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ARTICLE INFO ABSTRACT 
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Martensite is a supersaturated solid solution of carbon in body-centered iron wherein interstitial carbon 

atoms preferentially occupy a single octahedral sublattice. Despite a centwy of rese.arch, the mechanism 

of this long-range ordering is still a subject of debate. Recently, Zener's theory of ordering was chal

lenged both experimentally and theoretically. ln an attempt to settle the controversy, we investigated 

by density functional theory the ground states of Fe-C configurations having various degrees of order. 

We conclude that the fully Zener-ordered configurations are always the most stable energetically, thus 

confirming Zener's theory. Comparison with mean-field elasticity and Ising-type modelling supports the 

elastic origin of Zener ordering. 

Densicy functional theory (DFf) 

Mean-field modelling 
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Fink and Campbell in 1926 (1] established that a'-martensite 
s a supersaturated solid solution of carbon in body-centered iron. 
he carbon atoms preferentially occupy the octahedral interstitial 
ositions between nearest iron atoms in one of the three (001} 
rystal directions. This preferential occupation causes a tetragonal 
istortion of the matrix, quantified by the lattice parameter ra
io c/a > 1. Based on Bain's transformation, Kurdjumov and Sachs 
2] suggested that carbon distribution in martensite lattice inher
ts from the diffusionless face-centered to body-centered structural
ransformation of the parent austenite phase. Assuming that long
ange carbon-carbon interactions are predominantly elastic, Zener
3] stated that the ordered distribution of carbon atoms is en
rgetically more favorable than disorder. He predicted an order
isorder transition between cubic ferrite and tetragonal martensite
Fig. 1 ). Zener's mean-field theory has been challenged ever since,
artly because the so-called Zener ordering transition was never
videnced directly.

Kurdjumov et al. (4] provided indirect proof of Zener ordering: 
hey measured an increase in tetragonality of quenched marten
ite during ageing at room temperature, interpreted as progressive 
rdering via carbon jumps into the favoured octahedral sites. Re
ently, an in situ X-ray diffraction study of martensite formation 
uring quench evidenced the set up of tetragonality as soon as 
artensite forms , confirming Bain's scheme [5]. In another study, 
n situ neutron diffraction revealed a decrease in axial ratio to-
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ards c/a = 1 during ageing after quench [6], i.e. a case of Zener 
isordering. Finally, cases were reported of high-carbon austenite 
sothermally transformed into cubic martensite, thus challenging 
ener's model (7,8]. On the other hand, room-temperature mea
urements of the lattice parameters of Fe-C steels of various car
on contents ail show an abrupt transition between low-carbon 
ubic ferrite and high-carbon tetragonal martensite (9-11 ], which 
s coherent with Zener's theory. 

On the theoretical side, investigations of carbon ordering in iron 
nvolved various techniques: thermodynamic mean-field modelling 
12-16], the microscopie elasticity theory (4,10,17-19], the CAL
HAD formalism [20.21], molecular dynamics (14,22-24] and com
ined ab initio-Monte Carlo (16,25-27]. Most of these approaches, 
lthough based on ditferent hypotheses and approximations, pro
ide results in favour of Zener ordering. One exception is the work 
f Ruban (25,26], which predicts an "anti-Zener" ordering consist
ng of carbon atoms occupying specific sites on two preferred oc
ahedral sublattices, associated with a ratio c/a < 1. The relative 
tability of this configuration, as compared to Zener order, is ex
lained by the asserted dominating effect of carbon-carbon short
ange interactions. 

It is worth noting that mechanical external conditions affect the 
hase stabilities (see e.g. [28,291) and modify the equilibrium or
er. In particular, coherency stress or applied stress can turn the 
rst-order Zener transition into a continuous transition (12,30]. 
hen compressive, a uniaxial stress may also stabilise "beyond

ener" order, i.e. an orthorhombic structure where the three octa
edral sublattices are unevenly occupied by carbon atoms (30-33]. 

This literature survey leads to the conclusion that Zener or
ering may or may not occur, depending on yet unclear reasons. 



Fig. 1. The Zener order-disorder transition transforms bcc-ferrite (left) into bct- 

martensite (right) and vice-versa. Fe atoms are in gray, preferred carbon sites are

coloured according to their sublattice (RGB code).
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Fig. 2. Ordering enthalpy (top) and lattice parameters (bottom) as function of

Zener-order parameter η ( ζ = 0 ) in stress-free Fe-8.6at%C. SQS-DFT is compared to 

elasticity and pairwise interactions and to experimental data from Cheng [49] . Error

bars indicate the standard deviations.
oreover, there is no theoretical consensus on whether Zener or- 

er is the most stable state of order in supersaturated iron or not. 

he subject needs further prospection, given its importance in un- 

erstanding and predicting the mechanisms of martensite transfor- 

ation and the resulting martensitic microstructures. 

In this study, we investigated from first principles the ener- 

etic stability of various states of carbon order. Special quasir- 

ndom structures (SQS) were used to simulate random distribu- 

ions of carbon atoms over each sublattice. Density functional the- 

ry (DFT) computations were performed under prescribed applied 

tress. The results were compared to the mean-field elastochemi- 

al model [33] supplemented by short-range carbon–carbon inter- 

ctions. The most stable structures were identified as function of 

he applied stress. 

In a crystal of body-centered iron, interstitial carbon atoms are 

istributed over the 3 sublattices of octahedral sites. Carbon frac- 

ion on sublattice i is noted c i and total carbon fraction is c = 

∑ 

c i .

o study the effect of carbon distribution over the sublattices at 

onstant carbon fraction c, it is convenient to introduce two long- 

ange order parameters η and ζ defined by cη = c 3 − 1 
2 (c 1 + c 2 ) 

nd cζ = c 2 − c 1 . Parameter η quantifies the degree of Zener or- 

er along crystal direction [001], while ζ quantifies the unequal 

ccupancy in directions [100] and [010]. In the mean-field ap- 

roach, a state of order is characterised by the pair of parameters 

η, ζ ) . The case (1,0) represents full Zener order along direction 

001], i.e. all carbon atoms sitting on sublattice 3. This configura- 

ion will be referred to as the Z3 orientational variant. The com- 

inations (−0 . 5 , −1) and (−0 . 5 , 1) describe the Z1 and Z2 fully

rdered variants along directions [100] and [010], respectively. In- 

ermediate values of (η, ζ ) represent partially ordered structures. 

mong them, (−0 . 5 , 0) is the inverse-Zener order: it has empty

ublattice 3 and equal occupancy of sublattices 1 and 2. Finally, 

0,0) is the fully disordered structure with equal occupancy of the 

hree sublattices. 

The thermodynamical stability of a given state of order under 

pplied stress tensor σ is characterised by the enthalpy of order- 

ng �H(η, ζ ) , where symbol � expresses that the disordered state 

s taken as reference. �H can be calculated from the energy of or- 

ering �U and the strain of ordering �ε via the relationship 

H = �U − V σ · �ε , (1) 

here V is the volume of the stress-free carbon-free crystal. 

DFT calculations are known to render correctly the short-range 

nteractions between solute atoms, irrespective of their origin, 

chemical” or ”elastic”. In this study, by allowing the supercell to 

elax, we also captured the long-range carbon–strain interaction 

nd the resulting homogeneous strain. 

In order to represent carbon–vacancy disorder on octahedral in- 

erstitial sublattices, we used the SQS approach. Supercells were 
uilt with mcsqs [34] modulus of ATAT code [35] , following the 

rocedure described in [36] : computation of the correlations func- 

ions on clusters containing C–C pairs equal to or shorter than 

 

3 a 0 ( a 0 is the lattice parameter of iron). The computed tetrag- 

nality and energy somewhat depend on the relative positions of 

he carbon atoms in the supercell [37,38] ), this is why we av- 

raged each case over a set 13 SQS structures. To extract ener- 

etic and structural properties from these structures using DFT, 

e employed an in-house version of VASP code [39,40] allow- 

ng to impose stresses on cells. We used the following parame- 

ers: generalized gradient approximation [41] with projector aug- 

ented wave method [42] and Perdew-Burke-Ernzerhof exchange- 

orrelation functional [43,44] , 400 eV energy cut-off (as used in 

efs. [36,45,46] ), spin-polarized approximation, 10 −5 eV energy 

onvergence criterion of the electronic self-consistency, 4 × 4 × 4 

onkhorst-Pack k-points grid [47] for 128 iron atom supercells and 

ethfessel-Paxton smearing [48] for reciprocal space integration. 

o relax the supercells we used a conjugate-gradient algorithm 

ith ionic relaxation criterion of 10 −4 eV in energy for zero-stress 

alculations and 0.01 eV/ ̊A in force for stress-imposed calculations. 

alculations were performed on Fe 128 C 12 supercells of composition 

e-8.6at%C and varying states of order. 

In a first series of calculations, the degree of Zener order along 

xis 3 was varied ( η variable and ζ fixed to zero). Profiles of the 

veraged ordering enthalpy �H and lattice parameters a and c are 

rawn in Fig. 2 . The energetic stability of full Zener order with re- 



Fig. 3. Ordering enthalpy of various states of order under tensile or compressive

stress in Fe-8.6at%C and schematics of the relaxed cell shape (arrows represent the

state of order). Fully Zener-ordered configurations are the most stable ones in all

cases.
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pect to partial order or disorder is evidenced by the minimum in 

nthalpy positioned at η = 1 . Correlatively, the lattice parameters 

 and c vary linearly with the order parameter. They reach the ex- 

erimental values of Cheng et al. [49] at η = 1 , letting assume full

ener ordering for the experimental data collected in this study. 

A second series of calculations aimed at investigating the effect 

f tension ( +2 GPa) and compression ( −2 GPa) along axis 3 on the

elative stability of selected states of order, namely (1,0), (−0 . 5 , 0) 

nd (−0 . 5 , 1) . The comparative plotting of Fig. 3 gives the follow-

ng results: (i) tension stabilises tetragonal Zener order along the 

tress axis (variant Z3); (ii) compression stabilises orthorhombic 

ener order in a direction transverse to the stress axis (variant Z1 

r Z2); and (iii) disorder and inverse-Zener order are disfavoured 

n all cases. 

Additional calculations on variants (0,0) and (1,0) revealed that 

arbon distribution and applied stress have negligible impact on 

he magnetic moments (less than 0.02 μB /atomic species). This 

egligible role of Zener order on magnetism suggests that an em- 

irical potential without magnetism would be able to capture the 

iscussed effects on Zener ordering. 

Here, the main advantages of our first-principles approach are: 

i) it correctly represents interstitial disorder thanks to the use

f SQS; (ii) it does not raise an issue of empirical potential rep- 

esentativeness, as it is the case for the embedded-atom method 

50] and pairwise interactions models; and (iii) it considers both

omogeneous elasticity by lattice deformation and C–C chemical

nteractions. However, this approach does not easily allow discrim- 

nating the long-range elastic contribution from the short-range in- 

eraction contribution. To investigate this point, we used the mean- 

eld elastochemical model of Maugis [16,33] together with pair- 

ise C–C interactions. The theory is summarised below.

In the framework of the continuum elasticity theory of point 

efects, long-range carbon–strain interactions are accounted for via 

he dipole moment tensor P of interstitial carbon [51,52] . Carbon 

toms and axial stress σ induce a relaxed strain tensor ε , whose 
Table 1

Lattice parameter a 0 (in nm), elastic compliances S i j (in GPa −

Volumes V 0 , V C , V � (in eV/GPa) and strain-energy parameter

a 0 S 11 S 12 P a P c

0.2834 5 . 55 × 10 −3 −1 . 91 × 10 −3 9.60 18.88
ormal components write as functions of η and ζ : 
 

 

 

 

 

 

 

ε 11 = 

V C 

3 V 0 

c + 

V �

3 V 0 

c 

(
−η − 3

2 

ζ
)

+ S 12 σ

ε 22 = 

V C 

3 V 0 

c + 

V �

3 V 0 

c 

(
−η + 

3

2 

ζ
)

+ S 12 σ

ε 33 = 

V C

3 V 0 

c + 

2 V �

3 V 0 

cη + S 11 σ

(2) 

onstants V 0 , V C and V � are respectively the atomic volume of the 

attice, the relaxation volume and the tetragonal distortion due to 

n interstitial carbon. The latter are related to the elastic properties 

f the defect and the host matrix [16] : 

 C = (S 11 + 2 S 12 )(P c + 2 P a ) , 
V � = (S 11 − S 12 )(P c − P a ) . 

(3) 

 a and P c are the two independent components of the dipole mo- 

ent tensor and S i j are the components of the elastic compliance 

ensor of the host matrix. It is clear from Eqs. 2 that crystal sym- 

etry is governed by both applied stress and order parameters. 

ndeed, the Bravais lattice may be either cubic ( η = ζ = 0 , σ = 0 ;

ull disorder), tetragonal prolate (e.g. η > 0 , ζ = 0 , σ > 0 ; Zener or-

er), tetragonal oblate (e.g. η < 0 , ζ = 0 , σ < 0 ; inverse-Zener or-

er [26,27] ) or orthorhombic (e.g. η � = 0 , ζ � = 0 ; beyond-Zener or-

er [4,30] ). 

The homogeneous strain contributes to the enthalpy of ordering 

y the amount �H 

el written as 

H 

el = −h �c 2 
(
η2 + 

3 

4 

ζ 2 
)

− 2

3 

V �σ cη (4) 

here h � is the strain-energy parameter: 

 � = 

1 

3 V 0 

(S 11 − S 12 )(P c − P a ) 
2 . (5) 

he first term in the r.h.s. of Eq. 4 is the stress-independent order- 

ng energy �U 

el . The second term is the elastic work of the applied

tress when the configuration is changed from disorder ( η = 0 ) to 

artial order ( η � = 0 ). Eq. 4 shows that Zener ordering along direc-

ion 3 ( η > 0 ) is favoured when a tensile stress is applied along

hat direction ( ση > 0 , �H 

el decreases); it is disfavoured when a 

ompressive stress is applied along the same direction ( ση < 0 , 

H 

el increases). 

From Eqs. 3 and 5 we notice that the equilibrium state of order, 

btained from minimising function �H 

el (η, ζ ) at given c and σ, 

oes not depend on the elastic stiffness of the host matrix, but 

nly on the deviatoric part of the dipole moment tensor, via the 

atio (P c − P a ) /V 0 . 

All material parameters entering the elasticity model were ex- 

racted from high-accuracy DFT calculations. Their values are gath- 

red in Table 1 . The dipole moment tensor was computed using 

he residual stress method [53] : a supercell containing one carbon 

tom in a bcc-Fe matrix was relaxed, while maintaining the shape 

nd volume of the cell identical to that of carbon-free iron. On ac- 

ount of the carbon insertion, a residual stress σ builds up at the 

ell boundary. The dipole moment tensor P is related to the resid- 

al stress by P = −V σ, where V is the volume of the supercell. 

orrection of the image forces due to the periodic boundary con- 

itions was applied by varying the supercell size and performing a 

arabolic fit of the residual stress as function of 1 /V . 
1 ) and dipole moments P a , c (in eV) computed by DFT. 

 h � (in eV) used in the elasticity calculations.

V 0 V C V � h �

7 . 10 × 10 −2 6 . 56 × 10 −2 6 . 93 × 10 −2 3.02



Fig. 4. Ordering enthalpy (in units of h �c 2 ) as function of the order parameters η and ζ . From left to right: σ = −1 , 0 and 1 (in units of h �c/V � ). The gray triangle drawn 

at ordinate -1 represents all accessible states of order. Z1, Z2 and Z3 fully-ordered variants (coloured points) are the stable states when no stress is applied (centre). Tension

along axis 3 stabilises longitudinal variant Z3 (right), while compression stabilises both transverse variants Z1 and Z2 (left).
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Contribution of the short-range carbon–carbon interactions to 

he enthalpy was written as a pairwise Ising-type model: H 

nn = 

1
2

∑ 

V i j , where V i j is the interaction energy between two carbon 

toms indexed i and j. The V i j ’s were computed by DFT up to the

9th coordination shell [36] . To evaluate H 

nn (η, ζ ) , 250,0 0 0 car-

on atoms were randomly distributed over the 3 octahedral sub- 

attices according to the specified order parameters and the sum- 

ation was performed numerically. 

The ordering enthalpy computed with the elasticity model co- 

ncides well with the decreasing parabolic profile obtained by SQS- 

FT ( Fig. 2 top), and even better when the C–C pairwise contribu- 

ion is added. The coincidence remains satisfactory in case of ap- 

lied stress ( Fig. 3 ): although a slight shift is observed, the influ-

nce of the order state is well rendered by the elasticity and pair- 

ise interactions model. We conclude that elasticity captures ∼85% 

f the ordering enthalpy, while pairwise interactions have a minor- 

ty contribution of ∼15%. The latter moderate effect is qualitatively 

n line with the findings of Yan et al. [26] . On the other hand, the

nfluence of ordering on the lattice parameters is perfectly ren- 

ered by the elasticity model ( Fig. 2 bottom). As expected from 

lasticity theory, short-range interactions play a negligible role on 

he carbon-induced homogeneous strain [54] . 

To generalise our investigation to all possible states of order, 

urface plots of the reduced ordering enthalpy �H 

el /h �c 2 were 

omputed with the elasticity model for selected values of the re- 

uced applied stress σV �/h �c ( Fig. 4 ). In the stress-free condi- 

ion ( σ = 0 ), �H 

el exhibits three degenerate stable states charac- 

erised by the ( η, ζ ) pairs (−0 . 5 , −1) , (−0 . 5 , 1) and (1,0). These

airs represent respectively the fully Zener-ordered variants Z1, 

2 and Z3. We see that when a tensile stress is applied ( σ > 0 ),

he degeneracy is lifted and the stable state is the Zener-ordered 

ariant Z3. In case of compressive stress ( σ < 0 ) variants Z1 and

2 are the two degenerate stable states. These variants are ori- 

nted transversaly to the applied compressive stress. Owing to the 

ownward concavity of the enthalpy surfaces, all partially ordered 

tates are unstable, including the disordered structure (0,0) and the 

nverse-Zener structure (−0 . 5 , 0) , and this regardless the applied 

tress. 

We have demonstrated that full Zener order is always energet- 

cally more favorable than any other state of order, while disor- 

er and inverse-Zener order are unstable. This conclusion is true 

s long as the carbon atoms are randomly distributed in each sub- 

attice. We did not investigate secondary ordering, i.e. ordering in 

ne or more sublattices, possibly occurring at some specific carbon 

toichiometries. Such phenomenon was evidenced experimentally 

55] and theoretically [22,25,26,38] . However, secondary ordering

s expected to affect only marginally the ordering enthalpies, es- 
ecially at low-carbon content, thus not invalidating our general 

onclusions. 

Chen et al. reported the experimental evidence of cubic or 

ontetragonal martensite formed at room temperature in plasti- 

ally deformed quenched martensite [7] , as well as in deformation- 

nduced nanograined martensite [8] . These results apparently con- 

radict our finding that Zener order is expected in martensite, 

hatever the applied stress. However, the present paper is limited 

o investigating the 0 K states of a defect-free crystal. At finite tem- 

erature, martensite orders on the condition that its carbon con- 

ent be higher than a critical value. According to literature, this 

alue lies in the range of 0.8 to 2.9 at% at room temperature. Chen 

t al.’s material may not reach the criterion. Indeed, although their 

ominal carbon is high, carbon atoms are likely to have migrated 

o the deformation-induced dislocations and/or to the nanograin 

oundaries during room-temperature ageing or sample prepara- 

ion, thus decreasing solute carbon down to a subcritical value. 

Our first-principles investigation leads to the conclusion that 

ener-ordered configurations of body-centered Fe-C are always en- 

rgetically favoured compared to disordered or partially ordered 

nes. This finding supports Zener’s theory of ordering. Compari- 

on with mean-field elasticity and Ising-type modelling confirms 

hat Zener ordering is mostly driven by the long-range carbon–

arbon strain interaction, while short-range carbon–carbon interac- 

ions play a minor role. These conclusions remain true when ten- 

ile or compressive stress is applied. 
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