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Abstract

An optimal decentralized scheduling strategy for charging one electric vehicle

(EV) is proposed to minimize the customer charging cost. Moreover, the EVs

can offers more profit when considering the vehicle to grid feature, by discharg-

ing the EV in the grid at high peak demand the EV’ owner can earn money and

reduce his charging bill. Compared to existing methods, the main advantages of

the proposed strategy is the considerations of an optimized time step. By doing

so, the optimization problem uses a minimum number of decision variables and

constraints. Then, the problem can be solved by all optimization method to

reach the global optimum in reduced time. To formulate and solve a non-linear

constrained optimization problem, the scheduling process takes into considera-

tion: the time of arrival and time departure of the EV, the daily energy prices,

the initial state of charge (SOC) and the final SOC desired by the customer, the

power limitations, and the temperature. The results obtained show a high im-

pact of the optimal scheduling strategy and significant charging cost reduction

compared to the uncontrolled charging and fixed time step algorithms. More-

over, the charging strategy only requires that each EV solves its optimization

problem locally, therefore, its deployment requires a low computing capacity.
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1. Introduction

1.1. EVs charging context

Lithium-ion batteries (LiBs) are widely used in electric and hybrid vehicles

due to their high energy and power density [1]. This type of battery is used as

a power source for traction motor of electric vehicle (EV). Nowadays, charging

EVs is mainly done simplistically. As soon as the vehicle is connected to the

grid, the battery is charged by the minimal value between the available power

on the grid, the maximal power accepted by the EV charger and the maximal

power accepted by the battery, until it reaches a full charge. This type of

charging named uncontrolled charging implementation is still in use today [2].

The improvement of charging strategies for EVs is a challenge for the next

decades. Power distribution systems can be optimized, but the uncontrolled

strategy used in EVs creates high peaks of power demand when considering

classical daily scenarii with home to work and work to home travels [3]. In

such scenario, all EVs are plug-in at similar moment to the power network

and they expect to start the charging immediately whereas in most cases the

charging of vehicles can be delayed. Using electricity prices as a lever to control

the charging of EVs is a possible solution in a decentralized charging strategy.

The user and the power network can directly obtain concrete benefits like less

expensive charging, less load peaks and even network support in the case of

vehicle to grid (V2G) feature.

1.2. Related Works

Several research studies have been conducted for developing new charg-

ing methods through centralized, and decentralized strategies. The centralized

charging strategies carry out the charging of EVs from a system level viewpoint

and consider EVs present on all the nodes of the distribution system collectively
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[4]. These control strategies require extensive cyber-infrastructure, substantial

communications, and processing resources [5]. Moreover, the centralized algo-

rithms are more sensitive to privacy constraints, because all users data is saved

in servers for real-time optimization or in the backup system for data recov-

ery in the case of a system failure. Unlike the centralized implementation, the

decentralized strategies operate at the nodal level and perform the charging of

EVs present on each node locally [6]. One drawback of centralized control is the

continuous change of the computed charging profile at any introduction of new

EVs into the station or any demand from the transmission systems operator

(TSO) or the distribution system operator (DSO). Thus, the aggregator may

need to restart again the optimization to update control signals and sometimes

this operation is very expensive in terms of computation time [7]. The adoption

of a decentralized control strategy can be a solution to previous drawbacks. It

breaks the complexity of global optimization problem to local optimization prob-

lems at the EV level and it limits the communication between the aggregator

and the EVs.

In general, the EV charging scheduling is almost focused on maximizing

the aggregator profit without carefully addressing customers’ needs. In [8],

an unidirectional smart charging algorithm has been formulated in order to

maximize the aggregator profit. The aggregator uses the capacity of the EV’

batteries to participate in the regulation energy markets. The study in [9]

proposes the bidirectional charging EVs while offering ancillary services (load

regulation and spinning reserves) to the grid. The developed algorithm is used

to maximize the annual revenues of the aggregator. Two stages of the EVs

charging problem coordination have been proposed in [10], deterministic and

stochastic; aiming to minimize power losses and voltage deviation when the

improvements in power quality was the purpose of the study. The authors in

[11] designed a smart charging strategies to operate in the unidirectional and

the bidirectional mode with the consideration of the cost-benefit analysis in

a distribution system. An EV charging that takes advantage of photovoltaic

energy tariffs and provides ancillary services has been described in [12]; the
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mixed integer linear programming (MILP) is implemented to support the grid

by the V2G feature and to offer ancillary services in the form of reserve. The

main drawbacks of this type of scheduling is that the state of charge (SOC)

desired by the EV’ owner may not be reached in some cases at the departure

time, therefore the customer would not have the required SOC to return home.

However, the EV charging scheduling from the customer’s point of view

is almost neglected, a few recent works studied the minimization of the EV

owners charging cost. The concept of V2G and vehicle to home (V2H) have

been exploited in the context of residential charging of one EV, [13] proposed six

decentralized smart charging algorithms with the aim to minimize the charging

cost of the EV’ owner. In [14], a smart charging strategy has been proposed to

minimize EV charging costs while maintaining acceptable distribution system

voltages. The optimization decision is based on the time variations in electricity

prices, the voltage variation throughout the distribution system and the cost of

battery degradation caused by the charging. The authors in [15] formulated

the smart charging approach as an optimization problem, aiming at minimizing

the EVs charging cost considering the day-ahead electricity price, the battery

degradation cost and uncertainties in EVs arrival and departure time. In [16]

a coordinated charging strategy has been proposed to manage the EV fleet

charging considering the charging infrustructure and the EV’ users satisfaction.

In the literature various charging strategies have been proposed. Never-

theless, all of them use a constant sampling period or fixed time step defined

before starting the optimization [8-16]. In the event of a fluctuation of en-

ergy prices of a few seconds within a long planning optimization window, the

charging scheduling will cause an important issue with a huge number of steps.

Indeed, the calculation time step is defined by the minimal duration between

two changes of energy price. Therefore, the size of the decision variable vector

becomes very significant, so the computation time and the complexity of the

problem increase. The classical scheduling algorithms in a low computational

embedded system with constant calculation time steps may not be able to carry

out this optimization task because of the large number of decision variables and

4



constraints involved in this optimization.

The objective of the paper is to transform a complicated optimization prob-

lem into a simplified one by decreasing the number of decision variables and

the number of constraints. Studies have proposed advanced methods for solving

such problems using reinforcement learning [17], and adaptive dynamic pro-

gramming [18]. In order to be distinguished from studies that use advanced

optimization methods, the proposed strategy will directly affect the mathemat-

ical modeling of the optimization problem by significantly reducing the number

of decision variables and constraints. With the constraint of our industrial part-

ner to implement such a solution on an embedded system in the electric car, our

choice is turned to decentralized algorithms. With the constraint of an embed-

ded architecture with a low computational capacity. The use of a dynamic time

step greatly simplifies the optimization problem, it can change a hard problem

with hundreds of decision variables and constraints to an easy problem with

dozens of decision variables and constraints. Therefore the problem could be

solved with all optimization methods and the convergence to the optimal so-

lution will be easily and fast. So, the use of advanced optimization methods

will not add up to much to the convergence to the optimal solution due to the

simplicity of the problem.

In addition to the studies mentioned in the introduction many other opti-

mal algorithms and strategies are available in the literature to solve the cost

minimization problem, but they are tested under different conditions and as-

sumptions: battery capacity, customers or aggregators optimization point of

view, energy prices applied for aggregators (e/MWh) or customers (e/kWh),

etc. However, each study is conducted in its own context and therefore it is

difficult to compare the performance of different strategies.

Moreover, the LiBs health issue is related to optimizing the power scheduling

of charging/discharging sequence. More specifically, the implementation of an

optimized bidirectional charging with charging power equal to the fast charging

power based only on the user’s needs. Fast charging has a negative impact on

the main considerations related to battery life objectives [19] and the power
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grid [20]. Charging LiBs involves many nuanced considerations and subtleties

to consider conflicting objectives of maximizing the battery lifespan, reducing

the charging time, and improving the charging performance.

Furthermore, optimal charging strategies do not take into account the tem-

perature. Due to the higher sensitivity to the temperature of the LiBs compared

to other type of battery chemistry [21], extreme outside temperatures such as

40◦C and over or −20◦C and lower, accelerate the ageing capacity loss [22].

High temperatures increase power acceptance of the battery but the battery

lifetime decreases in a short time, causing premature ageing of the LiBs [23].

On the other hand, subzero temperatures decrease the power acceptance, in-

creasing the internal resistance of the LiBs, causing the raising of the joules

power losses, decreasing the efficiency of the charging, and affecting the state

of health (SOH) of the LiBs [24, 25]. In case of cold weather when the temper-

ature is not considered, the final SOC estimation maybe false and the battery

does not reach the SOC target desired by the customer [26]. Thus, charging the

battery while considering temperature is a very important issue, to get a best

estimation of SOC and to conserve the lifespan of EVs batteries. Considering

the outside temperature and temperature of the LiBs is a big challenge to make

the EVs suitable to any climate condition and to extend the batteries lifespan.

1.3. Contributions

This article is an extension of an earlier conference paper [26], which has been

significantly improved to take into account the constraint of low computational

capacity of the embedded EV’ system. The contribution of this paper has

been capitalized in a patent [27]. The main contributions of the paper can be

summarized as follows:

� A new decentralized algorithm for optimal charging of an EV;

� Low computation complexity with a dynamic time step;

� Minimization of the charging cost from the user perspective;
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� Consideration of V2G feature to reduce the user cost;

� Target SOC evaluation based on temperature to avoid lower estimations

like in cold temperature conditions.

The organization of the paper is as follows: the modeling of the optimization

problem is given in the Section II. Section III presents the simulation results of

the optimal planning strategy. Finally, Section IV addresses the conclusion of

this paper and the future work.

2. Charging scheduling strategy: optimization problem modeling

The charging strategy consists of three steps: pre-processing, optimization,

and post-processing, as shown in Fig. 1.

Figure 1: Decentralized charging system synoptic

2.1. Pre-processing

The pre-processing step allows, before starting the scheduling, to provide

the essential data for the optimization step, namely the data collection, the

subdivision of the time interval into time slots, the size of the decision vectors,

as well as the determination of the upper bounds of the optimized time step. The

data collection operation consists in receiving the data and parameters of the

optimization problem to initiate the planning, either of the Battery Management

System (BMS) or the charging station.
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Fig. 1 presents the context of the contribution and the elements interacting

with the Charging Management System (CMS).

The device receives from the BMS the measurement of the initial tempera-

ture, the outdoor temperature, the initial SOC, and the battery capacity.

The charging station sends the data over a maximum availability period of 24

hours. The device receives from the charging station the following information

shown in Fig. 2:

� The charging energy price for the next 24 hours: priceG2V

� The maximum charging power for the next 24 hours: PmaxG2V

� The discharging fees from V2G for the next 24 hours: priceV 2G

� The maximum discharging power for the next 24 hours: PmaxV 2G

In this step, the pre-processing algorithm restricts the time base to the actual

availability period of the EV on the charging station i.e. between the arrival

time and departure time of the EV.

The next step is to subdivide the horizon time into a sequence of time slots.

In each defined time slot, the four variables priceG2V , PmaxG2V , priceV 2G, and

PmaxV 2G have a constant value. The subdivision to time slots is the conversion

of data from time scale in Fig. 2 to slot scale in Table 1.

Thus, we can conclude the number of time slots corresponding to the size

of the decision vectors N = 12 and the duration of each time slot dmax shown

in Fig. 3. The subdivision on time slots of the priceG2V , PmaxG2V , priceV 2G,

and PmaxV 2G, can be observed in figures 2-3 and in Table 1.

For current data with a constant time step for scheduling, the maximal

sampling time that can be used with optimal charging strategies is ∆t = 1 hour

corresponding to the minimal duration of dmax. Thus the size of decision vector

is 24. For our strategy, the size of decision vector is 12. The difference between

these two numbers mainly depends on the minimal duration that can be smaller

than 1 hour in many real cases.
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Figure 2: Subdivision on time slots case 1

Figure 3: Duration of time slot: dmax
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Slot priceG2V PmaxG2V
priceV 2G PmaxV 2G

dmax

1 0.16 20 0.10 8 2

2 0.12 20 0.10 8 3

3 0.12 20 0.10 12 1

4 0.12 14 0.10 12 1

5 0.16 14 0.14 12 2

6 0.16 14 0.14 6 1

7 0.16 14 0.10 6 2

8 0.16 20 0.10 6 2

9 0.12 20 0.10 6 3

10 0.16 20 0.14 14 1

11 0.16 10 0.14 14 4

12 0.16 10 0.14 8 2

Table 1: Subdivision results to slot scale

In case of a small variation of G2V energy prices for 10 minutes between 20:00

and 20:10 (case 2), the maximal sampling time that can be used with optimal

charging strategies with constant time step is ∆t = 10 minutes corresponding

to a size of 144 for the decision vector. For the proposed strategy, the size of

decision vector is 14.

A single event of a few minutes duration can penalize the whole optimiza-

tion problem. To sum up, a short fluctuation of prices or maximal power can

make the optimization task very difficult and even impossible (time and memory

constraints) for an embedded charging scheduling system.

2.2. Optimization

This section is devoted to modeling the EV charging problem with cost

minimization and temperature consideration. The modeling is done as follows:

The time horizon vector is described by S = [1, ..., i, ..., N ] and it contains

N non equal duration time slots as defined in the previous subsection and in

Figure 3. The charging and the discharging of the EV can be expressed by four
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Figure 4: Subdivision on time slots case 2
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decision vectors as expressed in (1).

X =
[
PG2V PV 2G dG2V dV 2G

]
(1)

With

PG2V =
[
PG2V 1

, ..., PG2V i
, ..., PG2V N

]
PV 2G =

[
PV 2G1

, ..., PV 2Gi
, ..., PV 2GN

]
dG2V =

[
dG2V 1 , ..., dG2V i , ..., dG2V N

]
dV 2G =

[
dV 2G1

, ..., dV 2Gi
, ..., dV 2GN

]
(2)

For the ith time slot the vector Xi can be defined as shown in (3):

Xi =
[
PG2V i

PV 2Gi
dG2V i

dV 2Gi

]
(3)

This algorithm have two aims:

� Minimize the vehicle’s charging cost through optimal grid to vehicle power

flow taking into account G2V energy prices.

� To maximize the profit from selling energy from vehicle to grid considering

V2G energy prices.

The objective function is composed of two objectives, a positive one C1 and

a negative one C2. The optimization leads to minimize C1 that refers to the

EV charging cost and to maximize C2 corresponding to the EV discharging

remuneration or the economic profit of discharging EV’s battery on the grid.

The two objectives are expressed in (4), (5):

C1 =

N∑
i=1

priceG2V i · PG2V i · dG2V i (4)

C2 =

N∑
i=1

priceV 2Gi · PV 2Gi · dV 2Gi (5)

Where priceG2V i is the charging electricity price of the ith time slot in

e/kWh, priceV 2Gi is the the discharging electricity remuneration of the ith

time slot in e/kWh, PG2V i
, PV 2Gi

is the charging and the discharging power
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of the ith time slot in kW respectively, dG2V i , dV 2Gi are the calculation step in

hours, and i the time slot index.

The proposed optimization approach is formulated to select the optimum

charging power PG2V for the period of time dG2V , and the discharging power

PV 2G for the period of time dV 2G that minimize the weighted sum of the two

criteria. The proposed formulation of the objective function to be minimized is

given as follows:

F (X) = α1C1(X) + α2C2(X) (6)

where X is the decision variable, α1, α2 are constant positive values, given

the weight for each criterion: α1 enforces charging operation mode, α2 leads the

system to discharge the EV using the available battery power to support the

grid.

The optimization problem includes linear and nonlinear constraints resulting

from EV technical constraints and customer needs.

The charging power constraint related to the daily available power on the

grid and the discharging power constraint related to the daily required power

by the grid are expressed in (7):

0 ≤ PG2V i
≤ PmaxG2V i

i = 1, ..., N

−PmaxV 2Gi ≤ PV 2Gi ≤ 0 i = 1, ..., N
(7)

where PmaxG2V i
, PmaxV 2Gi

are the maximum available power on the grid and

the maximum required power by the grid in the ith time slot respectively.

The maximum duration of use for charging and discharging in the ith time

slot is formulated in (8):

0 ≤ dG2V i ≤ dmaxi i = 1, ..., N

0 ≤ dV 2Gi
≤ dmaxi i = 1, ..., N

(8)

To allow the charging and discharging operation in the same time slot, a

constraint is expressed in (9):

dG2V i
+ dV 2Gi

≤ dmaxi i = 1, ..., N (9)
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The maximum power that can be accepted or delivered by the battery de-

pends on the relation between the SOC and the battery’s temperature. This

power is set by the values obtained in the Powermap function:

PG2V i
≤ Pi,Bat+ i = 1, ..., N

PV 2Gi ≥ Pi,Bat− i = 1, ..., N
(10)

Where Pi,Bat+ = Powermap(SOCi, Ti)

Pi,Bat− = −Powermap(SOCi, Ti)

(11)

The Powermap function is the internal dependence of battery power on tem-

perature Ti of the ith slot and SOC of the ith slot SOCi. It provides information

on the maximum power that can be accepted by the battery or delivered to the

battery. An example of Powermap is shown in Figure 5.

Figure 5: Lithium-ion battery power map

In order to limit the battery cycling degradation in discharging mode and to

avoid customer’s range anxiety in case of an emergency use of the EV, we add

a SOC constraint expressed as follows:

SOCi ≥ SOCmini i = 1, ..., N (12)
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Where SOCmini is the minimum value of the SOC expected by the user, avoiding

high battery Depth of Discharge (DOD) during V2G mode.

The case of overcharging is taken into account because it affects the lifetime

of LiBs. Despite the fact that EV owners tend to prefer autonomy over battery

life, because of the anxiety related to autonomy, which is considered one of the

main obstacles to the large-scale adoption of EVs.

SOCi ≤ SOCmax i = 1, ..., N (13)

The calculation of the required energy Erequired to reach the SOC desired

by the costumer is expressed as follows:

Erequired = (SOCtarget − SOC0)× E0 (14)

SOC0 is the initial SOC of the EV, SOCtarget is the SOC desired by the cus-

tomer, and E0 is the capacity of the battery in kWh.

The constraint related to the final energy of the battery is:

Erequired ≤ Efinal ≤ E0 (15)

The evaluation of the energy variation of the battery at each time step can

be computed as follows:

Ei = ηcharger(PG2V i
· dG2V i

+ PV 2Gi
· dV 2Gi

) i = 1, ..., N (16)

Where ηcharger is the charger efficiency. Then, the final energy quantity in the

battery can be expressed as:

Efinal = SOC0 × E0 +

N∑
i=1

Ei (17)

The dynamic monitoring of the SOC is given by (18):

SOCi+1 = SOCi +
Ei

E0
i = 1, ..., N (18)

The temperature calculation is a first order model expressed as follow:

mCp
dT

dt
= Pjoule + Pconvective (19)
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The convective power is modeled by the Newton law showed in (20):

Pconvectivei =
Ti − Tout
Rth out

i = 1, ..., N (20)

Where Tout is the outside temperature and Rth out is the heat transfer coefficient

between the battery and the outside.

The joule power is formulated as a linear model in terms of charging and

discharging power:

Pjoulei = k × PG2V i
+ k × (−PV 2Gi

) i = 1, ..., N (21)

Where k is a thermal factor depending on the thermal inertia of the battery.

The optimization problem is solved with MATLAB optimization solver fmincon

with an Intel Core i7 CPU @ 2.70GHz.

Figure 6: Data conversion to time scale
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Algorithm 1 Transforming data from time slot to time scale

dG2Vm ← round(dG2V × 60)

dV 2Gm ← round(dV 2G × 60)

dmaxm ← round(dmax × 60)

tmaxm ←
∑N

i=1 dG2Vmi +
∑N

i=1 dV 2Gmi

P (1)← PG2V (1)

while t ≤ tmaxm do

for i← 1, N do

for j ← 1, dG2Vm(i) do

P (t)← PG2V (i)

t = t+ 1

end for

for j ← 1, dV 2Gm(i) do

P (t)← PV 2G(i)

t = t+ 1

end for

R = dmaxm(i)− dG2Vm(i)− dV 2Gm(i)

for j ← 1, R do

P (t)← 0

t = t+ 1

end for

end for

end while
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2.3. Post-processing

This step is used to generate the order for the charger to control the charging

and discharging of the EV, respecting the scheduling carried out in the optimiza-

tion stage. It consists in generating the control signal of the charge/discharge

to charger by choosing a time step adapted to the communication between the

CMS and the charger.

Firstly, the scheduling power obtained by the proposed strategy is trans-

formed from the slot scale to the time scale using the Algorithm 1. The al-

gorithm consists in processing each slot one by one separately to generate the

power with the chosen time step. For example in the slot number 2, the power

is 19kW (blue bar) and the duration of the slot is 1.5 hours (blue bar) as shown

in Fig. 6. The output power is a constant power of 19kW that will be used from

2:00 AM to 3:30 AM and the value of zero for the remained duration until the

end of the slot 5:00 AM. Secondly, when the charging power is generated then

the SOC can be estimated using the equation (22)

SOC(t) = SOC0 +
1

Q0

∫ t

0

ηchargerP (τ)dτ (22)

where SOC0 is the initial value of the SOC, Q0 is the nominal capacity in kWh

and P is the charging power generated by the Algorithm 1.

Thirdly, the temperature can be estimated using the generated charging

power by the equation (23):

T (t) = T0 +
1

mCp

∫ t

0

(Pjoule(τ) + Pconvective(τ))dτ (23)

To summarize, in the post-processing step, the conversion of the optimization

results from slot scale to time scale is performed, and the SOC estimation and

the temperature estimation are carried out.

3. Simulations and results

The purpose of this section is to demonstrate the effectiveness of the pro-

posed strategy. On the one hand, the results of the proposed strategy with
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an optimized time step have been compared to the classical approach using a

fixed time step. On the other hand, the proposed strategy will be tested under

an extreme outside temperature to show the effect of the temperature on the

power scheduling and the final SOC. Finally, the optimized time step strategy

will be tested on several daily energy price profiles to prove the effectiveness

of the proposed strategy compared to the fixed time step strategy, in term of

running time, the number of decision variables and the number of constraints.

The initial conditions are SOC0 = 0.35, SOCtarget = 0.7, SOCmini = 0.1,

E0 = 60kWh, ηcharger = 0.9, PG2V Max = 7kW , and PV 2G Max = −7kW . The

initial battery temperature is fixed to 20◦C.

The simulation results for the proposed scheduling strategy are presented

below. The algorithm has been tested for several scenarios to validate its per-

formance. A real French energy price profile was chosen to illustrate the charging

cases. The results show two cases, the first case is the charging under an out-

side temperature of 20◦C, and the second case is a charging under an extreme

outside temperature of −20◦C.

For the first case, which implies a charging of the EV at night under an

outside temperature of 20◦C.

The Fig. 7 shows the comparison between several charging strategies. The

SOCtarget is achieved by all strategies, however, the charging cost is different

from one strategy to another. Using the uncontrolled charging, the charging

starts at the moment of plug-in, neglecting the high energy prices, so the charg-

ing cost will be high and it is estimated to 2.1e. Smart charging algorithm with

only G2V can shift the charging to midnight, the EV is plugged-in at 18h00,

but the charging effectively starts until midnight when the electricity price is

more attractive so the estimated charging cost is 0.47e. Using the V2G fea-

ture, the scheduling strategy, begins the discharging in the period of high V2G

remuneration to maximize the profit while the SOC decreases until it reaches

the minimal value of 0.1 corresponding to the SOCmini. When the G2V energy

price becomes cheaper, the charging begins to reach the desired SOC. The two

strategies with optimized time step and fixed time step use the V2G feature,
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Figure 7: Charging strategies comparison under Tout = 20◦C.

but with the proposed strategy the charging profit is 0.31e and the executing

time is 0.25 second compared to 0.28e and 1.95 second for the classical strategy

with fixed time step.

For the strategy using optimized time step, the number of decision variables

is 12 and the number of constraint is 21. However, for the classical strategy

using fixed time step of 10 minutes, the number of decision variables is 84 and

the number of constraint is 420.

In brief, the classical strategy with fixed time step requires higher comput-

ing capacity because of the high number of decision variable and constraints

compared to the proposed strategy with optimized time step that could be in-
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tegrated easily to EV onboard embedded system.

Figure 8: The impact of optimization algorithm

Fig. 8 illustrates the impact of optimization method on convergence to the

optimal solution. The two charging profiles reached the targeted SOC before

the departure time. Although the difference between the global methods such

as genetic algorithm and the locally method based on the gradient, the two

charging power profiles are the same corresponding to the optimal solution pre-

sented in Fig. 7 with the blue color. Because of the low number of decision

variables and constraints (12 decision variables and 18 constraints) the genetic

algorithm and the gradient method converge to the same optimal solution. In

brief, the proposed method does not require the use of an advanced optimization

method to converge to the optimal solution. A local optimization method may

be sufficient to solve the optimization problem.

Fig. 9 shows the impact of an extra event such as a football match. The

energy prices are directly impacted by this extra event. In order to demonstrate

the advantage of the proposed optimized time step strategy and the inconvenient

of the use of fixed time step, a scenario of two perturbations of 15 minutes and
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Figure 9: The impact of an extra event on power scheduling power

45 minutes in G2V prices is used. For the fixed time step strategy, the time step

should be adapted for each use case. For fixed time step strategy, the time step

could be 15min or 5min or 1min. By decreasing the time step the execution time

becomes greater and convergence to the optimal solution is more complicated.

The main reason is the increasing of the number of decision variables from 84

for 10min to 168 for 5 minutes fixed time step and to 840 for 1 minute fixed

time step. The number of constraints has been increased from 420 for 10min

to 840 for 5 minutes fixed time step and to 4200 for 1 minute fixed time step.

However, for the optimized time step strategy the number of constraints has

been increased from 12 to 28 and the number of constraints from 21 to 49.
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Moreover, the execution time of the optimization problem increases as the size

and complexity of the problem increases. For this case, it can be noted that

the solving time is 72 seconds for 1 minute fixed time step, 2.4 seconds for

the 5 minutes fixed time step, and 0.24 second for the optimized time step

strategy. Furthermore, the charging profit is different for each power profile,

it is estimated to 0.225e for 1 minute fixed time step strategy, to 0.24e for 5

minutes fixed time step strategy, 0.31e for optimized time step strategy. To

sum up, the optimized time step strategy ensures high speed convergence to

optimal solution and needs low computing capacity compared to fixed time step

strategies.

Figure 10: Charging strategies comparison under Tout = −20◦C.
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Figure 11: The simulation of battery charging with the obtained scheduling power, Tout =

−20◦C.

For the second case, the charging is done under an outside temperature of

−20◦C. The comparison between the fixed time step strategy and optimized

time step strategy shows the advantage of fixed time step to follow the temper-

ature constraint. However, it highlights the fact that the constraint evaluating

process in the scheduling process is done 48 times for the fixed time step against

2 times for the optimized time step. In the case of significant variations of sys-

tem inputs (energy prices and maximum powers) and long planning period the

most important thing is to find a sub optimal solution in the feasible area that

satisfies the constraints as quickly as possible. Therefore, the proposed strategy
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with optimized time step performs perfectly this task.

By applying the two power profiles defined above to the battery model, the

results show a slight error between the final SOC and the SOC target. Despite

the consideration of temperature in the scheduling strategy, it remains impor-

tant to note that the scheduling power profiles in Fig. 10 are distinct from the

effective charging power profile in Fig. 11. Due to the rapid decrease of the bat-

tery power acceptance caused by the fast drop of the battery temperatures, the

power profile is limited by the battery power restriction given by the powermap

updated every minute. It is possible to overestimate the energy requirement by

5% to 15% to overcome this problem in extreme temperature.

Moreover, the proposed algorithm with optimized time step has been tested

on five daily energy prices profiles and the results were compared to classical

algorithms with 10 minutes and 1 minute fixed time step. The comparison

has been done on several levels such as the number of the decision variables,

the number of constraints, the running time and the charging cost/profit. The

results of the study are presented in Table 2.

According to the results presented in Table 2, the algorithm with optimized

time step performs the charging scheduling by using a minimal number of deci-

sion variables and the number of constraints. By subdividing the energy price

profiles on optimal time slot the number of decision variables is minimized com-

pared to the classical strategies with fixed time step. For an optimization win-

dow of 14 hours, the number of decision variables is 840, 84, for 1 minute and 10

minutes fixed time step respectively. Therefore, the executing time is very small

for the proposed strategy with optimized time step compared to the strategies

with fixed time step.

Moreover, the last column shows the charging cost (negative number) or

the charging profit (positive number). The charging cost/profit value gives the

information about the convergence to the optimal solution. The strategy with

optimized time step has always the best value. In case of many variations in

the energy price profile (profile 2 and 5) presented in Figure 12, the charging

profit of the optimized time step strategy is almost double compared to the
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Figure 12: The used energy price’ profiles

classical strategies with fixed time step. In conclusion, the optimized time step

strategy converges to the optimal solution quickly and performs the charging

cost minimization despite the many variations in the energy price profile.

4. Conclusion

In order to provide an economic benefit to EV users, an optimal decentral-

ized smart charging strategy has been proposed in this work with the objective

of reducing the charging cost for the EV user. When assuming the high vari-

ations in energy prices, the classic smart charging strategies can not perform

the scheduling due to high number of decision variables and the high number of

constraints. The added value of the proposed smart charging algorithm is the

use of a dynamic optimized time step taken as a decision variable, contrary to
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Profile Strategy No Var No const Running time Cost

1

1min 14x60 5x14x60 188 -0.47

10min 14x6 5x14x6 2.7 -0.41

Optimized 4x4 7x4 0.3 -0.41

2

1min 14x60 5x14x60 112 0.15

10min 14x6 5x14x6 1.6 0.26

Optimized 4x11 7x11 0.8 0.41

3

1min 14x60 5x14x60 187 -1.7

10min 14x6 5x14x6 2.5 -1.69

Optimized 4x14 7x14 1.4 -1.63

4

1min 14x60 5x14x60 138 -1.29

10min 14x6 5x14x6 1.85 -1.23

Optimized 4x5 7x5 0.37 -1.22

5

1min 14x60 5x14x60 167 0.92

10min — — — —

Optimized 4x16 7x16 0.40 1.89

Table 2: The result of the case study

the existing approaches that use a constant time step as a fixed parameter. The

proposed algorithm can perform the power scheduling despite the high fluctua-

tion of energy prices in a reduced time and low computational capacities such as

those available on an onboard controller. Taking into account the TOU energy

prices, the initial SOC, the final SOC desired by the EV user, the maximum

power of the charging infrastructure, the power limitation the Li-ion battery,

the initial battery temperature and the outside temperature, the smart charg-

ing strategy with optimized time step outperforms the classical strategies with

a fixed time step in terms of computing time and the charging cost reduction.

Future work should include a degradation model (in scheduling) that con-

sider the effect of the V2G feature on the degradation of Li-ion batteries, due

to the large depth of discharge and long discharge time.
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