ment model. The material properties and geometrical characteristics of the harvester

used in this study are given in Table 3 (Erturk and Inman 2011). For the purpose of

simulation, the coefficient for the first two modes are chosen to be f1 ¼ 0:010 and

f2 ¼ 0:012, the constants a and b are computed using these coefficients. The com-

puting of the first derivation using the finite difference approach consists in varying the

nominal value of the parameter by 0.25% (Dpi ¼ 0:25% of pi). The load resistance is

mounted in series with the piezoelectric layers. The sensitivity analysis of the tip

displacement and voltage FRFs of the BPEH for a load resistance R are presented here.

The analysis is carried out for the frequency range from 0 to 5000 Hz. The first

three resonance frequencies of the BPEH for short-circuit (R ! 0) and open circuit

(R ! 1) conditions are given in Table 4. The effective electromechanical modal

coupling factor keff ;r characterizes the energy exchange between the mechanical

structure and the piezoelectric layers. It is usually defined, for the system rth mode, by:
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k2eff ;r ¼
f ocr
� �2

� f scr
� �2

f scr
� �2

ð32Þ

where f scr and f ocr are, respectively, the short-circuit and open-circuit rth system natural

frequencies.

The tip displacement and the voltage FRFs of the BPEH are given respectively in

lm/g and V/g, and the resistance is expressed in Ω. Hence, the sensitivities relative to

the load resistance are given respectively in lm/(gXÞ and V/(gXÞ.
Figure 2 shows the first order sensitivity of the tip displacement FRF of the har-

vester with respect to the electrical load resistance R. Sensitivity analysis is applied for

three resistances 100X; 10 kX and 100 kX. It can be observed that the peaks of the FOS

curves occur at the natural frequencies and has low values, around 10−7 over a wide

range of frequencies.

The enlarged views of the FOS of the vibration to the load resistance given in

Fig. 2 are presented as response surfaces using load resistance as an additional axis,

Fig. 3. The absolute value of the sensitivity in the vicinity of resonance frequencies

decreases from the short circuit conditions R ! 0ð Þ to the open circuit conditions

R ! 1ð Þ. The sensitivity of the tip displacement (vibration) to the load resistance has

lower values in the vicinity of the second mode compared to that of the first mode.

The variation of the sensitivity of the tip displacement of the BPEH for load resis-

tance at the fundamental short-circuit resonance frequency and at the fundamental open-

circuit resonance frequency are shown in Fig. 4. It is worth to note that the sensitivity

curves are not completely monotonic. It should also be noted that the sensitivity of the

vibration to the load resistance at the short circuit excitation frequency always remains

greater in absolute value than that at the open circuit excitation frequency.

Table 3. Material properties and geometrical characteristics of the reference PEH

Parameters PZT-5A Aluminum

L Beam length (mm) 30 30

b Beam width (mm) 5 5

hp, hs Layers thickness 0.15 0.05

Ep, Es Young’s modulus (GPa) 61 70

qs, qp Mass density (kg/m3) 7750 2700

�e31 Piezoelectric constant (C/m2) −10.4 –

��33 Permittivity constant (nF/m) 13.3 –

Table 4. First three short-circuit and open-circuit natural frequencies of the BPEH, and the

effective electromechanical coupling factor

Mode (r) f scr (Hz) f ocr (Hz) keff ;r

1 181.1 191.1 0.0656

2 1159.8 1171.7 0.0206

3 3246.7 3258.0 0.007
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Figure 5 shows the first order sensitivity of the voltage FRF modulus versus the

excitation frequency for three load resistances. We notice that the sensitivity for the

load resistance is important in the vicinity of natural frequencies. The resistance value

of 100 Ω has the largest sensitivities in the vicinity of the resonance frequencies, it is

followed by the sensitivities of 10 kΩ, and finally the 100 kΩ sensitivity for each

vibration mode.

Figure 6 shows that the sensitivity of the voltage output decreases when the

resistance varies from the short circuit conditions to the open circuit conditions for all

excitation frequencies. Furthermore, for each occurs of value of the resistance, the

maximum value of sensitivity of voltage output matches the resonance frequency.

Fig. 2. First order sensitivity of tip displacement FRF modulus versus excitation frequency for

three load resistances

Fig. 3. First order sensitivity surface response of voltage FRF modulus versus excitation

frequency and load resistance (a) in the vicinity of mode 1 (b) in the vicinity of mode 2

Accepted Manuscript

10



A
c
c
e
p
te

d
 M

a
n
u
s
c
ri
p
t

Therefore, the FOS of voltage FRF is significant at the natural frequencies and at low

electrical load resistances (short circuit conditions).

Figure 7 shows the first order sensitivity of the voltage FRF modulus as a function of

load resistance for excitations at the fundamental short-circuit and open-circuit resonance

frequencies. For the first twomodes, as the load resistance increases from the short-circuit

to the open-circuit conditions, the sensitivity of the voltage FRF decreasesmonotonically.

One can see clearly that the sensitivity of voltage FRF for the load resistance is more

important for the short-circuit frequency excitation then the open-circuit frequency

excitation for low resistance (short-circuit conditions). Both the sensitivities of the

voltage FRF to the load resistance at the two fundamental resonance frequencies (short-

circuit and open-circuit frequencies) have a very low value at the open-circuit condition.

Fig. 4. Variation of the FOS of the tip displacement FRF to the load resistance versus load

resistance for excitations at the short-circuit and the open-circuit resonance frequencies of:

(a) mode 1 (b) mode 2

Fig. 5. First order sensitivity of voltage FRF modulus versus excitation frequency for three load

resistance values
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6 Conclusion

In this paper, the sensitivity analysis of frequency response functions has been con-

sidered. The finite difference approach has been used to approximate the first order

sensitivity of tip displacement (vibration) and the voltage FRFs to a variation of the

electrical load resistance of the harvester. The first order sensitivity analysis of the tip

displacement and voltage FRFs of the BPEH have shown that the sensitivity to the load

resistance is significant at the natural frequencies. Furthermore, the influence of the

electrical load resistance variation for the vibration and voltage outputs is more

important at the short circuit conditions than at the open circuit conditions. These

results are very helpful to determine the optimal load resistance for an optimization

study using the load resistance as a parameter.

Fig. 6. First order sensitivity of modulus of Voltage FRF versus excitation frequency and load

resistance (a) in the vicinity of mode 1 (b) in the vicinity of mode 2

Fig. 7. Variation of the FOS of the voltage FRF for the load resistance versus load resistance for

excitations at the short-circuit and the open-circuit resonance frequencies of: (a) mode 1 (b) mode 2
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