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1 LIFIA, Fac. Informática, Universidad Nacional de La Plata,
1900 La Plata, Argentina,

{diego.torres, alicia.diaz}@lifia.info.unlp.edu.ar,
2 Nantes University, LINA, 2, rue de la Houssiniere, 44322 Nantes, France,

{Hala.Skaf, Pascal.Molli}@univ-nantes.fr

Abstract. Wikipedia is a public and universal encyclopedia where con-
tributors edit articles collaboratively. Wikipedia infoboxes and categories
have been used by semantic technologies to create DBpedia, a knowl-
edge base that semantically describes Wikipedia content and makes it
publicly available on the Web. Semantic descriptions of DBpedia can
be exploited not only for data retrieval, but also for identifying missing
navigational paths in Wikipedia. Existing approaches have demonstrated
that missing navigational paths are useful for the Wikipedia commu-
nity, but their injection has to respect the Wikipedia convention. In
this paper, we present a collaborative recommender system approach
named BlueFinder, to enhance Wikipedia content with DBpedia proper-
ties. BlueFinder implements a supervised learning algorithm to predict
the Wikipedia conventions used to represent similar connected pairs of
articles; these predictions are used to recommend the best convention(s)
to connect disconnected articles. We report on an exhaustive evaluation
that shows three remarkable elements: (1) The evidence of a relevant
information gap between DBpedia and Wikipedia; (2) Behavior and ac-
curacy of the BlueFinder algorithm; and (3) Differences in Wikipedia
conventions according to the specificity of the involved articles. Blue-
Finder assists Wikipedia contributors to add missing relations between
articles, and consequently, it improves Wikipedia content.

Keywords: Semantic Web, Social Web, DBpedia, Wikipedia, Collabo-
rative Recommender Systems

1 Introduction

Semantic Web technologies facilitate search and navigation on the Web, while
they can be additionally used to extract data from the Social Web, e.g., DBpedia
is built with data extracted from Wikipedia 3 infoboxes and categories. On the
other hand, knowledge managed and encoded by Semantic Web technologies can
enhance data published in the Social Web; for instance, semantic annotations

3 http://www.wikipedia.org
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DBpedia extracts information and 
stores it in a semantic representation.

All pairs (Place,Person) where
<Place> is birthplace of <Person>

Querying DBpedia, for example:

1 2

(a) Information flow from Wikipedia
and DBpedia

DBpedia extracts information and 
stores it in a semantic representation.

All pairs (Place,Person) where
<Place> is birthplace of <Person>

Querying DBpedia, for example:

(Paris, Henri_Alekan)
(Rosario, Lionel_Messi)
(Boston, Robin_Moore) 

{221,788
1 2

3
4

(b) Complete cycle of information flow
between Wikipedia and DBpedia

Fig. 1: Information flow between Social Web and Semantic Web

of data have been used to improve the Facebook graph search [1]. However,
to the best of our knowledge, DBpedia [2] has not been exploited to improve
Wikipedia. In this paper, we propose BlueFinder an approach to enhance the
content of Wikipedia with data inferred in DBpedia.

Although Wikipedia is collaboratively edited by large user communities,
Wikipedia links are not semantically defined, e.g., no types are attached to these
links. In the context of Semantic Web, Wikipedia links are translated into prop-
erties in DBpedia, and they are semantically described using RDF vocabularies,
i.e., DBpedia encodes semantics that is not represented in Wikipedia and pro-
vides a more expressive representation of Wikipedia links. Therefore, DBpedia
allows for retrieving information that is not available in Wikipedia [3]. To illus-
trate, Listing 1.2 presents a SPARQL [4] query named Q1 to retrieve people
and their born place4 using db-prop:birthplace. Nevertheless, ifQ1 is executed
against the DBpedia endpoint 5, the answer includes more people than those ob-
tained by navigating from the Wikipedia place article. The evaluation of query
Q1 retrieves 409,812 (place, person) pairs from the DBpedia endpoint. Mean-
while, if we navigate from places to people in Wikipedia, we only obtain 221,788
connected pairs. Two Wikipedia articles are connected if a regular Wikipedia
user can navigate from one article to another through a navigational path. A
navigational path with a length larger than five is unreachable by a regular
user [5–7]; so those articles are considered as disconnected. Thus, only 54 % of
places in Wikipedia have a navigational path to those people who were born
there. In this paper, we aim at adding missing navigational paths in Wikipedia,
and enhancing Wikipedia content. Thus, we contribute to complete the virtu-
ous cycle of information flow between Wikipedia and DBpedia as illustrated in
Figure 1b.

To measure how important the gap between Wikipedia and DBpedia, we
choose the most popular classes of DBpedia defined in [2], and the properties

4 A place could be a Country, Province, City, or State.
5 DBpedia of July 2013
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with the highest number of triples. We call these properties relevant properties.
Listing 1.1 shows the SPARQL query that retrieves the relevant properties that
relate instances of the classes db-o:Person and db-o:Place.

prefix db−o:<http :// dbpedia . org / onto logy/>
select ?p ( count ( distinct ?o ) as ? count )
where { ? s ?p ?o .

? s rd f : type db−o : Person .
?o rd f : type db−o : Place

}
group by ?p
order by ? count

Listing 1.1: SPARQL query to retrieve relevant properties that relate instances
of the classes db-o:Person and db-o:Place

We observe the same phenomenon when querying DBpedia using relevant
properties of other classes, e.g., db-o:Person, db-o:Place, or db-o:Work, as
shown in Table 1. The last two columns of the table provide the number of
connected pairs obtained by a SPARQL query and the amount of disconnected
pairs in Wikipedia for a specific property, respectively.

DBpedia Property from Class to Class # DBpedia # Wikipedia
connected pairs disconnected pairs

prop1: birthPlace Place Person 409,812 221,788
prop2: deathPlace Place Person 108,148 69,737
prop3: party PoliticalParty Person 31,371 15,636
prop4: firstAppearance Work Person 1,701 142
prop5: recordLabel Company Person 25,350 14,661
prop6: associatedBand MusicalWork Person 365 73
prop7: Company Software developer 14,788 2,329
prop8: recordedIn PopulatedPlace MusicalWork 28,351 27,896
prop9: debutstadium Building Athlete 595 393
prop10: producer Artist MusicalWork 70,272 32,107
prop11: training Building Artist 171 109
prop12: previousWork Album MusicalWork 72,498 3,887
prop13: recordLabel Company MusicalWork 118,028 75,329
prop14: starring Person Film 164,073 42,584
prop15: country PopulatedPlace Book 19,224 17,281
prop16: city PopulatedPlace Educational 34,061 8,681

Institution

prop17: associatedBand Band MusicalArtist 24,846 4,100
prop18: fromAlbum Album Single 18,439 1,268
prop19: location PopulatedPlace Airport 10,049 2,660
prop20: notableWork Book Person 1,510 73

Table 1: Results of 20 SPARQL queries for 20 properties and different classes.

Some connected resources in DBpedia are disconnected in their correspond-
ing Wikipedia articles, i.e., resources can be navigated in DBpedia while it is
not possible to navigate equivalent resources in Wikipedia. We call this missing
navigational paths information gap between Wikipedia and DBpedia. To illus-
trate the gap, we analyzed 1, 153, 652 connected pairs in DBpedia, and we found
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that 540, 434 pairs were disconnected in Wikipedia. Consequently, the value of
the information gap between Wikipedia and DBpedia is important. Figure 2
details the number of information gap between Wikipedia and DBpedia for the
properties detailed in Table 1. In order to evaluate the usefulness of adding
these navigational paths, we carry out a social evaluation [8]. In this evalua-
tion, we have manually added missing navigational paths for 211 disconnected
pairs and after one month, we analyzed how many navigational pairs were ac-
cepted and how many were rejected by the Wikipedia community. As detailed
in [8], 90% of new navigational paths were accepted and 10% were rejected.
Although the rejected navigational paths had respected the semantics of the re-
lation, they were more general than those used by the community. For example,
the proposed navigational path to connect (Edinburgh, Charlie Aitken)6 with
the DBpedia property is birthplace of was Edinburgh / Category:Edinburgh

/ Category:People from Edinburgh / Charlie Aitken7. Wikipedia commu-
nity argued that the category People from Edinburgh is too general and the more
specific category Sportspeople from Edinburgh is a more appropriate link.
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Fig. 2: Gap proportion for the twenty DBpedia properties of Table 1

For adding missing navigational paths, it is mandatory to study how the
Wikipedia articles are connected respecting the Wikipedia conventions 8.

Wikipedia community has defined conventions that cover a wide diversity
of topics: writing style, context of the articles and relations among articles.

6 Charlie Aitken (footballer born 1942)
7 It must be read as from Edinburgh article, the user navigates through a link to the
category Edinburgh then he or she navigates to People from Edinburgh category, and
then to Charlie Aitken article”.

8 http://en.wikipedia.org/wiki/Wikipedia:Conventions
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Categories, List of pages, and Navigation templates are the conventions to de-
sign the navigation for one-to-many relations among Wikipedia articles. Ad-
ditionally, the conventions could be defined by the community according to
the specificity of the articles [8]. For example, the DBpedia property is birth-
Place of that relates Boston9 and Tim Barsky10 is represented in Wikipedia
by the navigational path Boston / Category:Boston / Category:People -

from Boston / Tim Barsky. However, in case of Boston and Donna Summer11,
the same DBpedia property is represented by the navigational path Boston /

Category:Boston / Category: People from Boston / Category:Musicians

from Boston / Donna Summer. Donna Summer is a musician from Boston and
most of the Boston’s musicians belong to the category Category:Musicians from
Boston. These differences in the convention used to express the birthplace of a

person trigger the following new question: How to find the Wikipedia convention
for a navigational path?

In this paper, we address the problem of finding Wikipedia convention(s) that
represent a DBpedia property between pairs of Wikipedia articles. Then, it is
possible to connect pairs of Wikipedia articles that used to be disconnected. Con-
sequently, Wikipedia content will be improved. For example, according to DB-
pedia (and also Wikipedia), Boston is the birthplace of Robin Moore. However,
a navigational path from Boston to Robin Moore does not exist in Wikipedia
but does exist in DBpedia. Therefore, a user could ask Which is the conven-
tion to represent the “is birthPlace of” relation for (Boston, Robin Moore) in
Wikipedia?

We introduce BlueFinder, a collaborative recommender system that recom-
mends navigational paths that represent a DBpedia property in Wikipedia. Blue-
Finder pays special attention to the specificity of the resource types in DBpedia.
It learns from those similar pairs already connected by Wikipedia community
and proposes a set of recommendations to connect a pair of disconnected arti-
cles. BlueFinder recommender system presented in this paper is an optimization
of the previous version published in [9].

Summary of our contributions:

1. We measure the information gap between DBpedia and Wikipedia for a set
of twenty representative DBpedia properties.

2. We re-design and propose several optimizations for BlueFinder algorithm.
3. We propose a new Semantic Pair Similarity Distance (SPSD) function to

measure the similarity between pairs of related articles based on the DBpedia
types description.

4. We conduct an empirical evaluation that measures Precision, Recall, F1,
Hit-rate, and the confidence of BlueFinder recommendations over the twenty
properties of DBpedia. The results demonstrate that BlueFinder is able to fix
in average 89 % of the disconnected pairs with good accuracy and confidence.

9 http://en.wikipedia.org/wiki/Boston
10 http://en.wikipedia.org/wiki/Tim_Barsky
11 http://en.wikipedia.org/wiki/Donna_Summer
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The paper is organized as follows. Section 2 presents related works in the field
of discovering and recommending links. Section 2 describes basic definitions used
in this work. Section 4 describes the problem statement. Section 5 presents the
BlueFinder approach and the algorithm description. An exhaustive evaluation
is described in Section 6. Finally, conclusions and future works are presented in
Section 7.

2 Related Work

Want et al. [10] introduce a collaborative approach to recommend categories to
Wikipedia Articles. The approach consists of a two-step model. The first step
collects similar articles to the uncategorized one in terms of incoming and out
coming links, headings and templates. The second step lies on ranking the cate-
gories obtained by the related articles and selecting the best ranked. BlueFinder
uses categorization but in another context. Categorization is used to express
properties of DBpedia. Less related to our approach but in line with combining
recommender systems and DBpedia, MORE [11] is a recommender system that
uses DBpedia to recommend movies in a Facebook application. A Vector space
model is used to compute semantic similarity. However, MORE uses DBpedia as
a source data set to base the recommendations and not to improve Wikipedia.
Panchenko et al. [12] propose to extract semantic relations between concepts
in Wikipedia applying kNN algorithms called Serelex. Serelex receives a set of
concepts and returns sets where articles are semantically related according to
Wikipedia information and using Cosine and Gloss overlap distance functions. In
addition to the lack of using DBpedia as semantic base, Serelex cannot describe
the way that two concepts are related in Wikipedia according to a property.
Singer et al.[13] compute semantic relatedness in Wikipedia by means of hu-
man navigational path. They analyze human navigation paths in order to detect
semantic relatedness between Wikipedia articles. The main difference with Blue-
Finder is the absence of DBpedia as a support to describe semantic relatedness
between Wikipedia concepts, as is exploited in our work with the Semantic Pair
Similarity Distance. Di Noia et al. [14] introduce a strategy to find similar-
ity among RDF resources in the Linked Open Data. Di Noia et al. present a
content-based recommender system approach based on the Web of Data. As in
BlueFinder, the similarity between resources is computed by means of semantic
relationships. However, in [14] it is mandatory to discover the semantic relation
among the resources and then to analyze a potential similarity. In BlueFinder,
we already know that the two resources in each pair are related by the same
property and then we only have to compare the types of description. Finally,
the Di Noia approach is applied in the Web of Data world, and BlueFinder we
complement and augment the information of the Social Web with information
from the Web of Data.

Nunes et al. [15] introduce a recommender system to discover semantic rela-
tionships among resources from the Social Web. The work presents an approach
to measure the connectivity between resources in a particular data set based on
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semantic connectivity store and co-occurence-based measure. The first metric is
based on graph relations among entities; the second one relies on an approxima-
tion of the number of existing Web pages that contain the same labels in their
body. Although the approach of Nunes et. al. is closely related to BuleFinder,
the main difference is the direction of the information flow. In Nunes et al work,
the information of the Social Web is used to improve the Semantic Web and not
in the opposite direction as in BlueFinder.

Other works [16, 17] aim at fixing missing direct links in Wikipedia, while
[18] proposes an approach to complete Wikipedia infobox links with information
extracted from Wikipedia by using Kylin. Works in [16–18] do not use Semantic
Web features as BlueFinder does, moreover, BlueFinder fixes navigation paths
rather than only direct links.

Paris Pierre Curie
Paris
Cat:

People from Paris
Cat:

Rosario Lionel Messi

Rosario
Cat:

People from Rosario
Cat:

(Paris, Pierre Curie)
Navigational Path
Paris / Category: Paris / Category: People from Paris / Piere Curie

(Rosario , Lionel Messi)
Navigational Path
Rosario / Category: Rosario / Category: People from Rosario / Lionel Messi
Rosario / Lionel Messi

Path Query

Path Query
#from / Category: #from / Category: People from #from / #to

#from / Category: #from / Category: People from #from / #to

#from / #to

#from / Category: #from / Category: People from #from / #to

#from / #to (Rosario, 
Lionel Messi)

(Paris, 
Pierre Curie)

Extract of Wikipedia Graph

Path Index

Navigational Paths & Path Queries

PQ Cp(l)I

Fig. 3: Example of Wikipedia Graph, Navigational Path, Path Queries and Path
Index

DBpedia has not been exploited before to improve the content of Wikipedia.
BlueFinder proposes to enhance the content of Wikipedia with data inferred in
DBpedia, and to complete the cycle of information flow between Wikipedia and
DBpedia as illustrated in figure 1b.

3 Preliminaries Definitions

DBpedia Knowledge Base: DBpedia knowledge base is a set of RDF triples
built from data extracted from Wikipedia [2]. This knowledge base has a set of
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general properties and a set of infobox-specific properties, if the corresponding
Wikipedia article contains an infobox. Each resource in DBpedia has types def-
inition (rdf:type) coming from DBpedia ontology and Yago [19] ontology. The
foaf:isPrimaryTopicOf property relates a DBpedia resource with its correspond-
ing Wikipedia page. DBpedia provides a SPARQL endpoint to query DBpedia
knowledge base. For example, the SPARQL query Q1 in Listing 1.2 retrieves
from DBpedia the set of all pairs of Wikipedia pages (from, to) that are related
by the DBpedia property birthplace.

prefix db−o:<http :// dbpedia . org / onto logy/>
prefix db−p:<http :// dbpedia . org / property/>
prefix f o a f :<http :// xmlns . com/ f o a f /0.1/>
select ? f r ? to
where { ? db from rd f : type db−o : Person .

? db to rd f : type db−o : Place .
? db from db−p : b i r t h p l a c e ? db to .
? db from f o a f : isPrimaryTopicOf ? f r .
? db to f o a f : isPrimaryTopicOf ? to
}
Listing 1.2: Q1: DBpedia query for birthplace property.

For each property in Table 1, we define a corresponding SPARQL query Qp

that contains a triple pattern of the form: ?s db-p:p ?o where p is the property.
We define Qp(D) as the result of the evaluation of Qp over D. In Listing 1.2,
for the property db− p : birthplace, Q1birthplace(D) is the result of evaluation of
the query over DBpedia, i.e., the set of couples of Wikipedia pages that relates
persons and their birthplace.

Wikipedia Mode:l Wikipedia can be described as a graph where nodes are the
Wikipedia articles (regular articles and categories) and hyperlinks are the edges.
For example, an extract of Wikipedia graph is represented at the top of Figure
3: boxes are the nodes and arrows are the edges.

Definition 1 (Wikipedia Graph). G = (W,E) where W is a set of nodes
and E ⊆W ×W is a set of edges. Nodes are Wikipedia articles (wiki pages) and
edges are links between articles. Given w1, w2 ∈ W , (w1, w2) ∈ E if and only if
there is a link from w1 to w2.

Definition 2 (Navigational Path). A navigational path P (w1, wn) between
two Wikipedia articles is a sequence of pages w1/ . . . /wn, s.t. ∀i wi ∈ W ∧ ∀i, j
: 1 6 i < j 6 n, wi 6= wj, ∀i : 1 6 i 6 n − 1 where (wi, wi+1) ∈ E is a link
between wi and wi+1. w1 and wn are called the source page and the target page
respectively. The length of a navigational path is the number of articles in the
sequence, length P (w1, wn) = n.

Definition 3 (Wikipedia Connected Pairs). Let Qp(D) denote the result
of the execution of the query Qp against the dataset D. The set of pairs (f, t) in
Wikipedia which are connected by a navigational path with length up to l, where
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(f, t) ∈ Qp(D) is defined as :
Cp(l) = {(f, t) ∈ Qp(D) such that ∃P (f, t) and length(P (f, t)) <= l}.

A path query is a generalization of similar navigational paths. Usually, regular
expressions are used for expressing path queries [20]. Many works have been done
on path queries in different domains [20–22]. We adapt the path query definition
in [21, 20] to the context of Wikipedia. We use regular expression patterns [20],
i.e., patterns that include variables.

Definition 4 (Regular expression pattern [20]).
Let Σ be an alphabet, X be a set of variables, the set of regular expressions

R(Σ,X) over Σ can inductively defined by: (1) ∀a ∈ Σ, a ∈ R(Σ,X). (2)
∀x ∈ X,x ∈ R(Σ,X); (3) ε ∈ R(Σ,X). (4) If ∀A ∈ R(Σ,X) and ∀B ∈ R(Σ,X)
then A.B, A∗ ∈ R(Σ,X); such that A.B is the concatenation of A and B and
A∗ denotes the Kleene closure.

Definition 5 (Language defined by a regular expression pattern [20]).
Let Σ be an alphabet, X be a set of variables, and R,R′ ∈ R(Σ,X) be two
regular expression patterns. L∗(R) is the set of words of (Σ

⋃
X)∗ defined by: (1)

L∗(ε) = {ε}. (2) L∗(a) = {a}. (3) L∗(x) = Σ
⋃
X. (4) L∗(R.R′) = {w′.w |w ∈

L∗(R) and w′ ∈ L∗(R′)}. (5)L∗ (R+) = {w1 . . . wk | ∀i ∈ [1...k], wi ∈ L∗(R). (6)
L∗(R∗) = {ε}

⋃
L∗(R+).

A path query is a generalization of similar navigational paths by regular
expressions patterns. A path query is defined by:

Definition 6 (Path Query).
A Wikipedia path query (in short path query) PQ ∈ R(Σ,X) is a regu-

lar expression pattern. A pair of nodes (x, y) of G covers (or satisfies) a path
query PQ(x, y) over Σ and X if there exists a path P from x to y in G and
a map µ from Σ

⋃
X to term(G) such that Λ(P ) ∈ L∗(µ(R)) where Λ(P ) =

Λ(a1) . . . Λ(ak) over (Σ
⋃
X)∗ is associated to the path P = (a1, ..., ak) of G.

In the context of Wikipedia Σ = W . For the purpose of this work, we limit
X to two variables X = {#from,#to}. For a pair of Wikipedia pages (x, y)
then, Λ( #from ) = x, Λ(#to ) = y and Λ(w) = w′, w′ ∈ W , in case w includes
in its a literal occurrence of the symbol #from or #to they will replace by x
or y respectively, otherwise w = w′ (for example, Λ(Category : #from) =
Category : Paris for the pair (Paris, Pierre Curie). Given a Qp(D), Cp(l) is
the set of all pairs (f, t) ∈ Qp(D) that are connected in Wikipedia by a path
with length up to l. We will use path queries and computes the coverage of path
queries for a set of pairs of Wikipedia articles.

The grey box at the middle of Figure 3 shows the navigational paths and path
queries that can be generated for (Paris, Pierre Curie) and (Rosario, Lionel
Messi) Wikipedia pairs in the example. Notice both cases are covered by a
same path query (#from / Category:#from / Category:People from #from

/ #to) instead of the fact that they have different navigational paths.
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Definition 7 (Path Index). Given a Cp(l), a Path Index (PI) is a bipartite
graph (PQ,Cp(l), I), it represents the coverage of path queries for a set of pairs
of Wikipedia articles that are related by a DBpedia property p. PQ is an ordered
set of path (descendent order by element degree), I ⊆ PQ × Cp(l) is the set
of edges relating elements from PQ with elements from Cp(l); (pq, v) ∈ I ⇔
pq ∈ PQ ∧ v ∈ Cp(l) ∧ v covers pq. The first path query in PQ is the general
representation of the property p in Wikipedia.

Definition 8 (Rating). Given a Path Index PI = (PQ,Cp(l), I) and a path
query pq ∈ PQ the rating of the pq in the path index is defined by the degree of
pq in the path index bipartite graph:
rating(pq, PI) = |{e ∈ Cp(l) : (pq, e) ∈ I}|

Path Index are useful because they enable us to obtain the following infor-
mation:

– Which is the most general path query?
– Which path queries cover a connected pair of Wikipedia articles?
– How many pairs are covered by a path query?

The Path Index for the examples of (Rosario, Lionel Messi) and (Paris,
Pierre Curie) is shown at the bottom of Figure 3. The pink ellipses with the
path queries are the PQ set, the yellow ellipses with the Wikipedia pairs are
the Cp(l) set, and the arrows in between is the set of edges I. Finally, the
rating for #from / Category:#from / Category:People from #from / #to

is 2, and the rating for #from / #to is 1.
The information disparity between DBpedia and Wikipedia is detected by

comparing the difference between the set of connected pairs of resources in DB-
pedia and those corresponding pairs that are connected in Wikipedia.

Definition 9 (Wikipedia pair connection). Two Wikipedia articles (a, b)
that are related by a DBpedia property with one-to-many cardinality are connected
when at least one of the following conditions is true:

1. There is a navigational path from a to b through the category tree with length
less or equal to five [5, 7].

2. There is a direct link from a to b.
3. a has a direct link to a List of page that has a direct link to b.

For instance, Rosario, Santa Fe and Lionel Messi are connected accord-
ing to the first condition since there is navigational path:Rosario, Santa Fe /

Cat:Rosario, Santa Fe / Cat:People from Rosario, Santa Fe /

Lionel Messi.
Rosario, Santa Fe / Lionel Messi are connected according to the sec-

ond condition, and, finally, Al Pacino / List of awards and nominations -

received by Al Pacino / Academy Award connects the pair elements (Al Pa-
cino, Academy Award) following the third condition.
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DBpedia fetch

Wikipedia
Index

kNN
Path Queries

Analysis

Clustering &
Recommendation

BlueFinderStart-up:
DBpedia SPARQL 
end point

Qp(D)

index k similar pairs

similar path queries recommended path
queries

Fig. 4: BlueFinder algorithm steps

4 Problem Statement

We describe the problem of defining the best representation of missing links in
Wikipedia as a collaborative recommender system problem. According to Ado-
mavicioius and Tuzhilin [23], ”collaborative recommender systems try to predict
the utility of items for a particular user based on the items previously rated by
other users”. BlueFinder predicts links between Wikipedia articles based on links
previously rated by the Wikipedia community. Thus, BlueFinder can be consid-
ered as a collaborative recommender system for enhancing content of Wikipedia.

More formally, the utility function u(c, s) of item s for user c is estimated
based on the utilities u(cj , s) assigned to item s by those users cj ∈ C who are
“similar” to user c. In the context of Wikipedia, BlueFinder does not directly
apply recommenders to suggest Wikipedia articles to users but to suggest links
between articles. BlueFinder predicts the utility of path queries for a particular
pair of Wikipedia articles based on those rated by the Wikipedia community. In
other words, the pairs of articles (from,to) will play the role of users and the path
queries will be the items. Then, the utility u(c, pq) of a path query pq for a pair
c related by a semantic property p is estimated based on the utilities u(cj , pq)
assigned to pair c by those pairs cj ∈ Cp(l), u : Qp(D)× PQ→ R, where R is a
list of path queries sorted according to the rating (see Definition 8).

Given a property p in DBpedia, Cp(l) and PQ path queries covered by the
elements of Cp(l). Then, for a given pair of Wikipedia articles (from, to), we
have to recommend the path query that maximizes the utility function. The
following use case illustrates this problem statement in a practical use.

Use Case 1 A user would like to know which is the best convention to represent
the is birthplace of semantic relation for the pair of articles (Boston, Robin
Moore) in Wikipedia. The expected result is a list of recommended navigational
paths that could connect Boston and Robin Moore articles respecting Wikipedia
conventions. Some possible answers could be the following navigational paths:

– Boston / * / Category: Writers from Boston / Robin Moore (High confi-
dence)
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– Boston / Robin Moore (Low confidence)

Algorithm 1 BlueFinder

Require: x : unconnected pair, maxR : maximum number of recommendations,
Qp(D), k : number of neighbors, l:max path length

Ensure: Recommendation path query set
1: index = (PQ,Cp(l), I)←WikipediaIndex(Qp(D), l)
2: kneighbors ← kNN(x,Cp(l))
3: knnPQ←

⋃
ci
pq : (pq, ci) ∈ I, ci ∈ kneighbors

4: knnI ←
⋃

ci
(pq, ci) : (pq, ci) ∈ I, ci ∈ kneighbors

5: knnPI ← (knnPQ, kneighbors, knnI)
6: M ← NoiseF ilter(knnPI) {M ordered in rating descendent order}
7: M ← StarGeneralization(M,knnPI)
8: return maxRecom path queries of M

The first specifies a navigational path that starts in Boston article, then
it could continue by several other articles but it has to finish in the category
Writers from Boston and finally Robin Moore article. The second navigational
path specifies the direct navigation from Boston to Robin Moore. Additionally,
the first respects the Wikipedia convention with a higher level of confidence than
the second one.

5 BlueFinder

BlueFinder implements a four-steps pipeline process as shown in Figure 4. A pre-
processing step DBpedia fetch configures the BlueFinder start-up information.
It fetches from DBpedia SPARQL endpoint the set of pairs of Wikipedia articles
Qp(D) that are related in DBpedia by a semantic property p. After having the
Qp(D), BlueFinder algorithm is ready to start.

The BlueFinder Algorithm 1 receives five inputs: (1) the unconnected pair of
Wikipedia articles x, (2) maximum number of recommendations maxR , (3) the
Qp(D) set generated by DBpedia fetch step, (4) the number of neighbors k , and
(5) the maximum length of a path l. BlueFinder algorithm starts by invoking
the WikipediaIndex.

The WikipediaIndex Algorithm 2 builds a path index. It receives Qp(D) and
computes the item set, user set and item ratings. The items are the path queries,
and the users are the pairs of Wikipedia pages retrieved from DBpedia. In this
case, for each pair of Wikipedia articles (from, to) included in a given Qp(D),
the algorithm performs a depth-first search up to l starting from the from
article and finishing in the to article in the Wikipedia graph (lines 1-4). For each
reaching to article, it generalizes a path and builds the path index as a bipartite
graph (lines 5-8). Finally, it returns the path index that is ready to be used in the
next step of the BlueFinder algorithm 1. BlueFinder traverses Wikipedia graph
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starting from the from article and finishing in the to article in the Wikipedia
graph until the maximum length of a path; consequently, a depth-first search is
more appropriate than the breadth-first search for building path index.

Algorithm 2 WikipediaIndex

Require: Qp(D), l: path length
Ensure: PI bipartite graph

1: index = (∅,∅,∅)
2: for all (from, to) ∈ Qp(D) do
3: allPaths← ∅ , curL← 0, curPath← ∅
4: GenerateAllPaths(from, to, l, curL, allPaths, curPath)
5: for all path ∈ allPaths do
6: pathQuery ← BuildPathQuery(path, from, to)
7: index← InsertInIndex(index, pathQuery, (from, to))
8: end for
9: end for

10: return index

After indexing, BlueFinder performs the kNN step (line 2 in Algorithm 1). In
this step, given a disconnected pair of articles in Wikipedia, BlueFinder identifies
the k nearest connected pairs to the disconnected one.

Algorithm 3 GenerateAllPaths

Require: from, to : Wikipedia article, l, curL : integer, allPaths : setOfPaths,
curPath : path

Ensure: All paths that start in from and end in to in Wikipedia Graph with length
up to l. The results only include paths through the category tree, the use of List -
of pages or direct links.
if from = to then
allPaths← allPaths

⋃
{curPath}

else if l > curL then
{Traverse through Wikipedia graph edges set E}
for all neighbor ∈ {n : (from, n) ∈ E} do
curPath← curPath+ neighbor
curL← curL+ 1
GenerateAllPaths(neighbor, to, l, curL, allPaths, curPath)
curPath← curPath− neighbor
curL← curL− 1

end for
end if
return allPaths

The kNN algorithm uses a similarity measure function to select the nearest
neighbors. We define the Semantic Pair Similarity Distance (SPSD) function to
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measure the similarity between pairs of article. SPSD is based on the well-known
Jaccard distance [24], it measures the degree of overlapping in the DBpedia
types that describe a pair of Wikipedia articles. The range of the SPSD is from
0 (identical pairs) to 1 (totally disjoint pairs). The Semantic Pair Similarity
Distance function is defined as:

Definition 10 (Semantic Pair Similarity Distance (SPSD)). Given two
pairs of pages c1 = (a1, b1) and c2 = (a2, b2). Let ta1 , tb1 , ta2 , tb2 data types in
DBpedia for a1, b1, a2 and b2 respectively. Data types are defined as:
ta1

={t : < a1 rdf:type t > ∈ DBpedia}, tb1 ={t : < b1 rdf:type t > ∈ DBpedia},
ta2

={t : < a2 rdf:type t > ∈ DBpedia}, tb2 ={t : < b2 rdf:type t > ∈ DBpedia}.
SPSD(c1, c2) =

J(ta1 ,ta2 )+J(tb1 ,tb2 )

2

where J is Jaccard distance between c1 and c2. J(c1, c2) = |c1∪c2|−|c1∩c2|
|c1∪c2| .

To illustrate, we consider two pairs of Wikipedia pages c1 = (Paris, P ierreCurie)
and c2 = (Paris, Larusso). The data types are:

– tparis = {EuropeanCaptialsOfCulture, PopulatedP lace}.
– tPierreCurie = {Scientist, FrenchCheimists, PeopleFromParis}.
– tLarusso = {Artist, PeopleFromParis}.

SPSD(c1, c2) =
J(tparis,tparis)+J(tPierreCurie,tLarusso)

2 = (0 + 0.75)/2 = 0.375

Now, we can define the kNN [25] in our context as:

Definition 11 (kNN). Given a pair r ∈ Qp(D) and an integer k, the k nearest
neighbors of r denoted KNN(r,Qp(D)) is a set of k pairs from Qp(D) where
∀o ∈ KNN(r,Qp(D)) and ∀s ∈ Qp(D) −KNN(r,Qp(D)) then SPSD(o, r) ≤
SPSD(s, r).

Having the kNN step computed, the Path Queries Analysis step starts.
It obtains the path queries that connect the k neighbors in a smaller path
index than the original (from line 3 to 5 in Algorithm 1). Indeed, having a
PI = (PQ,Cp(l), I); the value for an unknown rated rc,s for unconnected pair
in Wikipedia c and a path query s ∈ Cp(l), can be computed as:

rc,s = degree(s, PI ′) + featured(pq, PI ′)

where PI ′ = (PQ,Cp(l)′, I) and Cp(l)′ = KNN(c, Cp(l)) and featured(pq,
PI ′) = β if degree(pq, PI ′) = |Cp(l)′|, otherwise featured(pq, PI ′) = 0. β is a
scalar used to promote those path queries that are a convention shared for all
the k neighbors12 and we call featured predictions. BlueFinder has a high level
of confidence in featured predictions.

The generated path index contains the path queries that will be recommended
and its ratings. Before the recommendations are returned, in the step Clustering

12 In this work, we use β = 1000.
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and Recommendation in Figure 4, BlueFinder cleans regular-user-unreachable-
paths (e.g., paths that include administrative categories) by means of the noise-
Filter (Algorithm 4) and similar path queries are grouped by StarGeneralization
algorithm (Algorithm 5). Finally, BlueFinder returns themaxRecom best ranked
path queries.

The NoiseF ilter Algorithm 4 deletes all the paths queries that are not acces-
sible by a Wikipedia user. Wikipedia includes several administrative categories
which are used by administrators. In order to recommend path queries that can
be utilized by regular users, NoiseF ilter deletes those categories whose names
begin with ”Articles ”, ”All Wikipedia ”, etc, such as Cat:Articles to be -

merged.

Algorithm 4 NoiseFilter

Require: PI = (PQ,C, I): Path index
Ensure: Set of regular user navigable path queries.
noise = {”Articles ”, ”All Wikipedia ”, ”Wikipedia ”, ”Non −
free”, ”All pages ”, ”All non”}
for all pq = (p1, .., pn) ∈ PQ; do

if pi contains any c ∈ noise; 1 ≤ i ≤ n then
PQ← PQ− {pq}

end if
end for
return PQ

BlueFinder filters path queries into star path queries in order to reduce data
sparsity.

Definition 12. A star path query PQ∗(f, t) is a group of similar path queries
that meet the following rules: (1) PQ∗(f, t) starts with #from and ends with
#to. (2) The * element can only be placed between #from and #to variables
and * represents any path query. (3) The * cannot be the penultimate element
in the path query because it has to make explicit the last part of the path in order
to make the connection with the #to page.

Example 1. PQ∗(f, t) =#from/*/Cat:People from #from/ #to is a star path
query. PQ∗(f, t) =#from/*/#to is not a star path query.

The StarGeneralization Algorithm 5 groups path queries into a star path
query, if possible.

Solving the Use Case 1 We start by fetching from Wikipedia all the pairs of
Wikipedia articles with the form (Place, Person) that are related by the semantic
relation is birthplace of. The SPARQL query evaluated in the DBpedia endpoint
is Q1 (Listing 1.2) and the result is the Qp(D) set. Later, we initialize the
BlueFinder algorithm with the following parameters: (Boston, Robin Moore) as
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(a) similar path queries

(Boston, Ursula Parrot)#from / Cat: #from / Cat: People from #from / Writers from #from / #to

#from / Cat: #from / Cat: Culture of #from / Writers from #from / #to

#from / #to (Boston , Tom Kratman)

(Boston, Ursula Parrot)#from / * / Writers from #from / #to

#from / #to (Boston , Tom Kratman)

(b) star path queries

Cat: is the abreviation of Category

Cat: is the abreviation of Category

Fig. 5: BlueFinder: Similar path queries and star path queries in the execution
of Use Case 1

the unconnected pair x, the limit of recommendation with maxR = 3, in order to
simplify the example only 2 neighbors (k = 2), and the maximum length of pairs
with 5. In Section 6 we evaluate the behavior of BlueFinder with a combination
of several values of k and maxR.

The Wikipedia Index step generates a similar but larger index than the one
exemplified in Figure 3. This index includes 409,812 connected pairs (Cp(l)),
65,262 path queries (PQ) and 648,631 edges (I). With the index, the next step
selects the 2 connected pairs of articles that are most similar to (Boston, Robin
Moore). The SPSD detects (Boston, Ursula Parrot) and (Boston, Tom Kratman)
as the most similar pairs because both of them are sharing most of the DBpedia
types with (Boston, Robin Moore). For example all of them are writers from
Boston. After that, BlueFinder only analyzes the path queries that cover the k
neighbors in a smaller index as shown in Figure 5 (a). Those similar path queries
are generalized into star path queries in the Clustering and Recommendation
step. The generalization generates the index shown in Figure 5 (b).

Finally, the path query #from / .../ Category: Writers from #from /

#to will be a featured recommendation because it covers all the neighbors. The
other path query covers only one. Then, it retrieves the following recommenda-
tions customized for Boston and Robin Moore.

– Boston / . . . / Category: Writers from Boston / Robin Moore (Featured
Recommendation - High confidence)

– Boston / Robin Moore (Low confidence)

With this recommendations, the user publishes in Wikipedia a navigational
path that starts in Boston article, and has to finish in the category Writers from
Boston. For this case, the user only has to add the article Robin Moore to the
category Writers from Boston.
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6 Evaluation

In this section we analyze the behavior of our approach by means of measuring
the prediction the accuracy of BlueFinder predictions over the 20 properties
shown in Table 1. The evaluation is conducted to answer the following questions:

1. What is the best combination of k and maxRecom values to observe the
best accuracy from BlueFinder?

2. Does BlueFinder retrieve path queries that can fix missing relations in Wi-
kipedia?

3. Does the confidence level provided by BlueFinder correlate with the accuracy
of the predictions?

4. Does the Wikipedia Community use different conventions to represent a
DBpedia property?

In this section we describe the method of the evaluation, the evaluation met-
rics, and then the data sets used in the experimentation are presented. Finally,
the results and discussions are introduced.

Algorithm 5 StarGeneralization

Require: PQ: set of path queries, PI: Path index
Ensure: PQ∗: set of star path queries
PQ∗ ← ∅
for all pq = (p1, .., pn−1, pn) ∈ PQ; do

if pn−1 starts with ”Cat:” then
PQ∗ ← PQ∗ ⋃{(p1, ∗, pn−1, pn)}

else
PQ∗ ← PQ∗ ⋃{pq}

end if
end for
return PQ∗

6.1 Method

In order to answer the questions described in the previous section, an offline eval-
uation was designed; user interaction is not considered in the study. The central
idea of this evaluation is based on disconnecting connected pairs of articles in
Wikipedia and then observing whether BlueFinder is able to recreate them. The
important fact here is that BlueFinder has to recreate the Wikipedia commu-
nity conventions that were defined to connect the pairs and not only to discover
the disconnection. This approach is based on the assumption that all connected
pairs in Wikipedia follow Wikipedian conventions. Figure 6 summarizes the idea
of the evaluation method. For the purpose of this evaluation all the path queries
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Run BlueFinder 
with (A,D)

A is birthplace of D

In Wikipedia it is possible 
to navigate from A to D.

If the recommendation recreates the original 
path, then BlueFinder �xes the connection.

Example

DCB
A

DCB
A DCB

A

Fig. 6: Evaluation method

that connect a pair of pages that are related in DBpedia by a property p, are
considered the correct paths that represent the property p.

A sample of 10% of the connected pairs was taken for the evaluation. They
are randomly selected and kept in a set called N. For instance, for prop1 in
Table 1, 188,324 pairs are connected in Wikipedia (i.e. 409,812 - 221,788), so
18,832 randomly selected of those pairs will be in the set N. After that, for each
connected pair (w1, w2) in N the evaluation repeats the following steps:

1. All paths currently connecting (w1, w2) in Wikipedia are stored in the µrelevant

set, and immediately all them are eliminated from Wikipedia to “disconnect”
(w1, w2).

2. BlueFinder is executed to predict the paths that could connect (w1, w2). The
resulting predictions are kept in µpredicted.

3. The µpredicted set is compared with µrelevant set in order to compute the
metrics detailed below such as precision, recall and F1.

4. Finally, Wikipedia is restored up to the state before the pair disconnection.
This means that the (w1, w2) pair is reconnected by means of µrelevant.

In this evaluation, BlueFinder behavior is evaluated in each property men-
tioned in Table 1, and then aggregates the values of all the metrics to have a
general point of view. For example, the evaluation measures the precision met-
ric for prop1, then for prop2 and then it continues with the rest of metrics and
properties. After all the metrics and properties are computed, the mean of all
metric values is calculated.

In order to have an analysis of the best combination of the number of neigh-
bors and the number of the BlueFinder recommendations, the BlueFinder exe-
cution is configured with many combinations of the parameter k and maxRecom
for each disconnected pair. The values for k are from 1 to 10, and the values for
maxRecom are 1, 3, 5 and unlimited. The limit of path queries l was fixed in 5
according to the analysis presented previously.

Evaluation metrics We measured the accuracy of BlueFinder predictions
based on the standard metrics of Precision (P), Recall (R), F-measure(F1) and
hit-rate.
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Precision relates the number of correct path queries that are predicted by
BlueFinder to the total of recommended path queries.

P =
|µrelevant

⋂
µpredicted|

|µpredicted|
(1)

where µpredicted is the set of predicted path queries and µrelevant is the set
of expected path queries.

Recall computes the ratio of expected path queries to the total of recom-
mended path queries.

R =
|µrelevant

⋂
µpredicted|

|µrelevant|
(2)

F1 score is the combination of precision and recall.

F1 = 2× P ×R
P +R

(3)

We also use the hit-rate recommendation accuracy [26, 27] that measures the
number of cases where BlueFinder recommends at least one correct path query.

hit− rate =

{
1 if |µrelevant

⋂
µpredicted| > 0

0 otherwise
(4)

The previous measures are extended by studying the distribution of path
queries predicted by BlueFinder. In this work, we measure the statistical dis-
persion of each path query i according to the proportion p(i) of a pair coverage
using Gini index.

The Gini index [28] measures the distribution of recommended path queries.
A value close to 0.0 indicates that all path queries are equally recommended
while a value close to 1.0 represents that a particular path query is recommended
always.

GI =
1

n− 1

n∑
j=1

(2j − n− 1)p(ij) (5)

where i1, ..., in is the list of path queries ordered according to increasing p(i).
Finally, we combine the previous metrics to analyze the confidence of the

predictions. A high level of confidence in a prediction means that the system
trusts its prediction while a low confidence means the opposite [29]. BlueFinder
determines confidence in two levels: featured predictions, and the position of each
prediction in the recommendation set. In order to evaluate the confidence, we
will compare the confidence with the hit-rate of each prediction.

Limitations In statistical terms, the µrelevant set is used as the gold standard
for each pair (w1, w2) in N . However, µrelevant could contain paths that are
not related to a property in Table 1, or even a potentially correct prediction
could be absent in the µrelevant set. For example, the µrelevant set for the pair
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(London , Richard Blanshard) with the property deathPlace was #from / *

/ Cat:People from #from / #to and the first two predictions in the predic-
tion set were #from / * / Cat:People from #from / #to and #from / * /

Cat:Death in #from / #to. The second prediction could be correct but, as it
is not included in µrelevant, the evaluation rejects it as a correct one. Taking
into account these considerations, the µrelevant set is an estimation of the actual
path queries and in consequence the BlueFinder is evaluated in the context of
the worst case.

Datasets We evaluate BlueFinder with the twenty semantic properties detailed
in Table 1. For each property denoted by propi, a SPARQL query was evalu-
ated on the DBpedia SPARQL endpoint. The SPARQL query for each property
follows the template showed in Listing 1.3 and the values of DBpediaSeman-
ticProperty, fromType and toType are replaced in each property scenario for the
specific values of the first, second and third column respectively that are detailed
in Table 1. For instance, the SPARQL query in Listing 1.2 corresponds to prop1.
The number of the Wikipedia connected pairs of each property is the difference
between the numbers of the DBpedia connected pairs minus the number of the
Wikipedia disconnected pairs (columns fourth and fifth of Table 1). The evalua-
tion was run with a local copy of the English Wikipedia and DBpedia download
in July 2013 and they were stored in a MySQL database.

prefix db−owl :<http :// dbpedia . org / onto logy/>
prefix db−p:<http :// dbpedia . org / property/>
prefix f o a f :<http :// xmlns . com/ f o a f /0.1/>
select ? f r ? to
where { ? db from a <fromType> .

? db to a <toType> .
? db to db−p:<DBpediaSemanticProperty> ? db from .
? db from f o a f : isPrimaryTopicOf ? f r .
? db to f o a f : isPrimaryTopicOf ? to
}

Listing 1.3: SPARQL query template for evaluation scenarios.

Evaluation results are described and discussed in the next section. The com-
plete values of all the metrics values with the different values for k andmaxRecom
of this evaluation are in https://sites.google.com/site/bfrecommender/

publications/.

6.2 Results and discussion

We start by explaining the information gap presented in Table 1, then we report
results for each evaluation metric.

Gap analysis The last column in the in the Table 1 presents the gap of missing
information in Wikipedia. By analyze the ratio of the gap, shown in Figure 2,
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Fig. 7: Precision, Recall, F1, and Hit-rate mean of all properties

we noticed that 9 out of 20 properties have more than 50 % of missing infor-
mation. In addition, the number of disconnected pairs of the properties prop1
(birthplace), prop2 (deathplace), and prop13 (recordlabel) shown in the
Table 1, is equivalent to more than the 50 % of all disconnected pairs of other
properties.

The smallest gap was in prop20 (notableWork) and prop12 (previousWork)
with only 5 %. In both cases, this is because the links represent basic information
of the connected articles and they are expressed as direct links (#from / #to)
between the articles.

Accuracy To assess the best behavior of BlueFinder, we analyze the values
of accuracy metrics for the 20 properties from a general perspective. Figure 7
shows four line-charts with the mean values of precision, recall, F1 and hit−rate
obtained for each property. Each chart describes the relation betweenmaxRecom
and k values for each metric.

BlueFinder is able to find, on average, between 75 % and 82 % of the relevant
paths, and according to the hit-rate values it is able to fix around 88 % of the
cases for k greater than 4 and maxRecom = 3, 5 or unlimited. However, the
limitations is that the precision values decrease according to the variation of the
k values and the number of recommendations.

To detect the best correlation between precision and recall we use the F1
metric. According to the Figure 7, all the maxRecom curves converge at k=5
with value 0.65. Therefore, maxRecom = 5 and k = 5 determine the best accu-
racy for BlueFinder. The number of correct path queries tips the scales in favor
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of recall and hit-rate rather than precision. This assumption is based on the fact
that the recommendations are presented to the users in descending confidence
order, and consequently, the users have extra information to determine the ac-
curacy of the recommendation. Finally, the unlimited maxRecom was dismissed
because it had similar recall than maxRecom = 5 but lower precision.
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Fig. 8: Precision all properties

Precision As presented in Figure 8 most of the precision curves decrease, due
to BlueFinder introduced non-expected path queries in µpredicted set. This is
because of the size of maxRecom has increased but also because the distant
neighbors insert noisy paths. Nevertheless, the 70 % of the properties had preci-
sion higher than 0.5 at k=5 and maxRecom=5. This evidences that in general
terms the precision of BlueFinder was considerably good taking into account
that, as we have mentioned, the predictions are presented in confidence order
bringing to the users better information (more details in Section 6.2).



Discovering Wikipedia Conventions using DBpedia Properties 23

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-.$" -.%" -.&" -.'" -.(" -.)" -.*" -.+" -.," -.$!"

!"#$%&'!()(*(

/01/$" /01/%" /01/&" /01/'" /01/("

/01/)" /01/*" /01/+2" /01/," /01/$!"

/01/$$" /01/$%" /01/$&" /01/$'" /01/$("

/01/$)" /01/$*" /01/$+" /01/$," /01/%!"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" %" &" '" (" )" *" +" ," $!"

!"#$%&'!()(*(

-./-$" -./-%" -./-&" -./-'" -./-("

-./-)" -./-*" -./-+0" -./-," -./-$!"

-./-$$" -./-$%" -./-$&" -./-$'" -./-$("

-./-$)" -./-$*" -./-$+" -./-$," -./-%!"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" %" &" '" (" )" *" +" ," $!"

!"#$%&'!()(*(

-./-$" -./-%" -./-&" -./-'" -./-("

-./-)" -./-*" -./-+0" -./-," -./-$!"

-./-$$" -./-$%" -./-$&" -./-$'" -./-$("

-./-$)" -./-$*" -./-$+" -./-$," -./-%!"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" %" &" '" (" )" *" +" ," $!"

!"#$%$&'()%*+,'-.%)

-./-$" -./-%" -./-&" -./-'" -./-("

-./-)" -./-*" -./-+0" -./-," -./-$!"

-./-$$" -./-$%" -./-$&" -./-$'" -./-$("

-./-$)" -./-$*" -./-$+" -./-$," -./-%!"

Recall

Fig. 9: Recall for all properties

Properties prop1 : birthplace(• line in charts), prop2 : deathplace (line with
×), and prop15 : country (line with 4) have low precision less than 0.44 for
any maxRecom value. This is because they have a high number of disconnected
pairs and shows up that BlueFinder, as many recommender systems, is sensitive
to the sparsity of data. On the other hand, property prop12 : previousWork
(line with +) had a high precision: 0.93 with maxRecom = 1 and k = 5, but it
sharply decreased when the maxRecom increased (0.44 with maxRecom = 3,
0.31 with maxRecom = 5 and 0.23 with maxRecom = unlimited). This is
because although BlueFinder was able to predict the correct path query for this
property, the other path queries that are included in the prediction set are not
correct.

Recall and F1 As depicted in Figure 9, the recall of seventeen properties is
greater than 0.7, and the recall of eleven properties is greater than 0.8; all of
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Fig. 10: F1 for all properties

them with k=5 and maxRecom=5. Again properties prop12, prop2, and prop15
are out of norm. The lowest recall value with k=5 and maxRecom=5 is 0.473
for prop2 property, and the maximum value is 0.972 for prop14 property.

Figure 10 presents the valus of F1 metric, although the values for the prop-
erties prop2, prop12 and prop15 are low, twelve properties out of twenty have F1
values greater than 0.6 at k=5 and maxRecom=5.

Hit-rate As depicted in Figure 11, 80 % of the properties (16 out of 20) have a
hit-rate greater than than 0.84, and only two properties have values lower than
0.6. The properties with the lowest hit-rate are prop15 and prop2; both confirmed
the same tendency that appeared in the previous accuracy metric. Although the
hit-rate values are low, according to its high level of information gap, the average
of hit-rate for the property prop8 is greater than 75 %. These values are promising
since 98 % of properties pairs were disconnected in Wikipedia.

The accuracy values demonstrated that BlueFinder retrieves good recommen-
dations. The hit-rate curves confirmed the best combination of k and maxRecom
values by setting k = 5 and maxRecom = 5.
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Fig. 11: Hit-rate for all properties

The BlueFinder predictions are sorted in confidence descendent order; con-
sequently, first ranked predictions may have a better hit-rate than the following
ones. In order to answer the third question of the evaluation Does the confidence
level provided by BlueFinder correlate with the accuracy of the predictions? the
hit-rate of BlueFinder featured predictions for the twenty semantic properties is
shown in Table 2. As we can see, featured predictions made by BlueFinder are
chiefly prominent: the lowest ratio was 0.84 for property prop1 and the highest
ratio was 1 for properties prop6 and prop15. The mean of all the hit-rate values
was nearly 0.95 and the geometric mean was similar ('0.95). This means that
BlueFinder is able to fix nearly all the cases where it recommends a featured
prediction. Additionally, more than 50 % of the BlueFinder recommendation in
this evaluation were featured recommendations. This means, making a projection
over the unconnected cases, around 270,367 of new connections in Wikipedia.
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DBpedia Property Hit-rate

prop1 0.849264

prop2 0.853425

prop3 0.914697

prop4 0.992218

prop5 0.954365

prop6 1

prop7 0.918067

prop8 0.968254

prop9 0.97541

prop10 0.977757

prop11 0.938776

prop12 0.93861

prop13 0.950509

prop14 0.994295

prop15 1

prop16 0.868421

prop17 0.979371

prop18 0.997813

prop19 0.938967

prop20 0.993056

Mean 0.95016375

Geometric Mean 0.94896

Table 2: Confidence and hit-rate for High Confidence predictions

Confidence Additionally, Figure 12 extends the information from Table 2 to
all the recommendation positions in a line-chart which compares the hit-rate
to the first five positions of the BlueFinder recommendation. As we expected,
the curve is in descending order while the first position has the best hit-rate
(0.78) and the last position the lowest (0.17). This confirms the correlation be-
tween the confidence and hit-rate of the predictions. Unfortunately, the hit-rate
curve descends more rapidly than we expected to second position and continues
descending until the last position.

Distribution of the BlueFinder Recommendations Wikipedia editors
mainly use one convention to represent 18 out of 20 properties in Table 1. Blue-
Finder is able to predict one path query for these properties; in this case the
Gini index is greater than 0.8.

However, because Wikipedia editors use more than one convention for proper-
ties such as prop9 and prop11, the BlueFinder predictions have Gini index values
between 0.474 and 0.778 for different k, and BlueFinder predicts several path
queries. For instance, the convention for the property prop9 : debutStadium is
either a Standalone list or a Category such that #from / List of West Coast -

Players / #to and #from / * / Category: West Coast Players / #to.
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Fig. 12: Confidence and hit-rate according to prediction order in the recommen-
dation set

General Evaluation Conclusions Evaluation show that the information gap
between DBpedia and Wikipedia is a real and important problem. According
to the evaluations, the best accuracy of BlueFinder is obtained with k = 5 and
maxRecom = 5, and this answers the first question of the evaluation. With
these values, the BlueFinder predictions maximize the expected results with a
balanced F1 value.

Additionally, on average 89 % of the disconnected pairs are fixed by Blue-
Finder according to the hit-rate values and almost all the featured predictions fix
the disconnection. A Wikipedia editor could use BlueFinder and fix unconnected
pairs in Wikipedia.

In order to answer the third question, BlueFinder gives the user the recom-
mendations in descending confidence order. The confidence is also correlated with
the hit-rate of the prediction. This enables users to make a better choice of the
predictions. The hit-rate of the predictions in the first position is accurate and
it is also better when the prediction is a featured prediction. Wikipedia editors,
in general, only use one convention to represent links in Wikipedia but in some
cases; two in this evaluation; some communities define particular conventions.
We can conclude this by taking into account that the prediction distribution is
centralized in one convention. Additionally, the evaluations showed that those
predictions are accurate.

BlueFinder gives good predictions even when the contributors have different
conventions. Indeed, this can be concluded by taking into account that the Gini
Index, in most of the cases, defined a centralized distribution of a path query in
the recommendations, and also the accuracy level of BlueFinder in those cases.
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DBpedia Property K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
prop1 : birthPlace 0.946 0.921 0.902 0.887 0.875 0.866 0.857 0.850 0.843 0.836
prop2 : deathPlace 0.922 0.890 0.866 0.849 0.835 0.823 0.814 0.806 0.798 0.792

prop3: party 0.954 0.938 0.928 0.921 0.912 0.906 0.902 0.898 0.894 0.891
prop4: firstAppearance 0.909 0.899 0.885 0.873 0.862 0.854 0.849 0.838 0.835 0.831

prop5: recordLabel 0.956 0.938 0.925 0.912 0.902 0.895 0.889 0.881 0.876 0.871
prop6: associatedBand 0.942 0.929 0.923 0.915 0.907 0.896 0.885 0.872 0.865 0.856

prop7:Company 0.941 0.917 0.901 0.886 0.876 0.872 0.866 0.860 0.855 0.850
prop8:recordedIn 0.861 0.833 0.830 0.813 0.802 0.790 0.769 0.757 0.747 0.736

prop9:debutstadium 0.676 0.648 0.613 0.594 0.595 0.581 0.576 0.561 0.545 0.524
prop10:producer 0.959 0.944 0.933 0.927 0.921 0.915 0.911 0.908 0.904 0.900
prop11:training 0.778 0.729 0.641 0.629 0.626 0.594 0.585 0.578 0.570 0.474

prop12:previousWork 0.955 0.941 0.938 0.931 0.931 0.931 0.927 0.924 0.921 0.919
prop13:recordLabel 0.959 0.948 0.938 0.930 0.925 0.920 0.917 0.912 0.906 0.905
prop14:starring 0.988 0.977 0.964 0.953 0.942 0.933 0.926 0.918 0.910 0.904
prop15:country 0.943 0.929 0.920 0.908 0.900 0.891 0.886 0.882 0.875 0.873
prop16:city 0.960 0.942 0.927 0.914 0.904 0.896 0.889 0.882 0.878 0.874

prop17:associatedBand 0.963 0.939 0.926 0.915 0.911 0.904 0.899 0.893 0.889 0.885
prop18:fromAlbum 0.967 0.953 0.942 0.932 0.923 0.913 0.901 0.885 0.872 0.869
prop19:location 0.967 0.945 0.927 0.911 0.898 0.888 0.881 0.872 0.866 0.861

prop20:notableWork 0.976 0.962 0.954 0.950 0.948 0.940 0.933 0.934 0.934 0.931

Table 3: Gini index of the properties

Property K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
prop9 0.678 0.655 0.630 0.627 0.643 0.649 0.661 0.652 0.662 0.680
prop11 0.778 0.729 0.650 0.636 0.648 0.636 0.623 0.616 0.607 0.509

Table 4: Gini index of the properties prop9: debutstadium and prop11: training
with maxRecom=5

7 Conclusions and Further Work

In this paper, we introduce the information gap between Wikipedia and DB-
pedia. To reduce this gap, we have to discover Wikipedia conventions to rep-
resent a DBpedia property between a pair of Wikipedia articles. We propose
BlueFinder, a collaborative recommender system that recommends navigational
paths to represent a DBpedia property in Wikipedia, while respecting Wikipedia
conventions. BlueFinder learns from those similar pairs already connected by
Wikipedia community and proposes a set of recommendations to connect a pair
of disconnected articles. BlueFinder exploits DBpedia types to define a similar-
ity function. Experimental results demonstrate that BlueFinder is able to fix in
average 89 % of the disconnected pairs with good accuracy and confidence.

Currently, BlueFinder is tailored for Wikipedia/DBpedia where entities match-
ing are well-defined. However, BlueFinder can be generalized to other datasets
with established entities matching.

As a further work, we plan to update Wikipedia with BlueFinder recom-
mendations. We have detected more than 50 % of the recommendation are fea-
tured recommendations. This means around 270,367 new links will be added to
Wikipedia. The future work will be based on a crowdsourcing activity and a
monitoring program which evaluates the community agreement of the new con-
nections. Moreover, we are going to adapt this approach in combination with
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non-English versions of Wikipedia. Finally, we plan to extend the approach to
any property in DBpedia in combination with other languages of Wikipedia and
to offre the next generation of BlueFinder as a service for any Wikipedia editor.
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